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Preface

This publication contains the technical reports written by the students who partici-
pated in the 2009 Mathematical Sciences Research Institute - Undergraduate Program
(MSRI-UP) in Berkeley, CA. MSRI-UP is a six-week Research Experience for Under-
graduates (REU) funded by National Science Foundation (NSF, grant No. DMS-
0754872) and the National Security Agency (NSA, grant No. H98230-09-0103).

The seventeen students who participated in the MSRI-UP 2009 came from uni-
versities in Arizona, California, Georgia, Hawaii, Louisiana, Minnesota, New Jersey,
New York, Pennsylvania and Puerto Rico. They worked in groups on undergraduate
research projects in the field of coding theory designed by and under the direction of
Professor John B. Little, College of the Holy Cross. Professor Little and the students
were supported by an academic staff consisting of Dr. Emille Davie, Postdoctoral
Fellow, University of California, Santa Barbara; Candice Price, Graduate Student,
University of Iowa; and Ashley Wheeler, Graduate Student, University of Michigan.

The reports contained herein are the culmination of hundreds of hours of work by
the MSRI-UP 2009 students and staff. We are confident that the interested reader
will find the work done by these undergraduates mathematically rich, interesting and
impressive. (We mention that Prof. Little and the rest of the MSRI-UP staff has
done some editing of the reports, but because the quantity of work produced by the
students during the short six-week program is so great and because of other time
constraints, these reports should be characterized as “not-fully edited”.)

MSRI-UP’s primary goal is to increase the number of graduate degrees in the
mathematical sciences, especially doctorates, earned by U.S. citizens and permanent
residents by cultivating heretofore untapped mathematical talent. The summer re-
search experience along with subsequent professional development opportunities and
mentoring are designed to cultivate the mathematical talent of the MSRI-UP under-
graduates.

Much support for the program was provided by many individuals at MSRI; in
particular we thank Robert Bryant, Hélène Barcelo, Kathy M. O’Hara, Enrico Her-
nandez, Jonathan Rubinsky, Anna Foster and Arne Jensen. In addition, MSRI-UP
co-directors Duane Cooper, Morehouse College; Ricardo Cortez, Tulane University;
Ivelisse Rubio, University of Puerto Rico at Ŕıo Piedras; and Suzanne Weeks, Worces-
ter Polytechnic Institute contributed significantly towards the organization and design
of the program.

Best of luck to the MSRI-UP 2009 students!

Herbert A. Medina
Director, MSRI-UP 2009

Berkeley, CA
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Abstract

Building on the recent work surrounding toric codes, introduced in 2000 by
J. Hansen, we further investigate the properties of this interesting class of error
correcting cyclic codes. A toric code C is generated by creating monomials
from a set of lattice points P in dimension m, and evaluating each of those
monomials over all m-tuples of non-zero elements in a finite field of size q.
Just as “ordinary” cyclic codes can be studied via properties of polynomials in
one variable, we show that toric codes, which are m-dimensional cyclic codes,
can be studied via m-variable polynomials. We aim in our work to generalize
explicitly what the algebraic structure is for toric codes. In particular, we give
formulas for finding the roots of (generalized) toric codes and their dual codes,
and from these roots we derive a formula for an idempotent polynomial that
generates the toric code.

1 Introduction

Researchers such as J. Hansen and D. Ruano have considered the properties of gen-
eralized toric codes which have given background for future research to be done.
In particular, in [DGV] the authors found that all (generalized) toric codes are m-
dimensional cyclic. For the case m = 2, if a codeword is written as a (q− 1)× (q− 1)
array then it is closed under row-wise and column-wise cyclic shifts. In classical cod-
ing theory, a cyclic code is identified by both a one-dimensional generating polynomial
and a unique generating idempotent. We find a generating idempotent polynomial in
m variables for toric codes which is analogous to the generating polynomial for cyclic
codes. For the purpose of this paper, unless otherwise stated, we take m = 2 but our
results can be generalized for all m.

2 Background

Definition 1. Given a polytope P ⊂ R2 each integer lattice point (a, b) in P deter-
mines a monomial xayb. Each monomial is evaluated at all pairs of non-zero elements
in a finite field to produce codewords in a basis for a toric code C.
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Recall that for a binary cyclic code C of length n, each codeword of length n can
be represented as a polynomial c(x) mod xn + 1 of degree n. A polynomial I in one
variable x is said to be idempotent if it satisfies the relation

(I(x))2 ≡ I(x) mod xn + 1.

There exists a unique idempotent polynomial I(x) in C that generates C.

3 Roots of Toric Codes

We need the following definition.

Definition 2. Consider the evaluation mapping

ev : Fq[x, y]→ (F∗q)(q−1)2 ,

defined by ev(f) = (f(αi, αj))i=0...q−2,j=0...q−2. Each vector ev(f) corresponds to a
polynomial

F (s, t) =

q−2∑
i=0

q−2∑
j=0

f(αi, αj)sitj.

For (a, b) ∈ Z2, we define D(a, b) as the F (s, t) corresponding to ev(xayb). We say
D(a, b) is the representative polynomial for (a, b).

Example 1. Let P be the polytope P = conv(0, e1, e2, e1+e2), We construct the gen-
erator matrix, G, for the corresponding code CP over F4 by evaluating the monomials
1, x, y, xy over each 2-tuple in (F∗4)2.

(1
1) (α1) (α

2

1 ) (1
α) (αα) (α

2

α ) ( 1
α2) ( αα2) (α

2

α2)

G =

1

x

y

xy


1 1 1 1 1 1 1 1 1
1 α α2 1 α α2 1 α α2

1 1 1 α α α α2 α2 α2

1 α α2 α α2 1 α2 1 α

 .

The fourth row in G corresponds to

D(1, 1) = 1 + αs+ α2s2 + αt+ α2st+ s2t2 + α2t+ st2 + αs2t2.

3.1 Relation of D(a, b) and the toric code CP

Let D = {D(a, b) | (a, b) ∈ P}. This generates the toric code CP . Note that the roots
of CP are the common zeroes of D. We can find these roots and a basis for C⊥P using
the following theorems. We write α for a primitive element of Fq.

Theorem 1. The roots of D(a, b) are all elements of (F∗q)2 except (αi, αj) where
(i, j) ≡ (−a,−b) mod q − 1.
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Proof. Given that

D(a, b) = (1+αas+. . .+αa(q−2)sq−2+αbt+. . .+αal+bmsltm+. . .+α(a+b)(q−2)s(q−2)t(q−2)),

we can factor D(a, b) and solve for zero to find the roots.

D(a, b) = (1+αas+. . .+αalslαa(q−2)sq−2)·(1+αbt+. . .+αbmtm+. . .+αb(q−2)t(q−2)) = 0.

Let u = αas, and w = αbt. Substituting into the equation above gives us

(1 + u+ u2 + . . .+ uq−2)(1 + w + w2 + . . .+ wq−2) = 0.

We know that each β ∈ F∗q has the property βq−1 = 1 since F∗q is a multiplicative
group. Hence, every element of F∗q is a solution of the equation uq−1 − 1 = 0. We
know that uq−1 − 1 factors as (u− 1)(uq−2 + uq−3 + . . .+ u2 + u+ 1). The only root
of u− 1 in F∗q is u = 1. Moreover, u = 1 is not a root of the second factor, but every
other element of F∗q is a root of the second factor. Since u = αas, we see that u = β is
a root of the second factor except for when s = (αa)−1 = αi where i ≡ −a mod q− 1.

A similar argument for w yields the result that the roots of D(a, b) are all elements
of (F∗q)2 except the pair (αi, αj), where (i, j) ≡ (−a,−b) mod q − 1.

Corollary 1. Let P be a polytope in R2. A polynomial represents a word in CP

if and only if it has zeroes at all elements of (F∗q)2 except (αi, αj) where (i, j) ≡
(−a,−b) mod q − 1 for some (a, b) ∈ P ∩ Z2.

Proof. This is immediate from Theorem 1.

3.2 A Basis for the Dual Code

We use Corollary 1 to a identify a basis for the dual code C⊥P using the following
correspondence. Let (αi, αj) be a zero of CP . Then for some polynomial c(s, t) =
a0+a1s+. . .+aq−2s

q−2+aq−1t+. . .+a(q−2)2s
q−2tq−2 in CP , we have that c(αi, αj) = 0.

Thus,

c(αi, αj) = a0 + a1α
i + . . .+ aq−2α

i(q−2) + aq−1α
j + . . .+ a(q−2)2α

i(q−2)αj(q−2)

= (a0, a1, . . . , a(q−2)2) · (1, αi, . . . , α(i+j)(q−2))

= 0.

Hence, the vector vi,j = (1, αi, . . . , α(i+j)(q−2)) is an element of C⊥P .

Example 2. Consider the polytope P = conv(0, e1, e2, e1 + e2) in R2. The common
roots of CP are R = {(α, 1), (1, α), (α, α), (α, α2), (α2, α)}. For each element of R, the
correspondence to vectors in C⊥P is given as follows.

(1, α) ↔ (1 1 1 α α α α2 α2 α2)

(α, 1) ↔ (1 α α2 1 α α2 1 α α2)

(α, α) ↔ (1 α α2 α α2 1 α2 1 α)

(α, α2) ↔ (1 α α2 α2 1 α α α2 1)

(α2, α) ↔ (1 α2 α α 1 α2 α2 α 1).
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Theorem 2. Let

R = {(αi, αj) ∈ (F∗q)2|(i, j) 6≡ (−a,−b) mod q − 1 for each (a, b) ∈ P}

be the common roots of the code CP . Then the set of vectors V = {vi,j} corresponding
to the elements of the set R form a basis for the dual code C⊥P .

Proof. Let S be the matrix shown below, with rows constructed by ev(xayb) for each
(a, b) ∈ [0, q−2] evaluated at all pairs (αi, αj) in (F∗q)2. We note that S is a generator
matrix of the toric code CP for the polytope P = [0, q − 2]2.

(1
1) (α1) (α

q−2

1 ) (1
α) ( 1

αq−2) (α
q−2

αq−2)
1

x

x2

·
·
y

xy

·
·

yq−2

·
·
·

xq−2yq−2



1 1 · 1 1 · 1 · 1
1 α · αq−2 1 · 1 · αq−2

1 α2 · α2(q−2) 1 · 1 · α2(q−2)

· · · · · · · · ·
· · · · · · · · ·
1 1 · 1 α · αq−2 · αq−2

1 α · αq−2 α · αq−2 · α(q−2)+(q−2)

· · · · · · · · ·
· · · · · · · · ·
1 1 · 1 αq−2 · αq−2 · αq−2

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
1 αq−2 · α(q−2)(q−2) αq−2 · α(q−2)(q−2) · α(q−2)(q−2)+(q−2)(q−2)


Taking d = e = q − 2 in Theorem 2 of [DGV], we see that the rows of the matrix
S are linearly independent and hence its columns are also linearly independent. We
note that each vector in V appears as a column of S, and moreover, there are n− k
of them. Since C⊥P has dimension n− k, we see that V is a basis for C⊥P .

4 Generating Idempotents

4.1 Constructing an Idempotent Polynomial

Given an integer lattice point (a, b) in a polytope P in R2, we define a polynomial
function Ii,j(s, t) on (F∗q)2 which corresponds to (a, b) and has the following property.
If (i, j) ≡ (−a,−b) mod q − 1, then

Ii,j(s, t) =

{
1 for (αi, αj),

0 otherwise.

Consider the following example.
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Example 3. Given the polytope P = conv(0, e1, e2, e1 + e2), the lattice points (a, b)
correspond to the set

N = {(1, 1), (1, α2), (α2, 1), (α2, α2)} ∈ (F∗4)2.

Let I0,2(s, t) be the polynomial

I0,2(s, t) =
(s− α)(s− α2)(t− 1)(t− α)

(1− α)(1− α2)(α2 − 1)(α2 − α)
.

Note that each of the s factors in the formula corresponds to excluding the column
of points in the field (F∗4)2 where s = α and s = α2. Similarly each of the t factors in
the formula corresponds to excluding the row of points in the field where t = 1 and
t = α (see figure 1). Therefore, the only point in the entire field (F∗4)2 that is not a
zero is (1, α2). Furthermore, at (1, α2) the value of I0,2 is 1. Similarly, for the other

α α21
1

α

α2

s

t (F∗
4)

2

Figure 1: A graphical representation of the equation for I0,2(s, t). The terms (s −
α), (s− α2), (t− 1), (t− α) cover all the zeroes of I0,2(s, t).

elements of N , we have

I0,0(s, t) =
(s− α)(s− α2)(t− α)(t− α2)

(1− α)(1− α2)(1− α)(1− α2)

I2,0(s, t) =
(s− 1)(s− α)(t− α)(t− α2)

(α2 − 1)(α2 − α)(1− α)(1− α2)

I2,2(s, t) =
(s− 1)(s− α)(t− 1)(t− α)

(α2 − 1)(α2 − α)(α2 − 1)(α2 − α)
.

A general formula for Ii,j(s, t), that evaluates to 1 only at the point (αi, αj) ∈ (F∗q)2

and evaluates to 0 for all other points in the field is given by Ii,j(s, t) =

(s− 1) · . . . · ̂(s− αi) · . . . · (s− αq−2) · (t− 1) · . . . · ̂(t− αj) · . . . · (t− αq−2)

(αi − 1) · . . . · ̂(αi − αi) · . . . · (αi − αq−2) · (αj − 1) · . . . · ̂(αj − αj) · . . . · (αj − αq−2)
.

The following theorem gives us that the polynomial above is idempotent.
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Theorem 3. The polynomial Ii,j(s, t) is idempotent.

Proof. We prove that Ii,j(s, t) is idempotent, which is equivalent to showing that
(Ii,j(s, t))

2− Ii,j(s, t) ≡ 0 mod sq−1− 1, tq−1− 1. First divide (Ii,j(s, t))
2− Ii,j(s, t) by

sq−1 − 1 and tq−1 − 1:

(Ii,j(s, t))
2 − Ii,j(s, t) = q1(s, t)(s

q−1 − 1) + q2(s, t)(t
q−1 − 1) + r(s, t),

where q1(s, t), q2(s, t) are quotients and r(s, t) is the remainder polynomial. Let
(αi, αj) ∈ (F∗q)2 and substitute for (s, t) in the equation above. Since we know that
Ii,j(s, t) evaluated for a point (F∗q)2 is either 0 or 1 from the definition of Ii,j(s, t), we
know that (Ii,j(s, t))

2 − Ii,j(s, t) = 0. So we have

0 = q1(α
i, αj)((αi)q−1 − 1) + q2(α

i, αj)((αj)q−1 − 1) + r(αi, αj)

= q1(α
i, αj)(1− 1) + q2(α

i, αj)(1− 1) + r(αi, αj)

= 0 + 0 + r(αi, αj)

= r(αi, αj),

since we know that for any element β ∈ F∗q, βq−1 = 1. We have that the polynomial
r(s, t) is 0. Assume otherwise, that it is a non-zero remainder polynomial. We know
that the degree of r(s, t) in s, t must be strictly less than q − 1 since r(s, t) is the
remainder polynomial after dividing by (sq−1− 1) and (tq−1− 1). Let s be some fixed
αi ∈ F∗q and let r(t) = r(αi, t) which has degree less than q−1. But r(t) has q−1 roots

since by above we have that r(αj) = r(αi, αj) = 0 for all j = 0, . . . , q− 2. So this is a
contradiction and we have that (Ii,j(s, t))

2 − Ii,j(s, t) ≡ 0 mod sq−1 − 1, tq−1 − 1.

Using the idempotent polynomial Ii,j(s, t), we can construct a generating idempo-
tent I(s, t) for the toric code CP . Define I(s, t) by the following equation.

I(s, t) =
∑

(a,b)∈P

Ii,j(s, t). (1)

If q is a power of 2, it is clear that I(s, t) is an idempotent since the sum of idempotents
is idempotent. More generally, for any q, I(s, t) is idempotent since the Ii,j(s, t) are
pairwise orthogonal in the sense that Ii,j(s, t)Ii′,j′(s, t) ≡ 0 mod sq−1 − 1, tq−1 − 1 if
(i, j) 6= (i′, j′). We also know that I(s, t) corresponds to a word in CP by Corollary 1
since it contains the zeroes of CP .

4.2 How the generating idempotent generates the code

In this section we prove that the idempotent I(s, t) as defined above generates the
code CP . We begin with the following lemma.

Lemma 1. Let F (s, t) be an idempotent and p(s, t) be an element of Fq[s, t]. If
u(s, t) ≡ F (s, t)·p(s, t) mod sq−1−1, tq−1−1, then u(a, b) = p(a, b) where (a, b) ∈ (F∗q)2

is not a root of F (s, t).
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Proof. Let F (s, t) be an idempotent and p(s, t) be any polynomial in Fq[s, t]. Suppose
u(s, t) ≡ F (s, t) · p(s, t) mod sq−1 − 1, tq−1 − 1. Then

F (s, t) · p(s, t) = (sq−1 − 1) ·Q1(s, t) + r1(s, t),

for some r1, Q1 ∈ Fq[s, t], and

r1(s, t) = (tq−1 − 1) ·Q2(s, t) + u(s, t),

for some Q2 ∈ Fq[s, t]. By substitution we obtain

F (s, t) · p(s, t) = (sq−1 − 1) ·Q1(s, t) + (tq−1 − 1) ·Q2(s, t) + u(s, t).

Suppose (a, b) ∈ (F∗q)2 is not a root of F (s, t). Then,

F (a, b) · p(a, b) = (aq−1 − 1) ·Q1(a, b) + (bq−1 − 1) ·Q2(a, b) + u(a, b)

1 · p(a, b) = (1− 1) ·Q1(a, b) + (1− 1) ·Q2(a, b) + u(a, b)

p(a, b) = u(a, b).

This gives the desired equality.

Theorem 4. Given a polytope P ∈ R2 and the field Fq, I(s, t) from (1) generates the
toric code CP .

Proof. We show that there exist k linearly independent codewords ui(s, t) of the
form ui(s, t) ≡ I(s, t) · pi(s, t) mod sq−1 − 1, tq−1 − 1 for some pi(s, t) ∈ Fq[s, t]. Let
(a1, b1), . . . , (ak, bk) be the integer lattice points of the polytope P in R2, and let
Iil,jl(s, t) be the idempotent that corresponds to the point (al, bl) using the construc-
tion in Section 4.1. Define ul(s, t) ≡ I(s, t) · Iil,jl(s, t) mod sq−1 − 1, tq−1 − 1, where
I(s, t) =

∑
(al,bl)∈P Iil,jl(s, t). By Lemma 1, we know that ul(α

il , αjl) = Iil,jl(α
il , αjl),

since (αil , αjl) is not a root of I(s, t).
Now suppose that

c1u1(s, t) + c2u2(s, t) + · · ·+ ckuk(s, t) = 0

for ci ∈ Fq. If we evaluate the equation above at a given (αil , αjl), we see that all
terms are zero except for the l-th term. Therefore, the equation becomes

clul(α
il , αjl) = 0.

