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Note: These solutions are a work in progress; comments, references, etc. are appreciated. Most
references and figures can be found with the problem statements.

Problem 1. Line segmentsO A andO B meet atO with an angle of 1 degree. PointsC and D
bisectO AandO B respectively. Imagine that the segmentsC AandDB act as reflective mirrors,
and that a light ray in the plane enters the larger openingAB, bounces back and forth between
the two mirrors for a while and then exits. What is the maximum number of reflections that are
possible?

Discussion:Draw 360 radii of a circle centered atO, with the angle between each of the radii
and its neighbors being one degree. Draw another, smaller concentric circle whose radius is half
of the bigger circle. Then call the outer half of each of the 360 radii a “spoke.” Partition the
spokes alternately into even spokes and odd spokes.

Now imagine that the mirrors are only semi-reflective, so that when a light ray strikes, it di-
vides into a reflected component (which bounces off the mirror) and a transmitted component,
which continues on through the mirror as a straight line continuation of the incoming ray. Since
the angle of reflection equals the angle of incidence, the straight-line continuation and the re-
flected components will both strike their respective next neighboring mirrors at exactly the same
distance from centerO. Continuing this same line of argument, we soon find a one-to-one cor-
respondence between the light ray which might be reflected back and forth betweenC A andDB
and the straight line.

So the question of how many times a ray might be reflected back and forth betweenC A and
DB translates into the question of how many different spokes might be intersected by a single
line which never goes inside the inner circle. The line which is tangent to the inner circle is
clearly one strong candidate. The number of degrees subtended by this line is

2 · arccos(1/2) = 120◦.

So evidently, a light ray can reflect off ofAC andB D a total of 120 times, and no more. Each of
the two mirrors accounts for 60 of these reflections.

121 reflections is marginally conceivable, if one reflection precisely at pointC and two re-
flections precisely at pointA are all allowed. But since any real light wave has a finite (positive)
wavelength, we think that this conceptual possibility deserves to be rejected.

Problem 2. (Just when you thought you were safe from hat problems. . . ) Letn be a positive
integer. A team ofn people has a strategy session. After that a judge randomly places red and
blue hats on their heads. Each person can see all hats except their own (and sees who is wearing
which hat, in addition to the color of the hat).Simultaneously, and with no communication
whatsoever, each player must vote on their hat color (abstention is not allowed). However, they
follow “Chicago” rules: each player can place as many votes as they desire. If a majority of the
players are correct, the team shares one million dollars.

Find a strategy that maximizes the team’s chances of winning the million dollars.

Discussion: First, we correct an error in the statement of the problem, whose second-to-last
sentence should have read, “If a majority of thevotesare correct, the team shares one million
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dollars.” Fortunately, most readers understood the context and interpreted the problem as had
been intended.

This problem apparently goes back at least to J. Aspens, R. Beigel, M. Furst and S. Rudich,
“The expressive power of voting polynomials”,Combinatorica14:2 (1994), 1–14.

Here is a solution that wins with probability 1− 2−n.
In their strategy session, the team assigns index numbers to its members, ranging from 0 to

n − 1. The team will lose only when all of the hats are red; in that case there will be a very
large number of votes cast, and all of them will be wrong. When there is at least one blue hat,
then the smallest-numbered player with a blue hat guesses correctly, and he casts a sufficiently
large number of votes to dominate the election. Each of the players with a larger index number
casts as few votes as the election rules permit. More specifically, if thek-th player sees any blue
hat(s) preceding him (i.e., on players with smaller indices) he casts the minimum number of votes
permissible, which we denote bym. But if he sees no blue hats preceding him, then he castsf (k)

votes in favor of his own hat being blue, andf (k) will be large enough that his votes alone are
sufficient to dominate the election if he is lucky enough to be correct.

This strategy is most easily exemplified in a simpler version of the problem, in which absten-
tion is permitted, som = 0. In this case, we can choosef (k) = 2k.

More generally, our strategy works only if

f (k) > F(k) + m(n − k − 1)

where

F(k) =

k−1∑
j =0

f ( j ).

That’s becauseF(k) is the number of incorrect votes casts by preceding players, andm(n − k)

is the maximum possible number of incorrect votes cast by subsequent players. The minimum
function f (k) evidently satisfies this recursion:

f (k) = 1 + F(k) + m(n − k − 1).

When m = 1, this becomesf (k) = n − k + F(k) whence

f (0) = n = n

f (1) = n + n − 1 = 2n − 1

f (2) = 3n − 1 + n − 2 = 4n − 3

f (3) = 7n − 4 + n − 3 = 8n − 7

. . .

f (k) = 2k(n − 1) + 1

as is easily proved by induction.

Problem 3. Show that for any positive integern the regular 2n-gon of side 1 can be tiled by
rhombuses of side 1. How many rhombuses did you use?

Problem 4. You are a playwright and want to write a play, for a company ofn actors, in which
actors will enter and exit one at a time, subject to the following constraint: any actor that exits is
the one that has been on stage the longest.
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For n = 3, n = 4, and n = 5, can you devise a sequence of entrances and exits in which
each set of actors appears once and only once? The play begins with an empty stage, so the initial
subset is the empty set. You get extra credit if the final set contains a single actor, because then
the sequence could cycle, like a Beckett play.
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