This implies that cl = 0 since ul(α
il , αjl) = 1. Thus, as l goes from 1 to k, we obtain

that cl = 0 for each 1 ≤ l ≤ k proving the linear independence of the polynomials
u1(s, t), . . . , uk(s, t). Moveover, each ul represents a codeword by Corollary 1.

Example 4. We construct an idempotent I(s, t) that generates the toric code CP

corresponding to the square polytope P with the following lattice points: (0,0), (0,1),
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(1,0), (1,1) and evaluated over the field F4. We have the following correspondence
between points (a, b) in P and idempotents Ii,j given in Example 3.

(0, 0)↔ I0,0(s, t)

(1, 0)↔ I2,0(s, t)

(0, 1)↔ I0,2(s, t)

(1, 1)↔ I2,2(s, t)

Let I(s, t) =
∑

(a,b)∈P Ii,j(s, t) and put

u1(s, t) ≡ I(s, t) · I0,0(s, t) mod sq−1 − 1, tq−1 − 1

u2(s, t) ≡ I(s, t) · I2,0(s, t) mod sq−1 − 1, tq−1 − 1

u3(s, t) ≡ I(s, t) · I0,2(s, t) mod sq−1 − 1, tq−1 − 1

u4(s, t) ≡ I(s, t) · I2,2(s, t) mod sq−1 − 1, tq−1 − 1.

Suppose that
c1u1(s, t) + c2u2(s, t) + c3u3(s, t) + c4u4(s, t) = 0

for some ci ∈ F4. Then if we evaluate at the point (1, 1), we notice that as a conse-
quence of Lemma 1, u1(1, 1) = 1, but ui(1, 1) = 0 for all i 6= 1. Thus, the equation
becomes

c1u1(1, 1) = 0.

This implies that c1 must be zero. Similarly, for other carefully chosen values of
(F∗q)2, we obtain that each ci = 0. Hence {ui(s, t)}4i=1 is a set of linearly independent
codewords in CP . Since the dimension of CP is 4, we have that I(s, t) generates the
code CP .
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Abstract
Toric codes are a specific class of linear codes, originally introduced by J.

Hansen [2]. In this report, we study generalized toric codes, which are generated
by a set of points in Zmq−1. The orbits of these sets of points determine equivalent
codes. In order to find and distinguish the codes for a given blocklength and
dimension, we used various Magma processes to compute minimum distances
and weight distributions of codes. There is an online table that contains much
of the existing knowledge about the minimum distances of linear codes with
certain dimensions at http://www.codetables.de. In our analysis of codes,
we sought to find codes over F4 and F5 that would have minimum distances that
exceed the lower bound listed in the online table, and thus would be the best
known codes in existence for given parameters. In the process, we also noticed
an interesting property about the average weights of words in toric codes and
found codes from F5 and F16 that we believe to be interesting.

1 Introduction

Toric codes were introduced in 1998 by J. Hansen [2], and are a generalization of the
often-studied Reed-Solomon codes. We use some geometric concepts to explain how
to construct a toric code.

Suppose that P is properly contained in the box [0, q − 2]m, denoted

�q−1,

where q is a power of some prime. We define toric codes as follows:

Definition 1. Let Fq be a finite field with primitive element α. For f ∈ Zm with
0 ≤ fi ≤ q−2 for all i, let pf = (αf1 , . . . , αfm) ∈ (F∗q)m. For any e = (e1, . . . , em) ∈ P ,
let xe be the corresponding monomial and write

(pf )
e = (αf1)e1 · · · (αfm)em .

9



The toric code Cp(Fq) over the field Fq associated to P is the linear code of block
length n = (q − 1)m with generator matrix

G = ((pf )
e),

where the rows are indexed by the e ∈ P , and the columns are indexed by the
pf ∈ (F∗q)m.

Example 1. Let P ⊂ R3 be the vertices of the unit tetrahedron

P = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

We will find the toric code CP (F4). Begin by using the coordinates of each lattice
point in P as exponents of x, y, and z: 1, x, y, z. Let α be the primitive element in
F4. Form ordered 3-tuples of the elements of F∗4 = {1, α, α2}:

(1, 1, 1), (1, 1, α), (1, 1, α2), (1, α, 1), (1, α, α), (1, α, α2), (1, α2, α), (1, α2, α2), (α, 1, 1),

(α, 1, α), (α, 1, α2), (α, α, 1), (α, α, α), (α, α, α2), (α, α2, α), (α, α2, α2), (α2, 1, 1),

(α2, 1, α), (α2, 1, α2), (α2, α, 1), (α2, α, α), (α2, α, α2), (α2, α2, α), (α2, α2, α2).

Finally, we evaluate each monomial over the set of all 3-tuples to generate each row
of a 4× 27 matrix:[

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 α α α α α α α α α α2 α2 α2 α2 α2 α2 α2 α2 α2

1 1 1 α α α α2 α2 α2 1 1 1 α α α α2 α2 α2 1 1 1 α α α α2 α2 α2

1 α α2 1 α α2 1 α α2 1 α α2 1 α α2 1 α α2 1 α α2 1 α α2 1 α α2

]
.

We now give some necessary background.

2 Background

In this section we establish a notion of equivalence for toric codes and the machinery
needed to categorize them. First we need the following definitions:

Definition 2. An invertible affine mapping or affine transformation T : Zm → Zm

has the form
T (x) = Ax+ v

where A is an invertible integer matrix whose inverse is also an integer matrix, and v
is an integer vector.

We will also need similar mappings from Zm
q−1 to itself.

Definition 3. The group of invertible affine mappings T : Zm
q−1 → Zm

q−1, denoted
AGL(m,Zq−1) is the group of affine transformations

T (x) = Ax+ v

where A is an m×m invertible matrix, and both A and v have entries from Zq−1.
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These types of affine transformations can be thought of as permuting the integer
lattice points in �q−1.

Definition 4. Let two toric codes C1 and C2 over Fq have generator matrices G1 and
G2, respectively. If there exist a permutation matrix R and a diagonal matrix D with
entries from F∗q−1 such that

G1RD = G2,

then C1 and C2 are said to be monomially equivalent.

We have the following consequences:

Theorem 1. Two codes that are monomially equivalent have the same blocklength,
dimension and weight distribution.

Thus monomially equivalent codes are not considered distinct.

Definition 5. Let P and Q be subsets of Zm
q−1. If there exists an invertible affine

transformation T (x) in AGL(m,Zq−1) such that T (P ) = Q, then P is AGL(m,Zq−1)-
equivalent to Q.

Theorem 2. If P is AGL(m,Zq−1)-equivalent to Q in Zm
q−1, then CP (Fq) is mono-

mially equivalent to CQ(Fq).

It follows immediately that the existence of an invertible affine transformation in
AGL(m,Zq−1) between two sets of points in Zm

q−1 implies that their associated toric
codes are equivalent.

Figure 1: Transformation from Example 2

Example 2. Consider the vertices of the unit square. Let P = {(0, 0), (1, 0), (0, 1),

(1, 1)} ⊂ Z2
4, and let T (x) =

[
1 0
0 1

]
x+

[
2
1

]
. So T (P ) = {(2, 1), (3, 1), (2, 2), (3, 2)}
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is the set of vertices of a translated unit square. It follows from the theorem that
CP (F5) is monomially equivalent to CT (P )(F5). See Figure 1.

For a given k, there are
(
(q−1)m

k

)
subsets of Zm

q−1 having k elements. Any of these
subsets could be used to construct a toric code of dimension k, so there are upwards
of
(
(q−1)m

k

)
such codes. However, any two of these sets of points that are related by

an affine mapping in AGL(m,Zq−1) will yield equivalent codes. The question arises
as to how many distinct codes exist.

Definition 6. Let S be the collection of all k-element subsets of Zm
q−1. An orbit

is a subset of S such that for all v, w ∈ S, there exists an affine mapping T (x) in
AGL(m,Zq−1) with T (v) = w.

The construction of orbits will partition the set S. Moreover, all elements in a
given orbit yield toric codes that are monomially equivalent. However, this is not to
say that two different orbits cannot yield toric codes that are monomially equivalent.

Example 3. Consider the toric codes, CP1(F5) and CP2(F5) constructed using the
sets of lattice points P1 = {(0, 0), (0, 2), (2, 0)} and P2 = {(0, 0), (1, 0), (2, 0)} over the
field F5. P1 and P2 are in different orbits, which means that they are not AGL(2,Z4)-
equivalent. However, CP1(F5) and CP2(F5) have the same weight enumerator, x16 +
24x8y8 + 48x4y12 + 52y16. This means that the two toric codes can be monomially
equivalent. It suffices to show that if it is possible to make the generators of the codes
equal by permuting columns, scaling columns, and performing row operations then
CP1(F5) is monomially equivalent to CP2(F5). Note: a simplified notation can be used
since the columns of the matrix can be divided evenly by four, where each block of
columns has the same entry in each row.

G1 =

 1 0 0 1 0 4 4 0 0 4 4 0 1 0 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0


Row1 + Row2 → 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0


Permute Col1 to Col14, Col4 to Col14, Col6 to Col9, Col7 to Col12 → 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0


Simple Notation→

 1 0 0 1
1 0 1 0
0 1 1 0


G2 =

 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 2 2 2 2
0 0 0 0 0 0 0 0 1 1 1 1 3 3 3 3
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Simple Notation→

 1 0 0 1
0 1 0 2
0 0 1 3

Row2 + Row3 →

 1 0 0 1
0 1 1 0
0 0 1 3


2Row1 →

 2 0 0 2
0 1 1 0
0 0 1 3

Row3 + Row1 →

 2 0 0 2
0 1 1 0
2 0 1 0


3Col1, 3Col3 →

 1 0 0 1
0 1 1 0
1 0 1 0

 Swap Row2 and Row3 →

 1 0 0 1
1 0 1 0
0 1 1 0


This shows that CP1(F5) and CP2(F5) are monomially equivalent.

If we can find a representative element for each orbit then we would, essentially,
have all the codes. In [1], Cameron refers to what is known as the cycle index
polynomial, a very useful tool for computing the number of orbits.

Definition 7. Let G be a permutation group on a set Ω, where |Ω| = n. For each
element g ∈ G, we can decompose the permutation g into a product of disjoint cycles;
let ci(g) be the number of i-cycles occurring in this decomposition. Now the cycle
index of G is the polynomial Z(G) in indeterminates s1, . . . , sn given by

Z(G) =
1

|G|
∑
g∈G

s
c1(g)
1 · · · scn(g)

n .

To find the generating function for the sequence giving the number of orbits of
AGL(m,Zq−1) acting on subsets of all sizes 0 ≤ k ≤ (q−1)m, we use a version of this
cycle index polynomial. In our version, we substitute tn + 1 for each sn. From this
substitution we get

Q(G) =

(q−1)m∑
k=0

Bkt
k.

Here Bk is the number of orbits which partition the set of order-k subsets of Zm
q−1.

Example 4. We will compute the cycle index polynomial for m = 2 over F4. From
our Perm2 Magma procedure [see appendix] we get:

Permutation group acting on a set of cardinality 9

(2, 3)(5, 6)(8, 9)

(4, 5, 6)(7, 9, 8)

(2, 7, 3, 4)(5, 8, 9, 6)

(1, 2, 3)(4, 5, 6)(7, 8, 9)

(1, 4, 7)(2, 5, 8)(3, 6, 9)

We assign this permutation group to the variable G and use Magma to find its con-
jugacy classes:
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Classes(G);

Conjugacy Classes of group G

----------------------------

[1] Order 1 Length 1

Rep Id(G)

[2] Order 2 Length 9

Rep (2, 3)(4, 7)(5, 9)(6, 8)

[3] Order 2 Length 36

Rep (2, 3)(5, 6)(8, 9)

[4] Order 3 Length 8

Rep (1, 2, 3)(4, 5, 6)(7, 8, 9)

[5] Order 3 Length 24

Rep (1, 9, 5)(2, 6, 7)

[6] Order 3 Length 48

Rep (1, 6, 7)(2, 4, 8)(3, 5, 9)

[7] Order 4 Length 54

Rep (2, 7, 3, 4)(5, 8, 9, 6)

[8] Order 6 Length 72

Rep (1, 4, 7)(2, 6, 8, 3, 5, 9)

[9] Order 6 Length 72

Rep (1, 6, 9, 7, 5, 2)(3, 8)

[10] Order 8 Length 54

Rep (1, 6, 7, 4, 5, 3, 8, 2)

[11] Order 8 Length 54

Rep (1, 3, 7, 2, 5, 6, 8, 4)

We form Cameron’s cycle index from this information:

Z(G) =
1

432
(s9

1 + 9s4
2s1 + 36s3

2s
3
1 + 8s3

3 + 24s2
3s

3
1 + 48s3

3 +

54s2
4s1 + 72s3s6 + 72s6s2s1 + 54s8s1 + 54s8s1).

We make the necessary substitutions and simplify:

Q(G) = t9 + t8 + t7 + 2t6 + 2t5 + 2t4 + 2t3 + t2 + t+ 1.

From the Indexing Polynomial we know the information in Table 2.

3 Methods

As seen in the introduction, building the generator matrix by hand for a toric code is
time consuming, and finding all the codewords is even more so. Also, creating the cy-
cle index polynomial for larger Galois Fields requires a large amount of computation.
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k Number of Orbits
9 1
8 1
7 1
6 2
5 2
4 2
3 2
2 1
1 1
0 1

Table 1: Orbits of a given k with m = 2 over F4

In order to have a more efficient method of creating generalized toric codes, creating
the cycle index polynomial, and generating representative toric codes from different
orbits, we used a powerful software package called Magma.

3.1 Procedures for Toric Codes in Magma

Much of our research was made possible by David Joyner. He created procedures in
Magma specifically for toric codes. His procedure, toric code, created a toric code
when a list of lattice points and a Galois Field was inputted. However, from there
we created procedures which created the cycle index polynomial and generated rep-
resentative toric codes from different orbits. The former is straightforward, while the
latter can be approached several ways. Here is the main list of procedures:

Note: q =size of Galois Field, m =spatial dimension, k =dimension of toric code,
N =number of random toric codes.

1. CycleIndexPoly - Given q and m, return the cycle index polynomial.

2. CodesForK - Given q, m, and k, return a representative toric code from each
orbit, along with its minimum distance.

3. random toric code search - Given k, N , and q, return a representative toric
code from several orbits, not necessarily all, and its minimum distance.

4. Stab - Given a k, q, m, return a list of lists of lattice points which have a
relatively large stabilizer.

5. FixedAndRandom - Given a list of points, k, N , and q, return representative
toric codes from “useful” orbits and their minimum distances.

3.2 Using Procedures

Once these procedures were ready for use, our research was underway. Our first
procedure, CycleIndexPoly, was mostly used as a reference for the other procedures.
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It shows us the number of representative toric codes we would need to find with a
given dimension over a Galois Field of size q in m-space. For example, the cycle index
polynomial for toric codes over the Galois Field of size 4 in 2-space is:

CycleIndexPoly(4, 2) = t9 + t8 + t7 + 2t6 + 2t5 + 2t4 + 2t3 + t2 + t+ 1.

This tells us that we need to find 2 representative toric codes with dimension 3 over
the Galois Field of size 4 in 2-space.

Listed are the three methods used for finding representative toric codes:
Method 1 : Use CodesForK, which was the ideal way of finding representative toric

codes from each orbit and their minimum distances. However, due to the limitations
on Magma, we could only use this procedure to find toric codes with a small block
length and dimension. This is because CodesForK finds codes by first finding all
the orbits, and then choosing points from each orbit to create a representative toric
code for each orbit. As k increased, the number of orbits grew too large for Magma
to compute. Consequently, all the toric codes we were able to find with CodesForK
were already known.

Method 2 : Use random toric code search, programmed by John Little. This
procedure is seen as an optimization of CodesForK. This was true except for the
fact that it is hard for random toric code search to find representative toric codes if
it comes from a small orbit. We realized that if the lattice points used to construct a
toric code have a big stabilizer, then the orbit will be small. Thus, we programmed
Stab. However, we were once again prevented from running the procedure due to
the limitations on Magma. This is because although Magma has a built-in stabilizer
function, the permutation group that is isomorphic to the AGL, its GSet, and the
element whose stabilizer is desired must also be input. The GSet is the set which the
permutation group acts on. In order to make the GSet,

(
n
k

)
subsets must be made,

where n = (q − 1)m is the blocklength of all toric codes over Fq. For example, when
q = 8, m = 3, and k = 8, GSet requires

(
64
8

)
= 4426165368 subsets, which Magma

cannot compute in a reasonable amount of time. As a result, all the toric codes found
with random toric code search were already known.

Method 3 : Use FixedAndRandom, which fixes the points inputted in the list
and randomly adds more points to create a toric code of a certain dimension. This
was used to find toric codes with large minimum distances, which in a sense makes
the orbits more useful. For example, when fixing {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)},
FixedAndRandom will find codes with a larger minimum distance than if the points
{(0, 0, 0), (0, 2, 0), (0, 1, 0), (1, 0, 0)} were used.

4 Main results

In some cases, we were able to find codes with minimum distances that equaled
the existing lower bound for minimum distance for corresponding parameters. For
m = 2, q = 5, k = 6, we found five codes which met the bound indicated by the
online table. This raised the question of how to determine what the best code is in
a group of codes that have the same minimum distance. We decided that taking an

16



average based on the weight distribution for each code would say something about
the code’s value. We call this average HAV weight, defined by

HAV weight =
n∑
i=d

iAi
qk

where the code is over Fq, n is the blocklength, d is the minimum distance, and Ai
is the number of words of weight i. For codes with the same q and m but different k,
the average weight was still the same, and we conjecture that

HAV weight =
(q − 1)(m+1)

q
.

This agrees with part of the proof of the Plotkin bound in [3].

Figure 2: Points that generate code with d = 42

The online table at http://www.codetables.de contains information about the
theoretical minimum distances for many n and k. Along with each theoretical upper
bound is the largest minimum distance for a known code. In many cases, this known
minimum distance meets the upper bound. However, there are some parameters for
which the bound has not been met. Our method of combining fixed and random
points led to the discovery of a code whose minimum distance fell within the bounds.
The online code states that the largest known minimum distance for a code over F5

with k = 8 and n = 64 is 41, with an upper bound of 46. However, we were able to
find that the code generated by the points

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (2, 1, 3), (1, 3, 2), (3, 2, 1)}

has a minimum distance of 42. We also computed the weight distribution of this
code (shown in Table 2). There are over 14,000 codewords with weight 58, which is
impressive for a code with blocklength 64.
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Weight (w) Number of Words of Weight w
0 1
42 3840
43 2048
45 14336
46 1792
47 7168
48 57792
49 64512
50 14336
51 14336
52 53760
53 57344
54 50176
55 28672
56 1792
57 4352
58 14336
64 32

Table 2: Weight Distribution for Code with d = 42

Figure 3: Points that generate code with d = 210

Though http://www.codetables.de does not offer any information about codes
over F16, we were able to infer that one particular code over this field had a minimum
distance worth noting. The code formed by the points

{(7, 6), (12, 10), (4, 1)}
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with m = 2 and k = 3 has minimum distance 210. This is considerable, since the
blocklength is 225. The weight distribution for this code is in Table 3.

Weight (w) Number of Words of Weight w
0 1

210 675
211 3375
225 45

Table 3: Weight Distribution for Code with d = 210

5 Future Research

Though we were fortunate enough to improve an existing lower bound for a class of
codes, the maximum theoretical minimum distance has not yet been reached. The
same is true for other blocklengths and dimensions. We hope that improvements in
the methods for searching for codes can fix this. Also, our progress was often held back
by the limited number of Magma calculations that could be done within a reasonable
time frame. A solution to this issue would mean that a census of codes could be
extended to much larger parameters. We have hypothesized that the reason that
codes with the largest possible minimum distances have not been found is because
they may be in very small orbits that would be hard to find using random search.
This theory could be confirmed if there was an efficient way of finding stabilizers for
toric codes.
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7 Appendix

7.1 Other Results

Fq n k d Known d
F4 27 7 9 15

8 9 14
9 9 13
10 9 12
11 9 12
16 6 7

F5 16 5 8 9
6 8 8

64 5 43 48
6 43 45
7 43 44
8 42 41
9 32 40
10 32 38
11 32 36
12 32 36

F16 225 3 210 -

Table 4: Best Minimum Distances Found vs. Known Minimum Distances with pos-
sible improvement

7.2 Magma Procedures

CyclePoly2:=function(q,m);

\\Finds the cycle index polynomial for toric codes over GF(q)

\\in 2-space. Only works for m=2.

P<t>:=PolynomialRing(Rationals());

num5:=(q-1)^m;

G:=GL(m,Integers(q-1));

G2:=GL(m+1,Integers(q-1));

num:=[1..#Generators(G)];

id:=Id(G);

id2:=Id(G2);

list:=[];

for i in num do
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InsertBlock(~id2,G.i,1,1);

Append(~list,id2);

end for;

num2:=[1..m];

for j in num2 do

id22:=Id(G2);

InsertBlock(~id22,id,1,1);

id22[j,m+1]:=1;

Append(~list,id22);

end for;

l:=[];

for i in [0..q-2] do

for j in [0..q-2] do

M:=Matrix(Integers(q-1),m+1,1,[j,i,1]);

Append(~l,M);

end for;

end for;

blist:=[];

for j in [1..#list] do

brianslist:=[];

for i in [1..#l] do

flubb:=list[j]*l[i];

Append(~brianslist,flubb);

end for;

Append(~blist,brianslist);

end for;

brianslist3:=[];

for i in [1..#list] do

brianslist2:=[];

for j in [1..#l] do

newb:=ChangeRing(blist[i][j],Integers());

Append(~brianslist2,newb);

end for;

Append(~brianslist3,brianslist2);

end for;

unperm:=function(M);

pp:=M[1][1]+4*M[2][1]+1;

return pp;

end function;

unbrian:=[];

for i in [1..#list] do

unbri:=[];

for j in [1..#l] do

pp:=brianslist3[i][j][1][1]+(q-1)*brianslist3[i][j][2][1]+1;

Append(~unbri,pp);
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end for;

Append(~unbrian,unbri);

end for;

G3:=PermutationGroup<num5|unbrian>;

class:=Classes(G3);

range:=[1..#class];

S:=[];

lengths:=[];

for len in range do

Append(~lengths,class[len][2]);

end for;

for i in range do

x:=CycleDecomposition(class[i][3]);

Append(~S,x);

end for;

rangetwo:=[];

for k in range do

y:=#S[k];

Append(~rangetwo,y);

end for;

powerstwo:=[];

for j in range do

powersone:=[];

for r in [1..rangetwo[j]] do

Append(~powersone,#S[j][r]);

end for;

Append(~powerstwo,powersone);

end for;

rangefour:=[1..#powerstwo];

rangefive:=[];

for rf in rangefour do

Append(~rangefive,#powerstwo[rf]);

end for;

polylist:=[];

for last in rangefour do

z:=1;

for rft in [1..rangefive[last]] do

z:=(1+t^powerstwo[last][rft])*z;

end for;

Append(~polylist,z);

end for;

polylistthree:=[];

for ti in range do

polylisttwo:=lengths[ti]*polylist[ti];

Append(~polylistthree,polylisttwo);
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end for;

poly:=0;

for tf in range do

poly:=polylistthree[tf]+poly;

end for;

finalpoly:=poly div Order(G3);

X:=[*"This is for q=",q,"and m=",m,finalpoly*];

return X;

end function;

cart_prod_lists := function(R)

\\creates a list of cartesian products

N:=#R;

if N eq 1 then return R[1]; end if;

if N gt 1 then

L:=[];

R0:=[R[k]:k in [1..(N-1)]];

R1:=$$(R0);

for i in R1 do

for j in R[N] do

if N eq 2 then L:=Append(L,Append([i],j)); end if;

if N gt 2 then L:=Append(L,Append(i,j)); end if;

end for;

end for;

return L;

end if;

end function;

toric_points:=function(n,F)

\\creates the lattice points used to construct a toric

\\code over a finite field F

T:=[x : x in F | x ne 0];

L:=cart_prod_lists([T:i in [1..n]]);

return L;

end function;

toric_code := function(L,F)

\\constructs the toric code, given a set of lattice points L

\\and a finite field F

u:=L;

gens:=[];

d:=#L[1];

n:=#toric_points(d,F);

V:=VectorSpace(F,n);

Z:=Integers();
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for v in u do

Append(~gens,[Z!v[i]: i in [1..d]]);

end for;

B0:={};

for e in gens do

Include(~B0, V![&*[t[i]^e[i] : i in [1..d]]: t in toric_points(d,F)]);

end for;

B:=SetToSequence(B0);

C1:=VectorSpaceWithBasis(B);

C:=LinearCode(C1);

return C;

end function;

Perm2:=function(q,m);

\\creates the affine general linear group for mxm matrices over GF(q).

G:=GL(m,Integers(q-1));

G2:=GL(m+1,Integers(q-1));

num:=[1..#Generators(G)];

num5:=(q-1)^m;

id:=Id(G);

id2:=Id(G2);

list:=[];

for i in num do

InsertBlock(~id2,G.i,1,1);

Append(~list,id2);

end for;

num2:=[1..m];

for j in num2 do

id22:=Id(G2);

InsertBlock(~id22,id,1,1);

id22[j,m+1]:=1;

Append(~list,id22);

end for;

l:=[];

for i in [0..q-2] do

for j in [0..q-2] do

M:=Matrix(Integers(q-1),m+1,1,[j,i,1]);

Append(~l,M);

end for;

end for;

blist:=[];

for j in [1..#list] do

brianslist:=[];

for i in [1..#l] do

flubb:=list[j]*l[i];
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Append(~brianslist,flubb);

end for;

Append(~blist,brianslist);

end for;

brianslist3:=[];

for i in [1..#list] do

brianslist2:=[];

for j in [1..#l] do

newb:=ChangeRing(blist[i][j],Integers());

Append(~brianslist2,newb);

end for;

Append(~brianslist3,brianslist2);

end for;

unbrian:=[];

for i in [1..#list] do

unbri:=[];

for j in [1..#l] do

pp:=brianslist3[i][j][1][1]+(q-1)*brianslist3[i][j][2][1]+1;

Append(~unbri,pp);

end for;

Append(~unbrian,unbri);

end for;

perm:=PermutationGroup<num5|unbrian>;

return perm;

end function;

GenOrbits2 := function(q,m,k)

\\generates the orbits for codes of dimension k over GF(q)

\\in 2-space. only works for m=2.

n:=(q-1)^m;

GPerm:=Perm2(q,m);

points2:= [1..n];

points:=Seqset(points2);

S:= Subsets(points,k);

Sb:=GSet(GPerm,S);

orb:=Orbits(GPerm,Sb);

return orb;

end function;

IndexToPoint := function(index, dimension, modulus)

\\given an index representing a point, the dimension k of a

\\code, and a modulus, return a point.

count := [Integers()|0..(dimension-1)];

point := [];
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for i in count do

value := Floor((index-1)/(modulus^i)) mod modulus;

point := Append(point, value);

end for;

return(point);

end function;

IndexlistToPointlist := function(indexlist, dimension, modulus)

\\given an indexlist representing points, the dimension k of

\\a code, and a modulus, return points.

returnlist := [];

for element in indexlist do

returnlist := Append(returnlist,

IndexToPoint(element, dimension, modulus));

end for;

return(returnlist);

end function;

CodesForK2 := function(q,dimension,k)

\\returns all distinct toric codes of a given k over GF(q) in 2-space.

\\Only works for dimension=2.

field:=GF(q);

n:=#field;

orbitlist := GenOrbits2(q,dimension,k);

Y:=[];

for element in orbitlist do

repelement := IndexlistToPointlist(element[1], dimension, n-1);

T:=toric_code(repelement,field);

value := WeightDistribution(T);

X:=[*"This is for q=",q,"m=",dimension,"and k=",k,value,repelement*];

Append(~Y,X);

end for;

return Y;

end function;

CyclePoly3:=function(q,m);

\\Finds the cycle index polynomial for toric codes over GF(q) in 3-space.

\\Only works for m=3.

P<t>:=PolynomialRing(Rationals());

G:=GL(m,Integers(q-1));

G2:=GL(m+1,Integers(q-1));

num:=[1..#Generators(G)];

num5:=(q-1)^m;
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id:=Id(G);

id2:=Id(G2);

list:=[];

for i in num do

InsertBlock(~id2,G.i,1,1);

Append(~list,id2);

end for;

num2:=[1..m];

for j in num2 do

id22:=Id(G2);

InsertBlock(~id22,id,1,1);

id22[j,m+1]:=1;

Append(~list,id22);

end for;

l:=[];

for i in [0..q-2] do

for j in [0..q-2] do

for k in [0..q-2] do

M:=Matrix(Integers(q-1),m+1,1,[k,j,i,1]);

Append(~l,M);

end for;

end for;

end for;

blist:=[];

for j in [1..#list] do

brianslist:=[];

for i in [1..#l] do

flubb:=list[j]*l[i];

Append(~brianslist,flubb);

end for;

Append(~blist,brianslist);

end for;

brianslist3:=[];

for i in [1..#list] do

brianslist2:=[];

for j in [1..#l] do

newb:=ChangeRing(blist[i][j],Integers());

Append(~brianslist2,newb);

end for;

Append(~brianslist3,brianslist2);

end for;

unbrian:=[];

for i in [1..#list] do

unbri:=[];

for j in [1..#l] do
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pp:=brianslist3[i][j][1][1]+(q-1)*brianslist3[i][j][2][1]+

((q-1)^2)*brianslist3[i][j][3][1]+1;

Append(~unbri,pp);

end for;

Append(~unbrian,unbri);

end for;

G3:=PermutationGroup<num5|unbrian>;

class:=Classes(G3);

range:=[1..#class];

S:=[];

lengths:=[];

for len in range do

Append(~lengths,class[len][2]);

end for;

for i in range do

x:=CycleDecomposition(class[i][3]);

Append(~S,x);

end for;

rangetwo:=[];

for k in range do

y:=#S[k];

Append(~rangetwo,y);

end for;

powerstwo:=[];

for j in range do

powersone:=[];

for r in [1..rangetwo[j]] do

Append(~powersone,#S[j][r]);

end for;

Append(~powerstwo,powersone);

end for;

rangefour:=[1..#powerstwo];

rangefive:=[];

for rf in rangefour do

Append(~rangefive,#powerstwo[rf]);

end for;

polylist:=[];

for last in rangefour do

z:=1;

for rft in [1..rangefive[last]] do

z:=(1+t^powerstwo[last][rft])*z;

end for;

Append(~polylist,z);

end for;

polylistthree:=[];
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for ti in range do

polylisttwo:=lengths[ti]*polylist[ti];

Append(~polylistthree,polylisttwo);

end for;

poly:=0;

for tf in range do

poly:=polylistthree[tf]+poly;

end for;

finalpoly:=poly div Order(G3);

X:=[*"This is for q=",q,"and m=",m,finalpoly*];

return X;

end function;

Perm3:=function(q,m);

\\see Perm2. Only works for m=3.

G:=GL(m,Integers(q-1));

G2:=GL(m+1,Integers(q-1));

num:=[1..#Generators(G)];

num5:=(q-1)^m;

id:=Id(G);

id2:=Id(G2);

list:=[];

for i in num do

InsertBlock(~id2,G.i,1,1);

Append(~list,id2);

end for;

num2:=[1..m];

for j in num2 do

id22:=Id(G2);

InsertBlock(~id22,id,1,1);

id22[j,m+1]:=1;

Append(~list,id22);

end for;

l:=[];

for i in [0..q-2] do

for j in [0..q-2] do

for k in [0..q-2] do

M:=Matrix(Integers(q-1),m+1,1,[k,j,i,1]);

Append(~l,M);

end for;

end for;

end for;

blist:=[];

for j in [1..#list] do

brianslist:=[];

29



for i in [1..#l] do

flubb:=list[j]*l[i];

Append(~brianslist,flubb);

end for;

Append(~blist,brianslist);

end for;

brianslist3:=[];

for i in [1..#list] do

brianslist2:=[];

for j in [1..#l] do

newb:=ChangeRing(blist[i][j],Integers());

Append(~brianslist2,newb);

end for;

Append(~brianslist3,brianslist2);

end for;

unbrian:=[];

for i in [1..#list] do

unbri:=[];

for j in [1..#l] do

pp:=brianslist3[i][j][1][1]+(q-1)*brianslist3[i][j][2][1]+

((q-1)^2)*brianslist3[i][j][3][1]+1;

Append(~unbri,pp);

end for;

Append(~unbrian,unbri);

end for;

perm:=PermutationGroup<num5|unbrian>;

return perm;

end function;

GenOrbits3 := function(q,m,k)

\\see GenOrbits2. only works for m=3

n:=(q-1)^m;

GPerm:=Perm3(q,m);

points2:= [1..n];

points:=Seqset(points2);

S:= Subsets(points,k);

Sb:=GSet(GPerm,S);

orb:=Orbits(GPerm,Sb);

return orb;

end function;

CodesForK3 := function(q,dimension,k)

\\see CodesForK2. Only works for dimension=3

field:=GF(q);

n:=#field;
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orbitlist := GenOrbits3(q,dimension,k);

Y:=[];

for element in orbitlist do

repelement := IndexlistToPointlist(element[1], dimension, n-1);

T:=toric_code(repelement,field);

value := WeightDistribution(T);

X:=[*"This is for q=",q,"m=",dimension,"and k=",k,value,repelement*];

Append(~Y,X);

end for;

return Y;

end function;

random_toric_code_search2:=function(k,N,F)

//

// Generates any number N of random toric codes of

// dimension k over the field F and "remembers" the

// distinct weight distributions found in the set DistinctWDs,

// plus the lists of points corresponding to the monomials for

// each distinct one in the list DistinctMonoms.

// This uses the cart_prod_lists and toric_code functions from

// the toric code procedures by David Joyner distributed earlier.

// This could be modified in several ways ....

// Only works for 2-space.

q:=#F;

qminus1:=#[x : x in F | x ne 0];

n:=(q-1)^2;

DistinctWDs:={};

DistinctMonoms:=[];

L:=cart_prod_lists([ [i : i in [0..qminus1-1]],

[i : i in [0..qminus1-1]]]);

for i:=1 to N do

S:={};

while #S lt k do

Include(~S,Random(L));

end while;

C:=toric_code(SetToSequence(S),F);

W:=WeightDistribution(C);

if W notin DistinctWDs then

Include(~DistinctWDs,W);

Append(~DistinctMonoms,[*S,"MinDis=",W[2][1],

"DualMinDis=",MacWilliamsTransform(n,k,q,W)[2][1]*]);

end if;

end for;

return [*"This is for m=2,q=",q,"and k=",k,
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"The number of orbits found are",#DistinctWDs,

DistinctMonoms,"This is for m=2,q=",q,"and k=",k,

"The number of orbits found are",#DistinctMonoms*];

end function;

FixedAndRandom3:=function(k,N,F)

//Fixes {@[0,0,0],[0,1,0],[0,0,1],[1,0,0]@} and adds random points

//until that set has k elements. Therefore, it finds "useful" toric

//codes of dimension k over F. N is the number of random toric codes

//generated.

q:=#F;

n:=(q-1)^3;

qminus1:=#[x : x in F | x ne 0];

DistinctWDs:={};

DistinctMonoms:=[];

L:=cart_prod_lists([ [i : i in [0..qminus1-1]],

[i : i in [0..qminus1-1]], [i : i in [0..qminus1-1]]]);

list:=[];

list2:=[];

for i:=1 to N do

S:={@[0,0,0],[0,1,0],[0,0,1],[1,0,0]@};

while #S lt k do

x:=Random(L);

Include(~S,x);

end while;

C:=toric_code(SetToSequence(S),F);

W:=WeightDistribution(C);

if W notin DistinctWDs then

Include(~DistinctWDs,W);

Append(~DistinctMonoms,[*S,"MinDis=",W[2][1],"DualMinDis=",

MacWilliamsTransform(n,k,q,W)[2][1]*]);

Append(~list2,S);

Append(~list,W[2][1]);

end if;

end for;

return [*"This is for m=3,q=",q,"and k=",k,

"The number of orbits found are",

#DistinctWDs,"The best minimum distance is",

Maximum(list),list2,"This is for m=3,q=",q,"and k=",

k,"The number of orbits found are", #DistinctMonoms,

"The best minimum distance is",Maximum(list),L*];

end function;
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GSet2 := function(q,m,k)

//creates the set that AGL(2,Z_q-1) acts on for toric codes of

//dimension k.

n:=(q-1)^m;

GPerm:=Perm2(q,m);

points2:= [1..n];

points:=Seqset(points2);

S:= Subsets(points,k);

Sb:=GSet(GPerm,S);

return Sb;

end function;

GSet3 := function(q,m,k)

//see GSet2. Only works for m=3.

n:=(q-1)^m;

GPerm:=Perm3(q,m);

points2:= [1..n];

points:=Seqset(points2);

S:= Subsets(points,k);

Sb:=GSet(GPerm,S);

return Sb;

end function;

Stabilizer2:=function(q,m,k);

//finds all the stabilizers of all possible points that create

//distinct codes of dimension k over GF(Q) in 2-space.

n:=(q-1)^m;

G:=Perm2(q,m);

Y:=GSet2(q,m,k);

points2:= [1..n];

points:=Seqset(points2);

S:= Subsets(points,k);

x:=[];

for s in S do

stab:=#Stabilizer(G,Y,s);

Append(~x,[*s,stab*]);

end for;

return x;

end function;

Stabilizer3:=function(q,m,k);

//see Stabilizer2. Only works for 3-space.

n:=(q-1)^m;

G:=Perm3(q,m);

Y:=GSet3(q,m,k);
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points2:= [1..n];

points:=Seqset(points2);

S:= Subsets(points,k);

x:=[];

for s in S do

stab:=#Stabilizer(G,Y,s);

Append(~x,[*s,stab*]);

end for;

return x;

end function;

AveWt:=function(weightdis,numwords);

//finds the average weight over a code given it’s weight distribution

//and the number of words in the code.

P<x> := PolynomialRing(RealField());

list:=0;

numweight:=#weightdis;

for i in [1..numweight] do

list:=list+weightdis[i][1]*weightdis[i][2];

end for;

avewt:=x;

return [*Evaluate(avewt,list/numwords),list/numwords*];

end function;
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Abstract
J. Hansen introduced toric codes using the geometry of polygons in R2 and

the convex polytopes P in Rm more generally. But collections of points more
general than the sets P ∩Zm can also be used to define generalized toric codes.
In our research using the Magma computer algebra system, we search to find
the generalized toric codes with the best parameters for some dimensions over
the Galois fields of size 7, 8 and 9.

1 Background on toric codes

J. P. Hansen introduced toric codes with constructions from algebraic geometry [1].
According to Hansen’s definition, toric codes are linear codes generated by lattice
points within a convex polytope in Rm representing monomials over a Galois field Fq,
where q is a power of a prime [1].

The main focus of our research is on generalized toric codes, which means that we
can use an arbitrary set of lattice points, not only ones that are in a polytope. To be
more specific, the cases researched in this paper include toric codes with q = 7, 8 and
9 in a 2-dimensional space.

Definition 1. To obtain the generator matrix of a toric code, we start with k
lattice points in Zm

q−1, and we let α be a primitive element of Fq. For any point p =
(a1, a2, . . . am) ∈ Zm

q−1, the monomial associated to that point will be F (x1, x2, . . . xm)
= xa1

1 x
a2
2 . . . xam

m . To find the values of the monomials, we will evaluate them for all
elements of (F∗q)m. Let each of our lattice point monomials be associated to a row
and each possible point in (F∗q)m be associated to column in the generator matrix,
making it a k× (q− 1)m matrix. The s(i,j) position of our matrix would be the result
of evaluating the monomial associated to the ith row over the point associated to the
jth column. If P is the set of lattice points, the corresponding code is denoted CP .
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Example 1. Let P = {(2, 0), (0, 2), (1, 2)} be a set of 3 lattice points in Z2
3. These

points give us the three monomials:

f1(x, y) = x2, f2(x, y) = y2, f3(x, y) = xy2.

We consider the coordinates of all points of (F∗4)2, where α is a primitive element of
F4:

{(1, 1), (α, 1), (α2, 1), (1, α), (α, α), (α2, α), (1, α2), (α, α2), (α2, α2)}.
Each of the lattice points in P will determine a row of our generator matrix while
each possible point in (F∗4)2 will determine a column. We proceed to evaluate the
monomials over the points of (F∗4)2.

f1(1, 1) = 1, f1(α, 1) = α2, f1(α
2, 1) = α, . . . ,

thus obtaining the matrix: 1 α2 α 1 α2 α 1 α2 α
1 1 1 α2 α2 α2 α α α
1 α α2 α2 1 α α α2 1

 .

We only need to look at a small part of Z2 to find all possible toric codes. It
has been proven that over Fq, so long as the lattice points are within [0, q − 2]m, the
monomials generated by the lattice points will be linearly independent ([6], Theorem
2). In addition, since our monomials are over Fq, the monomials xa(q−1)+b and xb are
equivalent. Lattice points that have terms greater than q − 2 can be equivalent to
lattice points within Zm

q−1. Therefore, we only need to consider lattice points within
Zm
q−1 to consider every possible toric code. In fact, we will consider our lattice points

to be in Zm
q−1 from now on.

2 Affine Transformations

Definition 2. An affine transformation T : Zm
q−1 → Zm

q−1 is a mapping T (x) =
Ax+ v where A is an invertible m×m matrix with entries in Zq−1, and v is a vector
in Zm

q−1.

Note that an affine transformation preserves the number of lattice points and the
collinearity of points. Another important relationship between two codes is monomial
equivalence.

Definition 3. Two codes C1 and C2 with the the same length and dimension, are
monomially equivalent if there exist generator matrices G1 for C1, G2 for C2 and
matrices P,D such that

G2 = G1PD,

where P is permutation matrix and D diagonal matrix (see [3]).

This definition directly implies that if two codes are monomially equivalent, they
have the same weight enumerator, so they have the same minimum distance.
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Proposition 1. If two codes are monomially equivalent, then they have the same
weight enumerator.

These two forms of equivalence are closely related.

Theorem 1. Let P1 and P2 be subsets of Zm
q−1. If there exists an affine transformation

T : Zm
q−1 → Zm

q−1 defined by T (x) = Ax + v, where A is an invertible matrix in
GL(m,Zm

q−1) and v is a vector in Zm
q−1, with T (P1) = P2, then the codes CP1 and CP2

are monomially equivalent.

Proof. Suppose we have two AGL(m,Zq−1)-equivalent set of points P1 and P2. Both
P1 and P2 contain lattice points corresponding to monomials of the form xe where
e ∈ Zm

q−1 with x = (x1, x2, . . . xn). By our hypothesis on P1 and P2 there exists an
invertible affine transformation

T (x) = M(x) + λ

such that T (P1) = P2 and M is an element of GL(m,Zm
q−1) so det(M) is invertible

in Zq−1. Hence #(P1) = #(P2). Let P1 ∩ Zm
q−1 = {e(i) : i = 1, . . . ,#(P1)} be the

numbering of the points in P1. So, the code CP1 is spanned by ev(xe(i)) for 1 ≤ i ≤ n
where ev is the evaluation, and similarly CP2 is spanned by ev(xT (e(i))). Write α for a
primitive element in Fq. Let e(i) ∈ P1∩Zm

q−1 and define αf = (αf1 , . . . , αfm) ∈ (F∗q)m.

The component of ev(xe(i)) ∈ CP1 corresponding to αf is α〈e(i),f〉, where 〈e(i), f〉 is
the usual dot product. The corresponding entry in the codeword ev(xT (e(i))) in CP2

is
〈
αT (e(i)),f

〉
. This can be rewritten as

α〈Me(i)+λ,f〉 = α〈Me(i),f〉 · α〈λ,f〉.

The second term of the product is not dependent on e(i). These nonzero scalars are
the diagonal entries in the matrix D as in the definition of monomially equivalent
codes. By a standard property of dot product,

α〈Me(i),f〉 = α〈e(i),Mtf〉.

The transposed matrix M t also defines a bijective mapping from Zm
q−1 to Zm

q−1 since
det(M t) = det(M) is invertible in Zq−1. Now we must show that M t induces a
permutation of Zm

q−1. Suppose M tf ≡ M tg mod q − 1. Since det(M t) is invertible
mod q − 1, we know that M t is invertible. So, we can multiply by (M t)−1 on the
left. Hence f ≡ g mod q − 1 and M t defines a permutation of the points αf , as
desired. Note that M t permutes all of the codewords in the same way. This gives the
permutation matrix P . Hence CP1 is monomially equivalent to CP2 .

2.1 The Group of Affine Transformations

Now, consider the set of all affine transformations over a finite space. We can define
composition as an operation over these transformations.
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Theorem 2. The set of invertible affine linear transformation over Zm
q−1 forms a

group under composition.

Proof. Consider two affine transformation T (x) = Ax + v and S(x) = Bx + u for
invertible integer matrices A and B over Zq−1 and integer vectors u and v in Zm

q−1.
The composition of these two elements is

T (S(x)) = A(Bx+ u) + v = (AB)x+ (Au+ v).

Since Au + v is a vector in Zm
q−1 and AB is an invertible matrix, the composition

of these two transformations is an affine transformation. Therefore, the set is closed
under composition.

If we consider the affine transformation composed of the identity matrix and empty
vector, we can easily see that it will map every point to itself. In effect, if we compose
this with any other transformation, we will get that other transformation. This gives
us an identity element.

Let A′ be the inverse of A. Define T ′(x) = A′(x−v). Since T (T ′(x)) = T ′(T (x)) =
x, we have constructed T (x)’s inverse, then the transformation is invertible.

Since this set is closed under composition, has an identity element, and is invert-
ible, it must be a group.

Now, let the group of affine transformations act upon the set of all possible sub-
sets of points of Zm

q−1 in the natural way.We have established that if a set of points
undergoes an affine transformation, the result is a monomially equivalent toric code.

Definition 4. Given a group action G on a set S, the orbit θ containing s ∈ S is
defined as

θ = {g · s|g ∈ G}.

The orbits partition the elements of S.

Thus under the action of AGL(m,Zq−1) on the k-sets of points in Zm
q−1, sets in

the same orbit yield codes that are monomially equivalent.

Example 2. In Z2
3, the two sets of points P1 = {(0, 0), (0, 1), (1, 0)} and P2 =

{(1, 1), (1, 2), (2, 1)} are in the same orbit of action of the affine transformation group
AGL(2,Z3) on triples of points. Over F4, the codes CP1 and CP2 have the same
minimum distance 6, since we can translate the first set of points to get the second.
However, affine transformations conserve collinearity, so P3 = {(0, 0), (1, 0), (2, 0)}
must be in a different orbit. In fact, the code CP3 over F4 has distance 3.

3 Cycle Index Polynomial

Definition 5. Let G be a group, and let a, b ∈ G. Then a and b are conjugate if
and only if there exists an element g ∈ G such that gag−1 = b.
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It is noteworthy to mention that conjugacy is an equivalence relation, and it
partitions the group G into equivalence or conjugacy classes. Thus each element of G
belongs to one conjugacy class only. The conjugacy class C containing the element a
of G is defined as C(a) = {gag−1 : g ∈ G}.

Consider the group of all affine linear permutations acting on Zm
q−1. Now, find the

conjugacy classes of that group. Naturally, you will have a number of classes, each
with an order, a length, and a representative permutation for that group.

Definition 6. The elements of each conjugacy class C define permutations with
the same cyclic structure. The length is the number of elements in each class. Let
the length of the ith class be li and let the number of j-cycles in the representative
permutation be xi,j. We can find a class polynomial by taking gi(x) = li ·

∏
(1+tj)xi,j .

Then, we define the substituted cycle index polynomial as 1
|G|
∑
gi(x), summed

over all the classes.

Theorem 3 ([2]). The coefficient of tk in the substituted cycle index polynomial for a
group G acting on a set S counts the number of distinct orbits of G acting on subsets
of S of size k.

Example 3. To find the substituted cycle index polynomial for (F∗4)2, we first find
all the conjugacy classes of the group AGL(2,Z3) and their lengths. Each conjugacy
class has a representative permutation. For each conjugacy class, we consider their
respective permutation, and start forming the polynomial.

First, our set S consists of nine points, S={1,2,3,4,5,6,7,8,9}. We then find the
generators for AGL(2,Z3) and the 13 conjugacy classes with their respective lengths
and representative permutations.

Generators:

(2, 9, 4)(3, 5, 7), (1, 2, 3)(4, 5, 6)(7, 8, 9), (2, 3)(5, 6)(8, 9)

Conjugacy Classes: (in Magma output format)

[1] Order 1 Length 1 Rep Id

[2] Order 2 Length 9 Rep (1, 6)(2, 5)(3, 4)(7, 9)

[3] Order 2 Length 36 Rep (1, 2)(4, 5)(7, 8)

[4] Order 3 Length 8 Rep (1, 2, 3)(4, 5, 6)(7, 8, 9)

...

[10] Order 8 Length 54 Rep (1, 5, 7, 4, 6, 2, 9, 3)

[11] Order 8 Length 54 Rep (1, 2, 7, 3, 6, 5, 9, 4)

Following from our definition (6), our substituted cycle index polynomial is

g(x) =
1

432
((1 + t)9 + 9(1 + t2)4(1 + t) + 36(1 + t)3 + . . .+ 54(1 + t8)(1 + t))

= t9 + t8 + t7 + 2t6 + 2t5 + 2t4 + 2t3 + t2 + t+ 1.

Note that the example of the substituted cycle index polynomial is symmetric. This
can be shown by a relatively simple combinatorial proof.
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Being able to know the number of orbits of a group is very important for estimating
whether our procedures would take a reasonable time to run.

4 MacWilliams Identity

When we are testing codes, we are also interested in the dual code. One way of finding
the distance of the dual code is through the MacWilliams identity.

Definition 7. Let Aw represent the number of codewords in a code C with weight
w ranging from 0 to n. Then,

WC(x, y) =
n∑

w=0

Awx
wyn−w

gives us the weight enumerator polynomial.

Theorem 4 (The MacWilliams Identity [4]). Consider a code C and its dual code
C⊥. Then

WC⊥(x, y) =
1

|C|
WC(x+ (q − 1)y, x− y).

So, if we find the weight enumerator for a given code, we can get the weight
enumerator of the dual code. We use this identity to derive information about dual
codes.

5 Method of Search

To do the actual searching though codes we used the MAGMA computer algebra sys-
tem. Magma had a lot of premade procedures to find orbits and minimum distances,
allowing it to use the theory we have proven so far in our code.

5.1 Brute Force Method

As we have already shown, we can find the orbits of the set of affine transformations
over points. The advantage to partitioning our points into orbits is that every set of
points in an orbit generates a monomially equivalent code. Codes that are monomi-
ally equivalent have the same weight enumerator, so they have the same minimum
distance and their dual codes have the same distance. So, to do a brute force search to
find optimal codes, it is only necessary need to check one code in each orbit. Magma
has a built in procedure that calculates the orbits for a given permutation group.
To generate the field of affine transformations, we had Magma produce the genera-
tor matrices for the general linear group over our points. Then a couple of Maple
procedures we made convert the generator matrices into generator permutations and
create the additional translation permutations. So, we can then find the orbits.

The first procedure took one code from each orbit and found the minimum dis-
tance, then recorded the codes with the biggest distance. Ideally, this procedure
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would quickly find the best toric code for given parameters. The problem is that
the number of orbits became large very quickly. This meant that Magma took more
time to calculate the orbits, and had to calculate more minimum distances. Since the
Galois fields we dealt with were of sizes 7, 8, and 9, the points were in (Z6)

2, (Z7)
2,

and (Z8)
2. Even for the smallest field the calculation took way too much time for a

toric code with just 6 points. A faster algorithm was required.

5.2 Random Method

A simple random guess and check procedure turned up a lot of data. Since restricting
how many trials the procedure did was easy, we were able to run the procedure
for codes the brute force search could not handle. Unfortunately, this introduces a
possibility for oversight. As the number of orbits increases, the chance that we miss
the most optimal code increases. As a result, we have found that we can often find
better codes if we rerun searches multiple times.

Originally, the procedure took every code with a unique weight enumerator to
prevent the code from taking two codes from the same orbit. This quickly became
too much data for larger codes. We then edited the procedure so that it only took
codes that have a unique pair of distances for their main code and their dual code.

6 Code Discoveries

When looking for codes, we searched for the codes with greatest distance d. The
distance of a code relates directly to how good that code is at error correction. Since
all practical uses of codes relate to how good they can correct errors, finding new
better distances is an important discovery. In our search, we compared our codes
to the codes on the online code table [5]. The online code table compiles together
the best known codes for each length and language size. Very often, there is a gap
between the theoretically best code and the best known code. Many of the toric codes
we found and their dual codes had distances as good the best known codes on the
site.

Theorem 5. A [49, 8, 34] code exists.

Proof. The codes over F8 generated by the two sets of points

{(2, 3), (2, 0), (1, 3), (6, 0), (0, 3), (5, 1), (3, 6), (0, 6)}

{(6, 2), (1, 0), (2, 1), (1, 2), (0, 2), (0, 5), (3, 5), (0, 6)}
are both [49,8,34] codes. Their generator matrices are size 8 × 49. These two codes
have different weight enumerators. These are the respective weight enumerators of
the codes above:

< 0, 1 >,< 34, 17493 >,< 35, 33663 >,< 36, 58310 >, · · ·

< 0, 1 >,< 34, 12348 >,< 35, 27342 >,< 36, 65856 >, · · ·
This means that they are distinct codes.
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Corollary 1. Toric codes can generate codes with a larger distance than any other
known method under certain parameters.

Below is a table of all the optimal codes we found.

Best codes
Fq 1m 2n 3k 4d 5Best d 6Coordinates

F7

2 36 3 30 30 [5, 5], [2, 4], [3, 0]
2 36 4 27 28 [1, 4],[4, 0],[3, 1],[2, 1]
2 36 5 24 27 [2, 0],[2, 5],[4, 0],[3, 0],[1, 1]
2 36 6 24 25 [3, 5],[5, 0],[2, 2],[4, 3],[0, 1],[2, 1]
2 36 7 23 24 [2, 0],[1, 3],[0, 5],[4, 5],[3, 1],[2, 2],[3, 0]
2 36 8 20 22 [2, 0],[0, 2],[1, 2],[5, 1],[2, 5],[4, 3],[1, 1],[0, 0]
2 36 9 20 21 [1, 0],[2, 0],[1, 5],[5, 1],[2, 5],[4, 1],[3, 2],[0, 1],[3, 0]
2 36 10 18 20 [4, 3],[2, 2],[2, 1],[5, 4],[1, 3],[3, 3],[1, 4],[3, 1],[0, 2],[3, 0]

F8

2 49 3 42 42 [5, 4],[0, 5],[6, 4]
2 49 4 40 40 [3, 6],[1, 5],[5, 1],[3, 2]
2 49 5 36 38 [6, 1],[3, 6],[3, 5],[1, 5],[5, 3]]
2 49 6 36 36 [2, 0],[0, 4],[5, 0],[2, 3],[0, 1],[1, 1]]
2 49 7 35 35 [1, 0],[0, 2],[1, 4],[5, 0],[4, 1],[2, 4],[4, 3]
2 49 8 34 33 [6, 2],[1, 0],[2, 1],[1, 2],[0, 2],[0, 5],[3, 5],[0, 6]
2 49 9 30 31 [4, 6],[4, 2],[1, 1],[5, 4],[5, 0],[0, 4],[3, 6],[0, 6],[6, 2]
2 49 10 30 30 [6, 2],[1, 0],[2, 1],[1, 2],[0, 2],[0, 5],[3, 5],[0, 6],[4, 5],[1, 4]

F9

2 64 3 56 56 [4, 4], [1, 7], [5, 2]
2 64 4 52 54 [3, 7],[4, 0],[3, 0],[2, 1]
2 64 5 48 51 [1, 3],[6, 7],[3, 5],[1, 4],[4, 7]
2 64 6 48 49 [3, 7],[7, 4],[1, 7],[2, 4],[3, 2],[2, 1]
2 64 7 47 48 [5, 4],[4, 7],[5, 3],[7, 1],[4, 6], [3, 2], [3,0]
2 64 8 45 46 [2, 0],[3, 7],[7, 4],[0, 4],[2, 5],[5, 2],[2, 3],[1, 1]
2 64 9 40 44 [3, 6],[3, 4],[4, 4],[0, 7],[6, 4],[1, 6],[5, 3],[0, 1],[4, 2]
2 64 10 40 43 [7, 5],[7, 3],[2, 4],[6, 1],[5, 4],[5, 7],[0, 0],[6, 6],[5, 2],[0, 7]

Below is the table of toric codes having the best dual codes which we found. Note
that [64, 55, 6] has a better distance than [64, 54, 5], despite having more codewords.
This is due to the large computational cost of finding the weight enumeration of q = 9,
k = 10, matrices. Without a doubt a [64, 54, 6] code exists, but we were not able to
find it.

1m = Dimension of the space.
2n = The length of the codeword.
3k = The dimension of the code.
4d = Largest minimum distance we found for the given n, k.
5Best d = Optimal minimum distance found previously, as in [5].
6Coordinates = Lattice points.
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Best Dual codes
Fq m n k d Best d Coordinates

F7

2 36 33 3 3 [5, 5], [2, 4], [3, 0]
2 36 32 3 4 [1, 4],[4, 0],[3, 1],[2, 1]
2 36 31 4 4 [2, 0],[2, 5],[4, 0],[3, 0],[1, 1]
2 36 30 4 5 [3, 5],[5, 0],[2, 2],[4, 3],[0, 1],[2, 1]
2 36 29 5 6 [2, 0],[1, 3],[0, 5],[4, 5],[3, 1],[2, 2],[3, 0]
2 36 28 6 6 [1, 2],[0, 4],[5, 3],[4, 1],[3, 3],[4, 0],[3, 1],[3, 0]
2 36 27 6 6 [1, 3],[2, 0],[1, 5],[4, 4],[5, 1],[5, 0],[4, 1],[4, 3],[3, 0]
2 36 26 6 7 [4, 3],[2, 2],[2, 1],[5, 4],[1, 3],[3, 3],[1, 4],[3, 1],[0, 2],[3, 0]

F8

2 49 46 3 3 [5, 4],[0, 5],[6, 4]
2 49 45 3 4 [3, 6],[1, 5],[5, 1],[3, 2]
2 49 44 4 4 [6, 1],[3, 6],[3, 5],[1, 5],[5, 3]]
2 49 43 4 5 [2, 0],[0, 4],[5, 0],[2, 3],[0, 1],[1, 1]]
2 49 42 5 6 [3, 3],[1, 2],[6, 6],[1, 5],[5, 6],[0, 2],[3, 6]
2 49 41 6 6 [6, 2],[1, 0],[2, 1],[1, 2],[0, 2],[0, 5],[3, 5],[0, 6]
2 49 40 6 6 [4, 6],[4, 2],[1, 1],[5, 4],[5, 0],[0, 4],[3, 6],[0, 6],[6, 2]
2 49 39 6 7 [6, 2],[1, 0],[2, 1],[1, 2],[0, 2],[0, 5],[3, 5],[0, 6],[4, 5],[1, 4]

F9

2 64 61 3 3 [4, 4], [1, 7], [5, 2]
2 64 60 3 4 [3, 7],[4, 0],[3, 0],[2, 1]
2 64 59 4 4 [1, 3],[6, 7],[3, 5],[1, 4],[4, 7]
2 64 58 4 5 [3, 7],[7, 4],[1, 7],[2, 4],[3, 2],[2, 1]
2 64 57 5 6 [4, 4],[6, 5],[2, 5],[1, 6],[2, 3], [3, 1], [1,1]
2 64 56 5 6 [2, 0],[3, 7],[7, 4],[0, 4],[2, 5],[5, 2],[2, 3],[1, 1]
2 64 55 6 6 [1, 0],[5, 5],[5, 7],[5, 6],[0, 7],[4, 4],[0, 6],[7, 1],[2, 2]
2 64 54 5 7 [7, 5],[7, 3],[2, 4],[6, 1],[5, 4],[5, 7],[0, 0],[6, 6],[5, 2],[0, 7]

7 Conclusion

Finding the substituted cycle index polynomial enabled us to know the number of
orbits each Galois field had for a distinct number of lattice points in the plane as well
as a bound on how many codes exist in each orbit.

We used MacWilliams identities to find that the dual codes had the same weight
distribution as its codes, and we created a procedure that would output both minimum
distances together.

In our research, although our search was random due to the large number of orbits
and the not so efficient memory of simple computers, we were able to find optimal
codes mostly for F8. This leads us to think that there are better if not additional
optimal codes to be found for each k number of lattice points in each Galois field.
In addition, our findings prove that toric codes are a significant value to the field of
Coding Theory, and therefore should be explored in further research.
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Abstract

In this report we describe and classify indecomposable lattice polytopes in
R3. This paper explores some indecomposable polyhedra not yet considered,
and also introduces an idea of “family”. We investigate the toric codes over the
Galois Field F8 that are constructed by these polyhedra, following the original
method of constructing toric codes from polytopes by Hansen. In addition, we
conjecture equivalence relations between the members of a determined family
and subsequently the toric codes they generate.

1 Introduction

A polytope is the convex hull of a finite set of points. For an m-dimensional polytope
P , the integer lattice points are those points contained in P ∩Zm, referred to as lattice
points. In the following we will consider only lattice polytopes, that is, polytopes that
are convex hulls of finite sets of integer lattice points. Informally, a toric code is
the code generated from the lattice points of a polytope. We offer a more precise
definition below.

Definition 1. The toric code denoted CP (Fq) over the field Fq associated to P is the
linear code of block length n = (q − 1)m with generator matrix

G = ((pf )e)

whose rows are indexed by e ∈ P ∩ Zm and columns indexed by pf ∈ (Fq
∗)m.

While trying to create these toric codes we look more closely at the polytopes that
define them. Some essential terms include:

Definition 2. The Minkowski sum of two polytopes P1 and P2 is the set of vector
sums of all lattice points in the two polytopes:

P1 + P2 = {p1 + p2 | pi ∈ Pi}.
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(a) Unit square (b) Unit triangle (c) Minkowski sum

Figure 1: Minkowski sum example

Figure 2: Polytope P

Definition 3. The full Minkowski length of a lattice polytope is defined as

l(P ) = max
Q⊆P
{j | Q = Q1 + · · ·+Qj for some lattice polytopes Qi}.

Example 1. The full Minkowski length of P in Figure 2 is 2. To compute this we
consider the Minkowski length of the entire polytope P and all of its subpolytopes.
We observe two possible subpolytopes of P in Figure 3, with the maximum amount
of lattice points.

Notice that there are no vectors whose Minkowski sum will produce a trapezoid,
thus l(P ) = 1. Also, l(Q1) = 1. However, we can find two vectors, namely (0, 1)
and (1, 0), whose sum results in the unit square, thus l(Q2) = 2. The segment
conv{(0, 0), (2, 0)} also decomposes as a Minkowski sum with two terms. Therefore
the full Minkowski length of our trapezoid P is 2.

Figure 3: Subpolytopes Q1 and Q2 respectively

In using full Minkowski length, we find a negative correlation between the full
Minkowski length and the parameters of the toric code. Example 2 shows this corre-
lation with respect to the minimum distance of a toric code.
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Example 2. Suppose we have four convex polytopes in 2 dimensions with toric codes
over F8, each with four lattice points. Notice that since there are four lattice points
that will index the rows of a generator matrix to the toric code, the dimension of
the code k = 4. Let P1, P2, P3, and P4 be polytopes that create toric codes such
that P1 = conv{(0, 0), (1, 0), (2, 0), (3, 0)}, P2 = conv{(0, 0), (1, 0), (2, 0), (0, 1)}, P3 =
conv{(0, 0), (1, 0), (0, 1), (1, 1)}, and P4 = conv{(1, 0), (0, 1), (2, 2)}. We remark that
the fourth lattice point of P4 is an interior point. Using MAGMA, we find that the
minimum distances are 28, 35, 36, and 42 respectively. Note that the full Minkowski
length of P1 is 3, the full Minkowski length of P2 and P3 is 2, and the full Minkowski
length of P4 is 1. We observe that polytopes with smaller full Minkowski length have
bigger minimum distances (at least if the size of the field q is sufficiently large).

Definition 4. If a lattice polytope P has full Minkowski length l(P ) = 1 then it
is called strongly indecomposable. For instance, primitive segments are the only one
dimensional strongly indecomposable polytopes.

In this paper our main goal is to extend the work of Soprunov and Soprunova [5], in
which they looked at strongly indecomposable polygons in R2 and their corresponding
toric codes. We extend this work by trying to identify new examples of strongly
indecomposable 3-dimensional polytopes, polyhedra in R3. We are also interested in
the toric codes generated by these polyhedra.

2 Monomially equivalent codes

While looking at indecomposable polytopes, we found that it would be easier to
organize them into families. However, we first define relationships between members
of a given family.

Definition 5. We will say that two integral convex polytopes P1 and P2 in Rm are
lattice equivalent if there exists an invertible integer affine transformation T such that
T (P1) = P2. We may say interchangeably that P1 is AGL(m,Z)-equivalent to P2.

There is a corresponding equivalence relation between codes:

Definition 6. Let C1 and C2 be two codes of block length n and dimension k
over Fq. Let G1 be a generator matrix for C1. Then C1 and C2 are said to be
monomially equivalent if there is an invertible n× n diagonal matrix D and an n× n
permutation matrix Π such that

G2 = G1DΠ

is a generator matrix for C2.

Looking at lattice equivalent polytopes, a correlation between them and their
respective toric codes is described in the theorem below found in [2]:

Theorem 1. If two polytopes P1 and P2 are lattice equivalent, then the corresponding
toric codes CP1 and CP2 are monomially equivalent.
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A family of indecomposable polyhedra was found by Reeve and presented in [3].

Theorem 2. Let τr be a tetrahedron whose vertices are the lattice points (0, 0, 0),
(1, 0, 0), (0, 1, 0), (1, 1, r). Then for all r ∈ Z+, τr is included in a family of strongly
indecomposable tetrahedra.

Proof. Consider the tetrahedra τs and τt such that s, t ∈ Z+ and s 6= t. The vertices
for the tetrahedra are (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, s) and (0, 0, 0), (1, 0, 0), (0, 1, 0),
(1, 1, t) respectively. It is obvious τs and τt are not lattice equivalent since the volumes
of the tetrahedra are different. To show that both τs and τt belong to a family of
strongly indecomposable tetrahedra we must show that each tetrahedron has full
Minkowski length equal to 1. Since all of the subpolytopes of τs are indecomposable
with Minkowski length equal to 1, τs has full Minkowski length equal to 1. Similarly,
τt has full Minkowski length equal to 1. Therefore, τs and τt belong to a family of
strongly indecomposable tetrahedra.

3 Indecomposable Polytopes

Following Reeve’s example in [3], we seek other indecomposable polyhedra. In order
to construct such polyhedra we first understand indecomposable polygons as discussed
in [5].

Theorem 3 (Pick’s Theorem). Let P be a lattice polygon in R2. Then the area of P
is equal to

A = I +
B

2
− 1,

where I in the number of interior lattice points and B is the number of boundary
points in P .

Theorem 4 ([5], Theorem 1.4). Let P be a strongly indecomposable polygon. Then
P is AGL(2,Z)-equivalent to either the 2-simplex ∆ in Figure 4a or the “standard”
exceptional triangle T0 with vertices (1, 0), (0, 1), (2, 2), seen in Figure 4b, in its re-
spective plane.

(a) 2-simplex ∆ (b) Exceptional T0

Figure 4: Indecomposable Polygons
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Proof. Let P be a strongly indecomposable polygon. We wish to show P must have 4
or fewer lattice points. Suppose x,y ∈ P ∩Z2 such that x = (x1, x2) and y = (y1, y2).
If xi ≡ yi mod 2, for i = 1, 2, then the lattice segment [x, y] lies in P and is not
primitive, so the full Minkowski length will be > 1. Because there exist only four
pairs of remainders mod 2, P will have at most four lattice points. Now let us
consider the possible polygons P can be. Suppose P is a triangle with primitive sides.
Let us consider the case where P has no interior lattice points. By Pick’s Theorem,
Theorem 3, we know that the area of this P will be 1/2. This is the same as the
area for our 2-simplex triangle ∆, so this triangle must be AGL(2,Z)-equivalent to
∆. Now let us consider the case where P is a triangle containing exactly one interior
lattice point. Again using Formula 3, we can see that the area of this P will be 3/2.
Thus, this P is AGL(2,Z)-equivalent to the standard exceptional triangle T0. Finally,
suppose P is a quadrilateral. Then P has no interior lattice points and by Formula 3,
the area of the quadrilateral is 1. So, this P will be AGL(2,Z)-equivalent to the unit
square. But it is clear that the unit square is decomposable. Therefore, any strongly
indecomposable polygon P must be AGL(2,Z) - equivalent to either the standard
2-simplex ∆ or the standard exceptional triangle T0.

We remark that there are far more than two indecomposable polytopes in 2 di-
mensions and can classify all of them as follows:

Definition 7. Any triangle that is lattice equivalent to the 2-simplex triangle is called
a unit triangle. That is, the given triangle is AGL(2,Z)-equivalent to the 2-simplex
triangle in its respective plane.

Definition 8. Any triangle that is lattice equivalent to the standard exceptional
triangle T0 with one interior point is called an exceptional triangle. Similarly to the
above definition, the given triangle is AGL(2,Z)-equivalent to T0 in its respective
plane.

Lemma 1. Each of the faces of a strongly indecomposable polyhedron P must either
be an unit triangle or an exceptional triangle.

However, we must also consider polygons formed in the interior of the polyhedron,
an issue addressed in the following corollary.

Corollary 1. A 3-dimensional polyhedron P has full Minkowski length equal to 1 if
all subsets of P with three lattice points are lattice equivalent to the standard 2-simplex
∆, and any four lattice points that are planar are lattice equivalent to the standard
exceptional triangle T0 in their respective planes.

Proof. Let P be a 3-dimensional polyhedron with full Minkowski length equal to 1.
It follows that the subsets of P have Minkowski length equal to 1. Clearly the cases
of subsets with one or two points are both indecomposable. Assume P1 ⊂ P is a 2-
dimensional polytope with three lattice points. Since P1 has Minkowski length equal
to 1, it must be AGL(2,Z)-equivalent to the standard 2-simplex ∆ by Theorem 4.
Now suppose P2 ⊂ P such that P2 has four lattice points. P2 cannot be a planar
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quadrilateral because if it were it would have Minkowski length at least 2, which
contradicts our hypothesis. So P2 must be a 4-cycle with all the vertices not co-
planar or AGL(2,Z)-equivalent to T0. Consider the case where you have a non-planar
4-cycle. Each subset of the 4-cycle with three vertices must be AGL(2,Z)-equivalent
to ∆. Therefore all subsets of P with with three or four lattice points are AGL(2,Z)-
equivalent to the standard 2-simplex ∆ or the T0 respectively.

4 Another Class of Tetrahedra

(a) (b)

Figure 5: Examples of indecomposable tetrahedra

Notice that Figure 5a is a member of the class of Reeve tetrahedra discussed in the
previous section. Seeking other classes of indecomposable tetrahedra, we orient our
standard exceptional triangle in the xy-plane and construct an indecomposable poly-
hedra around it. In Figure 5b we see such an indecomposable tetrahedra, whose lattice
points are (1, 0, 0), (0, 1, 0), (1, 1, 0), (2, 2, 0), (1, 1, 1). Note that the point (1, 1, 0) is
the interior point of the exceptional triangle.

Now that we have constructed a class of indecomposable polyhedra, we look at
each of the member’s corresponding toric code in F8. To do this we offer more spe-
cific definitions for equivalence relations between the polyhedra and their subsequent
codes.

Definition 9. An m-box denoted �m
q−1 is an m-dimensional object where each di-

mension has q − 1 units.

Within �m
q−1, determined by Fq, a certain equivalence relation holds.

Definition 10. Let v ∈ (Zq−1)
3 be a vector and A be an invertible 3×3 matrix with

integer entries mod q− 1 such that det(A) is a unit mod q− 1. Two subsets P1, P2 ⊂
�m

q−1 are AGL(3,Zq−1)-equivalent if there exists a transformation T : Z3
q−1 → Z3

q−1

such that T (x) = Ax + v and satisfying T (P1) = P2.

As is the trend with our paper, we now discuss the correlation between
AGL(3,Zq−1)-equivalent polytopes and their corresponding codes.
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Proposition 1. If two subsets of �m
q−1, P1 and P2, are AGL(m,Zq−1)-equivalent,

then their toric codes C1 and C2 are monomially equivalent.

Proof. Suppose we have two AGL(m,Zq−1)-equivalent subsets of �m
q−1, P1 and P2.

Both P1 and P2 contain integer lattice points corresponding to monomials of the
form xe where e ∈ Zm

q−1. By our hypothesis on P1 and P2, there exists an invertible
transformation

T (x) = Ax + v

such that T (P1) = P2, where A is an element of GL(m,Zq−1) and det(A) is relatively
prime to q − 1. Let l be the number of lattice points in P1, which equals the number
of lattice points in P2. Let P1 = {ei | i = 1, . . . , l}. So, CP1 is spanned by ev(xei) for
1 ≤ i ≤ l and similarly CP2 is spanned by ev(xT (ei)). Let α be a primitive element
in Fq

∗. Define αf = (αf1 , . . . , αfm) ∈ (Fq
∗)m. The component of ev(xei) ∈ CP1

corresponding to αf is α〈ei,f〉 where 〈ei, f〉 is the usual dot product. The corresponding
entry in the codeword ev(xT (ei)) in CP2 is α〈T (ei),f〉. This can be written as

α〈Aei+v,f〉 = α〈Aei,f〉 · α〈v,f〉.

The second term of the product is not dependent on ei. These nonzero scalars are the
diagonal entries in the matrix D as in the definition of monomially equivalent codes.
By a standard property of dot products,

α〈Aei,f〉 = α〈ei,A
T f〉.

The transposed matrix AT also defines a bijective mapping from Zm
q−1 to Zm

q−1 since
det(AT ) = det(A). Now we must show that AT induces a permutation of (Fq

∗)m. For
some g ∈ Zm

q−1, suppose ATf ≡ ATg mod q − 1. Since det(AT ) is a unit in Zq−1, we
know that AT is invertible and (AT )−1 ∈ GL(m,Zq−1). So we can multiply by (AT )−1

on the left. Hence f ≡ g mod q − 1 and AT defines a permutation of the points αf

as we wanted. Note that AT permutes all of the codewords in the same way. This
gives the permutation matrix Π. Hence CP1 is monomially equivalent to CP2 .

5 Classes of Hexahedra

In order to construct more indecomposable polyhedra, we adopt a different approach.

Definition 11. Let P be a polyhedron with x1, x2 ∈ P and v ∈ Zm be any primitive
vector with entries relatively prime to one another. Then

max
x1∈P
〈x1,v〉 − min

x2∈P
〈x2,v〉 = width in v direction,

so the lattice width is

width(P ) = min
v∈Zm

(max〈x1,v〉 −min〈x2,v〉).
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This is a key definition because we want restrictions that prohibit interior points.
We require that our polyhedra have lattice width 1. For instance, we wish to remain
between the xy and z = 1 planes while constructing our polyhedra.

Theorem 5. If P is a triangle in a plane S and P ∩ Z3 consists only of the vertices
of P , then P is strongly indecomposable.

Proof. Assume P is a triangle in a plane S and P ∩ Z3 consists of only the three
vertices of the polygon. There is no Minkowski sum of two or more polytopes that
will result in the desired P or any subpolygon of P . Thus, the Minkowski length is
1. Therefore, by Definition 4 the triangle is strongly indecomposable.

Theorem 6. The hexahedron in Figure 6, based on the 2-simplex triangle ∆, is
strongly indecomposable.

Proof. We first look at the points of the 2-simplex hexahedron: (0, 0, 0), (1, 0, 0),
(0, 1, 0), (0, 0, 1), (1, 1, 1). We separate the points into two groups: the points that
lie in the xy-plane and the points that lie in the z = 1 plane. We take any set of
four points and ensure that not all members of the set lie in one plane (thus creating
a quadrilateral). In order to ensure no set of four is co-planar, we take all pairs of
points in the xy-plane and find their xy-slopes to be undefined, 0 and −1. Then
we compare those slopes to the xy-slope of the two points contained in the z = 1
plane, which equals 1. No two slopes are the same, so no four points lie in one
plane. Therefore, any plane created with three points from this hexahedron will not
contain any other points from the hexahedron. By Theorem 5 this hexahedron must
be indecomposable.

We say the indecomposable hexahedron in Figure 6 is “based on the 2-simplex
triangle ∆” because we began its construction by orienting ∆ in the xy-plane.

Figure 6: An indecomposable hexahedron based on the 2-simplex triangle

Figure 6 belongs to a class of hexahedra having lattice points that look like
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (r, 1, 1), where r 6= 0, referred to as the unit tri-
angle hexahedra class. The reason we prohibit r from being 0 is to avoid having four
points in the same plane, resulting in a quadrilateral and thus a full Minkowski length
> 1. In the same fashion, one could create more members of this class. That is, using
triangles that are lattice equivalent to the 2-simplex triangle as bases.
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Within this class, we see that under F8, there are three families of AGL(3,Zq−1)-
equivalent hexahedra. One of the families includes the unit triangle hexahedra where
r = 1, 3, 5, the second contains r = 2, 4, and the last family contains r = 6. This
implies that the codes generated from members within each family will be monomially
equivalent to one another.

Figure 7: An indecomposable hexahedron based on the standard exceptional triangle

Theorem 7. The hexahedron based on the standard exceptional triangle in Figure 7
is strongly indecomposable.

Proof. Similar to the previous proof, we look at the lattice points of this hexahe-
dron: (0, 1, 0), (1, 0, 0), (1, 1, 0), (2, 2, 0), (0, 0, 1), (3, 1, 1) We already know there are
four points in the xy-plane, but we know the polygon created is the exceptional tri-
angle, therefore that face is indecomposable. We again separate the points into two
groups: points that lie in the xy-plane and points that lie in the z = 1 plane and we
look at the xy slopes created between any two points. The xy-slopes in the xy-plane
are undefined,−1, 0, 1/2, 1 and 2. There are only two points in the z = 1 plane and
the xy-slope between them is 1/3. No two slopes are the same, so no four points
lie in one plane. Therefore, any plane (excluding the xy plane) created with three
points from this hexahedron will not contain any other points from the exceptional
hexahedron. By Theorem 5 this hexahedron must be in decomposable.

Figure 7 is included in the class of hexahedra based on an exceptional triangle,
whose members’ points resemble (0, 1, 0), (1, 0, 0), (1, 1, 0), (2, 2, 0), (0, 0, 1), (r, 1, 1)
where r 6= 0, ±1, 2 and (r, 1, 1) ∈ �3. For our specific figure r = 3.

Theorem 8. There are no strongly indecomposable lattice pentahedra.

Proof. Aiming for a contradiction, suppose we have a strongly indecomposable penta-
hedron Q with lattice points as vertices. There are only two combinatorially distinct
ways to construct convex pentahedra: polyhedra with the same numbers of vertices,
edges, and faces as a square pyramid or a triangular prism. We note that we must
restrict the faces in order to have lattice points as vertices and exclude boundary
points on the edges of Q. In both cases, Lemma 1 is not satisfied because at least
one of the faces of each type is a quadrilateral. Therefore not all of the subpolytopes
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of a given pentahedron Q will have Minkowski length 1, causing l(Q) > 1. This
contradicts the definition of strongly indecomposable polytope. Hence there are no
strongly indecomposable lattice pentahedra.

6 Heptahedra and Octahedra

Following the methods loosely outlined in the previous section, we seek even more
strongly indecomposable polyhedra. Namely we are concerned with finding polyhedra
with more than six faces. Note that a strongly indecomposable polyhedra with seven
faces is not attainable as stated in the following:

Theorem 9. There are no strongly indecomposable lattice heptahedra.

Proof. In the same fashion as the proof of Theorem 8, suppose, by way of contra-
diction, that we have a strongly indecomposable heptahedron H with lattice points
as vertices. There are thirty-four distinct types of heptahedra, not including mirror-
images. In all of these types of heptahedra, Lemma 1 is not satisfied because all of
them contain a quadrilateral, pentagon, or a hexagon as a face. Therefore not all of
the subpolytopes of a given heptahedron H will have Minkowski length 1, causing
l(H) > 1. This contradicts the definition of strongly indecomposable. Hence there
are no strongly indecomposable lattice heptahedra.

In Figure 8 we observe three indecomposable octahedra.

(a) An octahedron with two 2-
simplex triangles

(b) An octahedron with a 2-
simplex triangle and an excep-
tional triangle

(c) An octahedron with two
exceptional triangles

Figure 8: Pictures of octahedra

Theorem 10. The octahedron whose top and bottom bases are lattice equivalent to
the 2-simplex triangle in Figure 8a is a strongly indecomposable polyhedron.

Proof. We look at the points of this octahedron: (0, 0, 0), (1,−2, 0), (0, 1, 0), (0, 1, 1),
(1, 1, 1), (2, 0, 1). We separate the points into two groups: points in the xy-plane
and points in the z = 1 plane. We look at the xy slopes created by any two points
within each group. The xy-slopes in the xy-plane are undefined, −3, and −2. The
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xy-slopes in the z = 1 plane are −1, −1/2 and 0. Since no two slopes are the same,
no four points lie in one plane, including both the xy- and z = 1 planes since we
already know there are three points in both of these. Therefore, any plane created
with three points from this octahedron will not contain any other points from our
2-simplex octahedron. By Theorem 5 this octahedron must be indecomposable.

Theorem 11. The octahedron with one base lattice equivalent to the 2-simplex trian-
gle and the other lattice equivalent to the standard exceptional triangle in Figure 8b
is a strongly indecomposable polyhedron.

Proof. We start by looking at the points of this octahedron: (0, 0, 0), (1,−2, 0),
(0, 1, 0), (3, 1, 1), (2, 1, 1), (10, 4, 1), (5, 2, 1). We separate the points into two groups:
points in the xy-plane and points in the z = 1 plane. We look at the xy-slopes created
by any two points within each group. The xy-slopes in the xy-plane are undefined,
−3 and −2. The xy-slopes in the z = 1 plane are 0, 3/8, 3/7, 1/3, 2/5, and 1/2. Since
no two slopes are the same, no four points lie in the same plane, excluding the ex-
ceptional triangle we were already aware of in the z = 1 plane and we already know
this face is indecomposable. Therefore, any plane created with three points from this
octahedron (excluding the z = 1 plane) will contain no other points from the octahe-
dron, except for the three points that create the vertices of our exceptional triangle.
By Theorem 5 this octahedron must be indecomposable.

Theorem 12. The octahedron whose top and bottom bases are lattice equivalent to
the standard exceptional triangle in Figure 8c is a strongly indecomposable polyhedron.

Proof. We start by looking at the points of this octahedron: (3, 1, 0), (2, 1, 0), (10, 4, 0),
(5, 2, 0), (1, 2, 1), (5, 9, 1), (6, 10, 1), (4, 7, 1). We separate the points into two groups:
points in the xy-plane and points in the z = 1 plane. There are four points in both
of these planes, but we already know they are indecomposable since they are lat-
tice equivalent to the standard exceptional triangle. We then look at the xy-slopes
created by any two points within each group. The xy-slopes in the xy-plane are
0, 3/8, 3/7, 1/3, 2/5, and 1/2. The xy-slopes in the z = 1 plane are 1, 3/2, 8/5, 5/3, 7/4,
and 2. Since no two slopes are the same, no four points lie in the same plane, exclud-
ing the xy-plane and z = 1 plane. Therefore, excluding the horizontal planes, any
plane created with three points from this octahedron will not contain any other points
from the exceptional octahedron besides those three. By Theorem 5 this octahedron
must be indecomposable.
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7 Parameters of Toric Codes over F8

Tetrahedra Hexahedra
2-Simplex Exceptional 2-Simplex Exceptional

P1 P2 P3 P4

r CP [n, k, d] CP [n, k, d] CP [n, k, d] CP [n, k, d]
1 CP1 [343, 4, 294] CP2 [343, 5, 245] CP3a [343, 5, 291]
2 CP1 [343, 4, 294] CP2 [343, 5, 245] CP3b

[343, 5, 283]
3 CP1 [343, 4, 294] CP2 [343, 5, 245] CP3a [343, 5, 291] CP4a [343, 6, 276]
4 CP1 [343, 4, 294] CP2 [343, 5, 245] CP3b

[343, 5, 283] CP4b
[343, 6, 252]

5 CP1 [343, 4, 294] CP2 [343, 5, 245] CP3a [343, 5, 291] CP4a [343, 6, 276]
6 CP1 [343, 4, 294] CP2 [343, 5, 245] CP3c [343, 5, 252] CP4b

[343, 6, 252]

Octahedra
Two 2-Simplex 2-Simplex and Exceptional Two Exceptional

P5 P6 P7

CP [n, k, d] CP [n, k, d] CP [n, k, d]
CP5 [343, 6, 283] CP6 [343, 7, 252] CP7 [343, 8, 245]

8 Future work

We hope to expand our research by proving that families within the classes of unit
triangle octahedra and exceptional triangle octahedra exist. We intend to do this by
making generalizations about coordinates of the members’ lattice point(s). Once we
are able to show such families exist, we can make generalizations about octahedra,
similar to that of our tetrahedra and hexahedra families. Furthermore, we would
like to explore the toric codes of these octahedra and determine, if possible, any
equivalence relations.
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Abstract

The minimum distances of toric codes has been studied extensively for var-
ious forms of polytopes. In [2], the authors determine bounds for the mini-
mum distance of toric codes for some polytopes P ⊆ Rm including the sim-
plices of the form conv(0, `e1, . . . , `en) using Vandermonde determinants. In
this paper, we will derive lower and upper bounds to prove the exact min-
imum distance of some toric codes associated to the special polytopes P =
conv(0, `e1, 2`e2, 3`e3) ⊂ R3.

1 Introduction

Following Hansen, in [2], J. Little and R. Schwarz define toric codes using elements
of algebraic geometry. A toric codeword is formed by evaluating monomials corre-
sponding to integer lattice points in a convex polytope. In [2], a formal definition of
a toric code is given:

Definition 1. Let Fq be a finite field with primitive element α. For f ∈ Zm with
0 ≤ fi ≤ q − 2 for all i, let pf = (αf1 , . . . , αfm) in (F∗q)m. For any e = (e1, . . . , em) ∈
P ∩ Zm, let xe = xe1

1 . . . xem
m be the corresponding monomial and write

(pf )e = (αf1)e1 · · · (αfm)em .

The toric code CP (Fq) over the field Fq associated to P is the linear code of block
length n = (q − 1)m with generator matrix

G = ((pf )e),

where the rows are indexed by the e ∈ P ∩ Zm, and the columns are indexed by
the pf ∈ (F∗q)m. In other words, letting L = Span{xe : e ∈ P ∩ Zm}, we define the
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evaluation mapping

ev : L → F(q−1)m

q

g 7→ (g(pf ) : pf ∈ (F∗q)m).

Then, CP (Fq) = ev(L). If the field is clear from the context, we will often omit it in
the notation and simply write CP . The matrix G will be called the standard generator
matrix for the toric code.

The approach in [2] to finding the minimum distance of toric codes was based on
studying the determinants of maximal square submatrices of the standard generator
matrix G of the toric code. The authors provided a method based on multivariate
generalization of Vandermonde determinants that applies equally to many toric codes
associated to all integral convex polytopes P ⊆ Rm where m ≥ 2. Their first step
was to determine a suitable set S where the determinant for the Vandermonde matrix
associated to P , where P is a rectangular solid or simplex, factored in a nice way to
ensure a non-zero Vandermonde determinant. Their second step was to argue that
there were enough suitable sets S to yield their desired conditions for determining the
bounds for minimum distance. Our main goal in this paper is to extend the methods
and results from [2] to more general families of simplices, specifically the family of
simplices of the form `P = conv{0, `e1, 2`e2, 3`e3} for ` ≥ 1 in R3.

In our main results we begin with a theorem that gives the exact number of
integer lattice points in the tetrahedron P . In the section §3.1 of our paper we offer
a method to construct a suitable set S that yields the conditions for determining the
minimum distance which leads to Proposition 5 and Proposition 7 in §3.2 that give
lower bounds for the minimum distance of toric codes associated to the tetrahedra
when ` = 1 and ` = 2. Furthermore, in §3.2 we use the monomials determined by
the integer lattice points in the tetrahedron to formulate propositions that give an
upper bound for the minimum distance of toric codes associated to tetrahedron for
all `. Finally we offer two theorems for the exact minimum distance of toric codes
associated to the tetrahedron for ` = 1 and ` = 2.

In this paper we will use the following notations: Suppose that P ⊂ �q−1 ⊂ Rm is
an integral convex polytope for m ≥ 2. We will write #(P ) for the number of integer
lattice points in P (that is, #(P ) = |P ∩ Zm|)). We will write

P ∩ Zm = {e(i) : 1 ≤ i ≤ #(P )}

for the set of those integer lattice points. Also, for any set A ⊂ Rm, conv(A) denotes
the convex hull of A.

2 Preliminaries

2.1 Vandermonde Matrices

In [2], the authors apply the concept of determinants of Vandermonde matrices to
study the minimum distance where the Vandermonde determinants give bounds for
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(2,0)(1,0)(0,0)

(0,1)

Figure 1: P = conv{(0, 0), (2, 0), (0, 1)} in R2

the minimum distance of toric codes associated to some polytopes P ⊆ Rm including
the simplices of the form conv(0, `e1, . . . , `en). We begin by defining the Vandermonde
matrix for the univariate and multivariate cases.

Definition 2. A n× n univariate Vandermonde matrix has the form

V (a1, a2, . . . , an) =


1 1 · · · 1
a1 a2 · · · an

a2
1 a2

2 · · · a2
n

...
...

. . .
...

an−1
1 an−1

2 · · · an−1
n

 ,

where the a1, a2, . . . , an are distinct elements of a field F. The univariate Vandermonde
determinant is of the form

detV (a1, a2, . . . , an) =
∏

1≤i<j≤n

(aj − ai).

Since the elements in F are distinct, detV (a1, a2, . . . , an) 6= 0.

Now we will introduce a multivariate generalization of these determinants. So
using the notation introduced in §1, let P be an integral convex polytope, and suppose
P ∩ Zm = {e(i) : 1 ≤ i ≤ #(P )}, listed in some order. Let S = {pj : 1 ≤ j ≤ #(P )}
be any set of #(P ) points in (F∗q)m, also ordered.

Definition 3. The multivariate Vandermonde matrix associated to P and S is the
#(P )×#(P ) matrix V (P ;S) = (p

e(i)
j ) where we use the standard multi-index notation

p
e(i)
j to indicate the value of the monomial xe(i) at the point pj.

Also, notice that the multivariate Vandermonde determinant is determined by the
exponent vectors e ∈ P ∩ Zm and the set S ⊂ (F∗q)m with |S| = |#(P )|.

Here is an example of a simple multivariate Vandermonde matrix.
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Example 1. Suppose P = conv{(0, 0), (2, 0), (0, 1)} in R2 (Figure 1) where #(P ) = 4,
and S = {(xj, yj)} is any set of 4 points in (F∗q)2. The corresponding #(P ) ×#(P )
multivariate Vandermonde matrix is

V (P ;S) =


1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

x2
1 x2

2 x2
3 x2

4

 .

If x1, x2, x3 are distinct, but x4 = x1 and y4 6= y1, then it follows that detV (P ;S) 6= 0.

2.2 Minimum Distance via Vandermonde Matrices

In [2], the authors show that Vandermonde determinants may be used to bound the
minimum distance of toric codes. The Proposition 2.1 from [2] gives the lower bound
and is stated as follows:

Proposition 1. Let P ⊂ Rm be an integral convex polytope. Let d be a positive
integer and assume that in every set T ⊂ (F∗q)m with | T |= (q − 1)m − d + 1 there
exists some S ⊂ T with | S |= #(P ) such that detV (P ;S) 6= 0. Then the minimum
distance satisfies d(CP ) ≥ d.

Later we will use this proposition to prove the lower bound for the minimum
distance and to prove the exact minimum distance for some polytopes.

2.3 The Ehrhart Polynomial

The problem of counting lattice points #(P ) has been studied for various polytopes.
The Vandermonde matrices in this paper rely on #(P ), therefore we use a form of
the Ehrhart polynomial to count the total number of lattice points. The Ehrhart
polynomial is a method that gives the number of integer lattice points contained in
the polytope `P , where P is a polytope and ` is a non-negative integer. The Ehrhart
polynomial, EP (`), is given by

EP (`) = V (P )`3 + A(P )`2 + a1`+ 1 (1)

where V (P ) is the volume of the polytope, A(P ) is the sum of the lattice areas of
plane faces in the polytope1 and a1 is some rational number (see [1]). It must be
stated that equation (1) is valid only for polyhedra in R3.

1Pick’s theorem states that for ordinary lattice points in R2, A = 1
2B + I − 1 where A is area,

B is the number of boundary lattice points and I is the number of interior lattice points. The area
A(P ) used here is an extension of Pick’s theorem from R2 to R3, hence A(P ) is the summation of
lattice areas of plane faces in the polytope in R3 (see [3]).
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3 Main results

As we studied toric codes associated to the tetrahedra `P for P = conv{0, e1, 2e2, 3e3}
we determined lower bounds for the minimum distances by using the Vandermonde
determinant approach and Proposition 1. Also,we were able to determine upper
bounds for the minimum distances by looking at the codewords.

We begin this section with the following theorem.

Theorem 1. For the polytope P = conv{0, e1, 2e2, 3e3},the number of integer lattice
points is

#(`P ) = (`+ 1)3.

Proof. We use the Ehrhart polynomial (1) defined in §2.3. The volume is found for
the base polytope (where ` = 1) through the formula V = 1

3
hb where h is the height

and b is the base to give V (P ) = 1. Using a Maple algorithm (see §6.1), the number
of lattice points in P = conv{0, `e1, 2`e2, 3`e3} was found to be 8 for ` = 1 and 27 for
` = 2. Substituting the corresponding values of #(P ) in the Ehrhart polynomial (1)
gives the system of equations

8 = V (P )(1)3 + A(P )(1) + a1 + 1 (2)

27 = V (P )(2)3 + A(P )(2) + a1 + 1 (3)

Solving for the variables A(P ) and a1 by substituting V (P ) = 1 in both (2) and (3),
` = 1 in (2), and ` = 2 in (3) gives the rational coefficients A(P ) = a1 = 3.

Thus, the Ehrhart polynomial EP (`) = `3 +3`2 +3`+1 is factored to give (`+1)3.

∴ #(`P ) = (`+ 1)3.

3.1 Constructing the set S

Here we have two examples of how we construct a set S such that the detV (P ;S)
6= 0 for the tetrahedron P = conv{0, e1, 2e2, 3e3} and 2P = conv{0, 2e1, 4e2, 6e3} by
looking at the planes that form the tetrahedra.

Figure 2: P = conv{0, e1, 2e2, 3e3}.
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z = 1

z = 0

Figure 3: Planes z = 0 and z = 1 for P = conv{0, e1, 2e2, 3e3}.

Example 2. Let P = conv{0, e1, 2e2, 3e3} in R3 (see Figure 2). Then, P
⋂

Z3 =
{(0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 0, 0), (0, 1, 1), (0, 0, 1), (0, 0, 2), (0, 0, 3)}.

On the plane z = 0 we have four points (see Figure 3):

P0 = {(0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 0, 0)}.

As we can see there are three points on the vertical line x = 0, and one on the
vertical line x = 1. This means that there are two different first coordinates and
three different second coordinates in this plane, so the first four points in S are S0 =
{(x1, y1, z1), (x1, y2, z1), (x1, y3, z1), (x2, y1, z1)}, where x1 6= x2, and y1 6= y2 6= y3.

On the plane z = 1 we have two points (see Figure 3): P1 = {(0, 0, 1), (0, 1, 1)}.
This means that there are two different second coordinates in this plane, so the next
two points in S are S1 = {(x3, y4, z2), (x3, y5, z2)}, where y4 6= y5.

On the plane z = 2 we have one point: P2 = {(0, 0, 2)} and on the plane z = 3 we
have one point: P3 = {(0, 0, 3)}.

So the set S will end up looking like S = {(x1, y1, z1), (x1, y2, z1), (x1, y3, z1),
(x2, y1, z1), (x3, y4, z2), (x3, y5, z2), (x4, y6, z3), (x5, y7, z4)}, where z1 6= z2 6= z3 6= z4,
x1 6= x2, y1 6= y2 6= y3 and y4 6= y5.

Proposition 2. Let S be the set stated above. Then detV (P ;S) 6= 0.

Proof. Notice that the determinant for

V (P ;S) =



1 1 1 1 1 1 1 1
y1 y2 y3 y1 y4 y5 y6 y7

y2
1 y2

2 y2
3 y2

1 y2
4 y2

5 y2
6 y2

7

x1 x1 x1 x2 x3 x3 x4 x5

y1z1 y2z1 y3z1 y1z1 y4z2 y5z2 y6z3 y7z4

z1 z1 z1 z1 z2 z2 z3 z4

z2
1 z2

1 z2
1 z2

1 z2
2 z2

2 z2
3 z2

4

z3
1 z3

1 z3
1 z3

1 z3
2 z3

2 z3
3 z3

4


.

is −(z1− z2)
2(y2− y3)(y1− y3)(y1− y2)(z2− z4)(−z4 + z1)(z2− z3)(−z3 + z1)(z3− z4)

(y4 − y5)(−x2 + x1). So the detV (P ;S) 6= 0 since z1 6= z2 6= z3 6= z4, x1 6= x2,
y1 6= y2 6= y3 and y4 6= y5.
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Figure 4: 2P = conv{0, 2e1, 4e2, 6e3}

Example 3. Let 2P = conv{0, 2e1, 4e2, 6e3} in R3 (see Figure 4).

Then, P ∩ Z3 = {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 0, 5), (0, 0, 6),

(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 0), (0, 2, 1),

(0, 2, 2), (0, 2, 3), (0, 3, 0), (0, 3, 1), (0, 4, 0), (1, 0, 0), (1, 0, 1),

(1, 0, 2), (1, 0, 3), (1, 1, 0), (1, 1, 1), (1, 2, 0), (2, 0, 0)}
and |S| = 27.

On the plane z = 0 we have nine points (see Figure 5): P0 = {(0, 0, 0), (0, 1, 0),
(0, 2, 0), (0, 3, 0), (0, 4, 0), (1, 0, 0), (1, 1, 0), (1, 2, 0), (2, 0, 0)}. As we can see there are
five points on the vertical line x = 0, three points on the vertical line x = 1 and one
on the vertical line x = 3. This means that there are three different first coordinates
and five different second coordinates in this plane, so the first nine points in S are
S0 = {(x1, y1, z1), (x1, y2, z1), (x1, y3, z1), (x1, y4, z1), (x1, y5, z1), (x2, y1, z1), (x2, y2, z1),
(x2, y3, z1), (x3, y1, z1)}, where x1 6= x2 6= x3, and y1 6= y2 6= y3 6= y4 6= y5.

On the plane z = 1 we have six points (see Figure 5): P1 = {(0, 0, 1), (0, 1, 1),
(0, 2, 1), (0, 3, 1), (1, 0, 1), (1, 1, 1)}. As we can see there are four points on the vertical
line x = 0 and two on the vertical line x = 1. This means that there are two differ-
ent first coordinates and four different second coordinates in this plane, so the next
six points in S are: S1 = {(x4, y6, z2), (x4, y7, z2), (x4, y8, z2), (x4, y9, z2), (x5, y6, z2),
(x5, y7, z2)}, where x4 6= x5, and y6 6= y7 6= y8 6= y9.

On the plane z = 2 we have four points (see Figure 5): P2 = {(0, 0, 2), (0, 1, 2),
(0, 2, 2), (1, 0, 2)}. As we can see there are three points on the vertical line x = 0
and one on the vertical line x = 1. This means that there are two different first
coordinates and three different second coordinates in this plane, so the next four points
in S are: S2 = {(x6, y10, z2), (x6, y11, z2), (x6, y12, z2), (x7, y10, z2)}, where x6 6= x7, and
y10 6= y11 6= y12.
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z =  0

z = 1

z = 2

z = 3

z = 4

Figure 5: Planes z = 0, z = 1, z = 2, z = 3 and z = 4 for 2P = conv{0, 2e1, 4e2, 6e3}

On the plane z = 3 we have four points (see Figure 5): P3 = {(0, 0, 3), (0, 1, 3),
(0, 2, 3), (1, 0, 3)}. As we can see there are three points on the vertical line x = 0
and one on the vertical line x = 1. This means that there are two different first
coordinates and three different second coordinates in this plane, so the next four points
in S are: S3 = {(x8, y13, z3), (x8, y14, z3), (x8, y15, z3), (x9, y13, z3)}, where x8 6= x9, and
y13 6= y14 6= y15.

On the plane z = 4 we have two points (see Figure 5): P4 = {(0, 0, 4), (0, 1, 4)}.
This means that there are two different second coordinates in this plane, so the next
two point in S are: S4 = {(x10, y16, z4), (x11, y17, z4)}, where y16 6= y17.

On the plane z = 5 we have one point: P5 = {(0, 0, 5)} and on the plane z = 6 we
have one point: P6 = {(0, 0, 6)}.

So, the set S will end up looking like this:

S = {(x1, y1, z1), (x1, y2, z1), (x1, y3, z1), (x1, y4, z1), (x1, y5, z1), (x2, y1, z1),

(x2, y2, z1), (x2, y3, z1), (x3, y1, z1), (x4, y6, z2), (x4, y7, z2), (x4, y8, z2),

(x4, y9, z2), (x5, y6, z2), (x5, y7, z2), (x6, y10, z2), (x6, y11, z2), (x6, y12, z2),

(x7, y10, z2), (x8, y13, z3), (x8, y14, z3), (x8, y15, z3), (x9, y13, z3), (x10, y16, z4),

(x10, y17, z4), (x11, y18, z5), (x12, y19, z6)}

where z1 6= z2 6= z3 6= z4 6= z5 6= z6 6= z7, x1 6= x2 6= x3, x14 6= x15, x6 6= x7, x8 6= x9,
y1 6= y2 6= y3 6= y4 6= y5, y6 6= y7 6= y8 6= y9, y10 6= y11 6= y12, y13 6= y14 6= y15 and
y16 6= y17.

Proposition 3. Let S be the set stated above. Then detV (P ;S) 6= 0

Proof. We constructed a Vandermonde matrix where the rows are indexed by the
corresponding monomials for each of the integer lattice points in P ∩ Z3 and the
columns are indexed by the points in S.
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By doing row operations we were able to find a block of zeroes in the lower left
using the fact that the first 9 points had the same z value. Then, the determinant
was the product of the determinant of a 9 by 9 matrix and the determinant of a 18
by 18 matrix, and some common factors of the columns. We found another block of
zeroes in the 18 by 18 matrix using the fact that the first 6 points had the same z
value. We kept doing the same process until we were left with the product of several
smaller determinants and the common factors we pulled out each time.

Consequently,

detV (P ;S) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1 1 1
x1 x1 x1 x1 x1 x2 x2 x2 x3

x2
1 x2

1 x2
1 x2

1 x2
1 x2

2 x2
2 x2

2 x2
3

x1y1 x1y2 x1y3 x1y4 x1y5 x2y1 x2y2 x2y3 x3y1

x1y
2
1 x1y

2
2 x1y

2
3 x1y

2
4 x1y

2
5 x2y

2
1 x2y

2
2 x2y

2
3 x3y

2
1

y1 y2 y3 y4 y5 y1 y2 y3 y1

y2
1 y2

2 y2
3 y2

4 y2
5 y2

1 y2
2 y2

3 y2
1

y3
1 y3

2 y3
3 y3

4 y3
5 y3

1 y3
2 y3

3 y3
1

y4
1 y4

2 y4
3 y4

4 y2
5 y4

1 y4
2 y4

3 y4
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1
x4 x4 x4 x4 x5 x5

y6 y7 y8 y9 y6 y7

y2
6 y2

7 y2
8 y2

9 y2
6 y2

7

y3
6 y3

7 y3
8 y3

9 y3
6 y3

7

x4y6 x4y7 x4y8 x4y9 x5y6 x5y7

∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣
1 1 1 1
x6 x6 x6 x7

y10 y11 y12 y10

y2
10 y2

11 y2
12 y2

10

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣

1 1 1 1
x8 x8 x8 x9

y13 y14 y15 y12

y2
13 y2

14 y2
15 y2

13

∣∣∣∣∣∣∣∣
(y1 − y5)(y1 − y4)(y1 − y2)

2(−x3 + x2)(−x3 + x1)(x1 − x2)
3 ·

(y8 − y9)(y7 − y9])(y7 − y8)(−y9 + y6)(y6 − y8)(y6 − y7)
2 ·

(x4 − x5)
2(y11 − y12)(y10 − y12)(y10 − y11)(x6 − x7)(y14 − y15) ·

(y13 − y15)(y13 − y14)(x8 − x9)(y17 − y16)(z2 − z1)
6(z3 − z1)

4 ·
(z4 − z1)

4(z5 − z1)
2(z6 − z1)(z7 − z1)(z3 − z2)

4(z4 − z2)
4(z5 − z2)

2 ·
(z6 − z2)(z7 − z2)(z4 − z3)

4(z5 − z3)
2(z6 − z3)(z7 − z3)(z5 − z4)

2 ·
(z6 − z4)(z7 − z4)(z6 − z5)(z7 − z5)(z7 − z6)

So, detV (P ;S) 6= 0 since z1 6= z2 6= z3 6= z4 6= z5 6= z6 6= z7, x1 6= x2 6= x3, x4 6= x5,
x6 6= x7, x8 6= x9, y1 6= y2 6= y3 6= y4 6= y5, y6 6= y7 6= y8 6= y9, y10 6= y11 6= y12,
y23 6= y14 6= y15 and y16 6= y17.

Now, we will give a general definition for the set S for all `.

Definition 4. Let L = P ∩ Z3, where the polytope P = conv{0, `e1, 2`e2, 3`e3}. Let
Pi be the intersection of the plane z = i and the set L. Say |Pi| = mi. The set S
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in (F∗q)3 of size |L| is chosen to be combinatorially similar to the set L in Z3 in the
following sense.

Let the set Si in (F∗q)3 correspond to Pi in Z3 by choosing it to contain mi points
in (F∗q)3 with the same third coordinate. Furthermore, if there are kj lattice points
on the same line x = j in Pi, we require that kj of these mi points in Si have the
same first coordinate. We note that this implies that these kj points will have distinct
second coordinate.

Now put S =
⋃3`

i=0 Si. A set S constructed in this manner is said to be an
`P -configuration.

Conjecture 1. detV (`P ;S) 6= 0 for all ` ≥ 1 and all `P configurations S.

We believe that it is always possible to find some S ⊂ T with |S| = #(P ) such
that detV (P ;S) 6= 0 for every ` because there seems to be a correspondance between
the distribution of points in S contained in each plane of the form z = zi ∈ F∗q and
the factorization of the determinant of the Vandermonde matrix V (P ;S).

3.2 Minimum Distance

Proposition 4. Let CP be the toric code over the field Fq from the tetrahedron
P = conv{0, e1, 2e2, 3e3}. Then CP has minimum distance less than or equal to
(q − 1)3 − 3(q − 1)2.

Proof. To show that d(CP ) ≤ (q−1)3−3(q−1)2 we must look at the codewords. The
codewords are ev(a+ bx+ cy+ ey2 + fyz+ gz+ hz2 + iz3). So, to find the minimum
distance we need to find the largest number of zero entries a codeword can have:

If b, c, e, f = 0 and we assume that a+ gz+hz2 + iz3 = γ(z−βn)(z−βo)(z−βp),
then we would have zeroes in any location where z = βn, z = βo and z = βp for
γ = constant, and x and y can take any value which implies that we have q − 1
choices for x and q − 1 choices for y. Thus, since the weight of a codeword is the
length of the codeword minus the number of zero entries in the codeword, and we
have some codewords with 3(q−1)2 zero entries, then d(CP ) ≤ (q−1)3−3(q−1)2.

Proposition 5. Let CP be the toric code over the field Fq from the tetrahedron
P = conv{0, e1, 2e2, 3e3}. Then CP has a minimum distance greater than or equal to
(q − 1)3 − 3(q − 1)2.

Proof. To show that d(CP ) ≥ (q − 1)3 − 3(q − 1)2, we need to show that for all
T ⊂ (F∗q)3, with |T | = (q−1)3− [(q−1)3−3(q−1)2]+1 = 3(q−1)2 +1, there is some
S ⊂ T which looks like S = {(x1, y1, z1), (x1, y2, z1), (x1, y3, z1), (x2, y1, z1), (x3, y4, z2),
(x3, y5, z2), (x4, y6, z3), (x5, y7, z4)}, where z1 6= z2 6= z3 6= z4, x1 6= x2, y1 6= y2 6= y3

and y4 6= y5. Then the detV (P ;S) 6= 0 by Proposition 2.
Since we have 3(q − 1)2 + 1 points in the set T and there are (q − 1) horizontal

planes of the form z = zi ∈ F∗q, by the Pigeonhole Principle we know that there exists
one plane z = z1 which has at least 3(q − 1) + 1 points. Since we have at most q − 1
points in each horizontal line of the form y = yi ∈ F∗q in each plane and q ≥ 5,we are
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guaranteed three different values for y and we have 2(q − 1) + 1 points left on the
plane that are not on that line.

Let T ′ = T − {(x1, y1, z1), (x1, y2, z1), (x1, y3, z1), (x2, y1, z1)}. T ′ has 3(q − 1)2 − 3
points and 3(q − 1)2 − 3 ≥ (q − 1)2 + 1 if q ≥ 5, which implies there is at least
one plane that has at least 2 points of the set T ′ on it that are different from
(x1, y1, z1), (x1, y2, z1), (x1, y3, z1), (x2, y1, z1).

Let T ′′ = T ′ − {(x3, y4, z2), (x3, y5, z2)}. The set T ′′ has 3(q − 1)2 − 6 points and
3(q − 1)2 − 6 ≥ (q − 1)2, which implies there are more planes left that have at least
one point each which is different from any of these six points.

Therefore, by Proposition 1, this means that d(CP ) ≥ (q − 1)3 − 3(q − 1)2.

Theorem 2. Let CP be the toric code over the field Fq from the tetrahedron
P = conv{0, e1, 2e2, 3e3}. Then CP has minimum distance equal to (q−1)3−3(q−1)2.

Proof. By Proposition 4 and Proposition 5, we can see that this is true for ` = 1.

Proposition 6. Let C2P be the toric code over the field Fq from the tetrahedron
2P = conv{0, 2e1, 4e2, 6e3}. Then C2P has minimum distance less than or equal to
(q − 1)3 − 6(q − 1)2.

Proof. To prove that d(C2P ) ≤ (q−1)3−6(q−1)2 we need to find the largest possible
number of zero entries in each codeword:

If all the coefficients of the monomials containing two or more variables are as-
sumed to be zero, then the remaining equation of the linear combinations is as follows:

a+ bz + cz2 + dz3 + ez4 + fz5 + gz6 + hy + iy2 + jy3 + ky4 + nx+ px2.

Now, if we let h = i = j = k = n = p = 0 and suppose that

a+bz+cz2 +dz3 +ez4 +fz5 +gz6 = γ(z−βr)(z−βs)(z−βt)(z−βu)(z−βv)(z−βw),

then we would have zeros in any location where z = βr, z = βs, z = βt, z = βu, z = βv,
and z = βw for γ = constant, and x and y can take any value which implies that we
have q−1 choices for x and q−1 choices for y. This implies that the number of zeros
a codeword can have is at most 6(q − 1)2.

Thus, the minimum distance of a codeword is the length of the codeword minus
the number of zero entries in the codeword, d(C2P ) ≤ (q − 1)3 − 6(q − 1)2.

Proposition 7. Let C2P be the toric code over the field Fq from the tetrahedron
2P = conv{0, 2e1, 4e2, 6e3}. Then C2P has a minimum distance greater than or equal
to (q − 1)3 − 6(q − 1)2.

Proof. To show that d(C2P ) ≥ (q − 1)3 − 6(q − 1)2 we need to show that for all
T ⊂ (F∗q)3 with |T | = (q− 1)3− [(q− 1)3− 6(q− 1)2] + 1 = 6(q− 1)2 + 1 there is some
S ⊂ T which looks like:

S = {(x1, y1, z1), (x1, y2, z1), (x1, y3, z1), (x1, y4, z1), (x1, y5, z1), (x2, y1, z1), (x2, y2, z1),

(x2, y3, z1), (x3, y1, z1), (x4, y6, z2), (x4, y7, z2), (x4, y8, z2), (x4, y9, z2), (x5, y6, z2),

(x5, y7, z2), (x6, y10, z3), (x6, y11, z3), (x6, y12, z3), (x7, y10, z3), (x8, y13, z4),

(x8, y14, z4), (x8, y15, z4), (x9, y13, z4), (x10, y16, z5), (x10, y17, z5), (x11, y18, z6),

(x12, y19, z7)}
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then detV (2P ;S) 6= 0 by Proposition 3.
Since we have 6(q − 1)2 + 1 points in the set T and there are q − 1 planes of the

form z = zi ∈ F∗q, by the Pigeonhole Principle we will have 6(q − 1) + 1 points on
some plane of the form z = z1, and since q ≥ 8 and we have q− 1 vertical lines of the
form x = xi ∈ F∗q on a plane, we are guaranteed to have 9 points on that plane such
that 5 of them are on the same line x = x1.

Since we have at most q − 1 points on one line, then we would have 5(q − 1) + 1
points left that are not on x = x1, so we are guaranteed to have a line x = x2 with 3
points on it and we still have left 4(q−1)+1 points that are not on x = x1 or x = x2.

Let T ′ = T −{(x1, y1, z1), (x1, y2, z1), (x1, y3, z1), (x1, y4, z1), (x1, y5, z1), (x2, y1, z1),
(x2, y2, z1), (x2, y3, z1), (x3, y1, z1)}. Then, |T ′| = 6(q − 1)2 − 8 ≥ 5(q − 1)2 + 1, which
implies we have 5(q − 1) + 1 points on a different plane z = z2, so we are guaranteed
to have 6 points on that plane such that 4 of them are on the same line x = x3. Since
we have at most q− 1 points on one line, we have 4(q− 1) + 1 points left that are not
on x = x3.

Now, let T ′′ = T ′ − {(x4, y6, z2), (x4, y7, z2), (x4, y8, z2), (x4, y9, z2), (x5, y6, z2),
(x5, y7, z2)}. Then, |T ′′| = 6(q − 1)2 − 14 ≥ 5(q − 1)2 + 1, which implies we have
5(q− 1) + 1 points on a different plane z = z3, so we are guaranteed to have 4 points
on that plane such that 3 of them are on the same line x = x4 and there are 4(q−1)+1
points left that are not on x = x4.

Let T ′′′ = T ′′ − {(x6, y10, z3), (x6, y11, z3), (x6, y12, z3), (x7, y10, z3)}. Then, |T ′′′| =
6(q − 1)2 − 18 ≥ 5(q − 1)2 + 1 so by the same reasoning we are guaranteed to have a
different plane z = z4 with 4 points on it, such that 3 of them are on the same line
x = x5.

Let T (4) = T ′′′−{(x8, y13, z4), (x8, y14, z4), (x8, y15, z4), (x9, y13, z4)}. Then, |T (4)| =
6(q − 1)2 − 22 ≥ 5(q − 1)2 + 1, which implies we have a different plane z = z5 with
5(q − 1)2 + 1 points on it, such that 2 of them are on the same line x = x6.

Let T (5) = T (4) − {(x10, y16, z5), (x10, y17, z5)}. Then, |T (5)| = 6(q − 1)2 − 24 ≥
5(q − 1)2 + 1, which guarantees we have enough points left that are not on any of
these planes.

Therefore, by Proposition 1, this means that d(C2P ) ≥ (q − 1)3 − 6(q − 1)2.

Theorem 3. Let C2P be the toric code over the field Fq from the tetrahedron
2P = conv{0, 2e1, 4e2, 6e3}. Then C2P has minimum distance equal to (q − 1)3 −
6(q − 1)2.

Proof. By Proposition 6 and Proposition 7, we can see that this is true for ` = 2.

Proposition 8. Let C`P be the toric code over the field Fq from the tetrahedron
`P = conv{0, `e1, 2`e2, 3`e3}. Then C`P has minimum distance less than or equal to
(q − 1)3 − 3`(q − 1)2.

Proof. The codewords are formed by taking linear combinations of the monomials
corresponding to the integer lattice points, and finding the minimum distance is
achieved by seeking codewords that can have most zeros. So, if all the coefficients
of the terms containing the x and y variables are assumed to be zero, the remaining
equation is a polynomial with variable z of degree 3`.
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The best possible case is a perfect factorization of the polynomial in such a way
that it’s equal to γ(z − β1)(z − β2) . . . (z − β3`) where γ and βi are constants. Thus,
there would be at best 3` choices for the z, (q − 1) choices for the x variable and
(q − 1) choices for the y variable that would make that remaining polynomial equal
to zero. Hence, a codeword can have at most 3`(q − 1)2 zeros.

Therefore, since the minimum distance is the length of the codeword minus the
maximum amount of zeros, d(CP ) ≤ (q − 1)3 − 3`(q − 1)2.

4 Future Work

Conjecture 2. Let C`P be the toric code over the field Fq from the tetrahedron
P = conv{0, `e1, 2`e2, 3`e3}. Then C`P has minimum distance greater than or equal
to (q − 1)3 − 3`(q − 1)2.

One of our future goals is to work on proving Conjecture 1 to be able to prove
Conjecture 2. Since we already established the upper bound for the minimum distance
which is less than or equal to (q−1)3−3`(q−1)2, then proving Conjecture 2 will give
us the lower bound and we would be able to conclude that the minimum distance is
equal to (q − 1)3 − 3`(q − 1)2.

Our other goals for the future are to work on other examples of more general
classes of polytopes and to look for ways to analyze the minimum distance for the
codes associated to those polytopes:

1. The polytope conv{e1, e2, 2e1 + 2e2}.

2. zonotopes P in Rn with g ≥ n generators.

3. Cartesian products, Minkowski sums, etc. of polytopes of these types.

4. Other classes of polytopes.
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6 Appendix: Maple Algorithms

We developed several Maple algorithms to compute data that confirms our results
found in this article.
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6.1 Computing Lattice Points of the Special Polytope P =
conv{0, `e1, 2`e2, 3`e3} in R3

This algorithm finds all the integer lattice points for P = conv{0, `e1, 2`e2, 3`e3} in
R3:

P := {};

ell := an integer greater than or equal to one;

for x from 0 to ell do

for y from 0 to 2*\ell do

for z from 0 to 3*\ell do

pt := [x, y, z];

c := 6x+3y+2z$;

if c <= 6*ell$ then

P := P union {pt};

end if:

end do:

end do:

end do:

print(P);

nops(P);

6.2 Computing Monomials

This algorithm computes monomials for given lattice points in Rm. The monomials
used in Example 1 were calculated by writing all the integer lattice points in P :

P :=[[0,0],[0,1],[1,0],[2,0]];

nP:=nops(P);

monoms:=[ ];

for i to nP do

mono := x^P[i][1]* y^P[i][2];

monoms := [op(monoms), mono];

end do:

print(monoms);

The output for Example 1 is
[1, x, x2, y].

6.3 Constructing a Vandermonde Matrix and Computing its
Determinant

This algorithm constructs a Vandermonde matrix and computes the determinant for
a polytope in R3 given an S:
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with(linalg);

S := [write the appropriate S]:

VPS := matrix(nP, nP);

for i to nP do

for j to nP do

VPS[i, j] := S[j][1]^P[i][1]*S[j][2]^P[i][2]*S[j][3]^P[i][3]:

end do:

end do:

eval(VPS);

factor(det(VPS));
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Abstract

Reed-Solomon codes are linear, cyclic codes that can be used to ensure that
a correct message is received provided that there are at most a specific number
of errors. One of the methods to deal with the decoding of received messages is
the Guruswami-Sudan list decoding algorithm. This paper will present several
of the properties of list decoding, including a detailed analysis of list decoding
with lists of size one and the optimal benefits of list decoding.

1 Introduction

There exist various types of algebraic decoders for linear codes, and for Reed-Solomon
(RS) codes in particular. Many of these decoders will return exactly one unique code
word. In particular, for bounded distance decoding, for any code C with minimum
distance d = 2t + 1 or d = 2t + 2, then for any error with weight at most t, there
is a unique closest codeword to the received word, and algorithms like the Euclidean
Algorithm (Sugiyama) decoder or the Berlekamp-Massey algorithm decoder will re-
turn that unique closest codeword. These algorithms have a limited number of errors
that can be corrected, because this number is constrained by the minimum distance
of the code. List decoding algorithms were developed to make it possible to correct
more than t errors.

Guruswami and Sudan introduced a list decoding algorithm for Reed-Solomon
codes in their 1999 paper [2]. Their algorithm returns a list of codewords within a
given Hamming distance, τ , of the received word, which is typically greater than the
t = bd−1

2
c errors that can be corrected using unique codeword decoding.

We will first consider the algebraic basis of list decoding methods using the special
case of decoding with lists of size one, detailing how the method works and demon-
strating that the decoding results from this case are equivalent to using a bounded
distance decoder. We then move on to considering lists of higher degrees.

One of the key concepts relating to the list decoding algorithm is multiplicity. We
will extend the case of lists of size one to get lists of higher degrees, which in turn
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will give us larger decoding radii. However, there is a maximum decoding radius,
which will be achieved at a finite multiplicity. In his dissertation, Eriksson introduces
graphs of the multiplicity generating the maximal decoding radius for a given n and
k. The second portion of this paper examines some of the properties relating to this
multiplicity, using graphs similar to Eriksson’s.

2 Background

We will now give some necessary background for our paper. List decoding algorithms
are designed for Reed-Solomon Codes, so we begin with a brief overview of these
codes. Then, we will discuss working with polynomials of two variables, which is
necessary for some of the mathematics used in list decoding. Finally, we will define
list decoding and give some basic information on the process.

2.1 Reed-Solomon Codes

Since the list decoding algorithm we are using deals exclusively with Reed-Solomon
codes, we define these codes now.

Definition 1. Let α be a primitive element for the field Fpr . A Reed-Solomon code
RS(pr, δ) is a cyclic code of length n = pr − 1 over Fpr whose generator polynomial
has the form

g(x) = (x− αm+1)(x− αm+2) · · · (x− αm+δ−1) (1)

for some m, m ≥ 0.

The encoding function, E(f(x)), for a word f(x), is defined as the following:

E(f(x)) = f(x)− r(x), (2)

where f(x) is our word, and r(x) is the remainder from the division of f(x) by the
generating polynomial g(x).

2.2 Alternate Construction of Reed-Solomon Codes

Let α be a primitive element, so that the powers of α represent distinct nonzero
elements of the field. Let Lk =Span{1, t, t2, . . . , tk−1} ⊂ Fpr [t]. To construct a code
with dimension k, we evaluate polynomials f ∈ Lk to get the entries in our codeword:

ev : Lk −→ Fp
r−1
pr

f 7−→ (f(1), f(α), f(α2), . . . , f(αp
r−2)).

This process produces the same code as constructed in Equation 1 with m = 0.
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2.3 Polynomials

To understand list decoding, one must have a grasp of concepts relating to polynomials
of two variables. One of the key concepts needed is monomial weight, which gives a
weight to every monomial, ensuring that the terms of polynomials can be ordered.
This is done by fixing a weight vector, w = (u, v), and using that to calculate the
weight of a monomial.

Definition 2. The w-degree of a monomial, xiyj is degw x
iyj = ui+ vj.

To break ties in weights, we will use reverse lexicographic order, which is one of
the possible lexicographic orders and is a convenient ordering for list decoding.

Definition 3. In w-reverse lexicographic (w-revlex) order, if ui1 + vj1 = ui2 + vj2,
we say that xi1yj1 < xi2yj2 if i1 > i2.

It is useful to note that under w-revlex order, monomials are ranked with increased
powers of y. Also, for list decoding, we will always use w = (1, k − 1).

Definition 4. Define C(v,l) to be the number of monomials of weighted (1, v)-degree
less than or equal to l.

Every monomial can be given a unique index number, r,which is not the degree,
such that r ≥ 0, when all monomials are ordered under a given w-revlex ordering.
Any polynomial Q(x, y) will have some R that is the maximum of the r’s of its
monomials. This R is called the rank of Q(x, y).

Another concept that is important for list decoding is the derivative of a function.
Consider the polynomial Q(x) =

∑n
i=0 aix

i ∈ F[x]. For any α ∈ F we can expand
Q(x) to be

Q(x+ α) =
n∑
r=0

Qr(α)xr. (3)

Definition 5. The rth Hasse derivative of Q at α is defined to be Qr(x)

Definition 6. The polynomial Q(x) has a zero of order or multiplicity m at α if and
only if Q(α) = Q1(α) = · · · = Qm−1(α) = 0, but Qm(α) 6= 0.

When we increase list size, we also need to consider polynomials of more than one
variable, so it is also useful to consider Q(x, y) =

∑
i,j ai,jx

iyj and its expansion:

Q(x+ α, y + β) =
n∑
r=0

m∑
s=0

Qr,s(α, β)xrys. (4)

Definition 7. The polynomial Q(x, y) has a zero of multiplicity m at (α, β) if and
only if Qr,s(α, β) = 0 for all (r, s) with r + s < m and Qr,s(α, β) 6= 0 for some (r, s)
with r + s = m.
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2.4 List Decoding

Definition 8. Given a received word, a list decoding algorithm will return all code-
words within a given distance of the received word.

List decoding algorithms are designed to return lists containing up to a specified
number of codewords, all of which will be within a given distance of the received
word. By increasing the list size we can find additional possible words, and therefore
have the ability to increase the maximum number of errors we can correct. These
algorithms increase the size of the lists by increasing the multiplicity required. In turn,
this forces us to extend the polynomial considered by our key equation, increasing
the possible number of codewords to be recovered.

For a given multiplicity m, the number of different derivatives we consider is
(
m+1

2

)
,

so this gives us a total of n
(
m+1

2

)
equations, and we need to pick an appropriately

large number of monomials to include in our Q(x, y) and, in turn, a large enough list
size. Section 4 will give a specific process for the decoding.

3 Lists of Size One

The list decoding method for Reed-Solomon codes that we will consider has its origins
in a unique decoding algorithm found by Welch and Berlekamp. The key equation
for this algorithm is set up in such a way that the factors of the equation represent
the error locations and the error values of each error in our received word. Suppose
the codeword corresponding to f(x) ∈ Lk−1 is sent, and r(x) is received. Let E be
the set of error locations. Consider the polynomial Q(x, y) = w(x) · (y− f(x)) where
w(x) = a

∏
i∈E(x + αi) where a is a nonzero constant. We know that the value of

Q(x, y) will be zero when any nonzero field element αi is substituted for x and the
corresponding coefficient ri from the received polynomial is substituted for y.

Now consider the coefficients in a polynomial Q(x, y) = u(x)y + v(x) where the
degree of u(x) is less than or equal to t, and the degree of v(x) is less than or equal
to t+ k − 1 as unknowns.

Definition 9. The interpolation equations are defined as

Q(αi, ri) = u(αi)ri + v(αi) = 0 ∀ i = 0, 1, . . . , pr − 2 (5)

where ri is the ith entry of r.

Using the interpolation equation, we can generate a system of equations from a
received polynomial. All of the solutions to this system of equations can be factored
into polynomials, one of which will be the polynomial used to generate the transmitted
codeword. The following example is a walk-through of the decoding process for an
RS(24, 9) code.

Example 1. We will use an RS(24, 9) code, with α a root of the irreducible poly-
nomial z4 + z + 1. Since δ = 9 = 2t + 1 we have t = 4 and can correct up to 4
errors.
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We can encode the word given by x14 + αx13 + x12 + αx11 + α2x9 + x8, using (2)
with the generating polynomial as given in (1). We get:

b(x) = x14 + αx13 + x12 + αx11 + α2x9 + x8 + (α2 + 1)x7 + (α2 + 1)x6 + x5

+(α3 + α2 + α + 1)x4 + α2x3 + α2x2 + (α3 + α2)x+ (α3 + 1).

Introduce an error, e(x) = (α2 + α + 1) + x3 + (α2 + α)x8 + (α + 1)x12, so r(x) =
b(x) + e(x), our received word, is:

r(x) = x14 + αx13 + αx12 + αx11 + α2x9 + (α2 + α + 1)x8 + (α2 + 1)x7

+(α2 + 1)x6 + x5 + (α3 + α2 + α + 1)x4 + (α2 + 1)x3 + α2x2

+(α3 + α2)x+ (α3 + α2 + α).

The Q(x, y) that we will use to build our system of equations is:

Q(x, y) = (c0 + c1x+ c2x
2 + c3x

3 + c4x
4)y + d0 + d1x+ d2x

2 + d3x
3 + d4x

4

+d5x
5 + d6x

6 + d7x
7 + d8x

8 + d9x
9 + d10x

10.

The powers of x were chosen because we know that we have to have at least 4 errors,
so deg(c(x)) = 4 and we had to pick d(x) so that we would have more unknown
variables than equations, to guarantee a non-zero solution. We have an equation for
each power of x in our received word, so this means that we need at least 16 unknown
variables.

Using Maple to put the coefficients of the equation into a matrix and finding the
nullspace of the matrix, we get:

Q(x, y) = (α + 1) + α2x+ α3x2 + x3 + (α3 + α2 + α)x4)y + 1 + (α2 + 1)x

+(α3 + α2)x2 + (α2 + 1)x3 + (α3 + α)x4 + α2x5 + (α + 1)x6

+(α3 + α2 + α)x7 + (α3 + α2 + α + 1)x8 + x9.

We know that Q(x, y) = w(x)(y − f(x)), so solving for f(x) we get

f(x) = (α + 1)x5 + (α2 + α + 1)x4 + (α2 + α)x3 + (α3 + α2)x2

+(α3 + 1)x+ (α3 + α2 + α).

So using our ev(f(x)) function, we can recover the original codeword:

b(x) = x14 + αx13 + x12 + αx11 + α2x9 + x8 + (α2 + 1)x7 + (α2 + 1)x6 + x5

+(α3 + α2 + α + 1)x4 + α2x3 + α2x2 + (α3 + α2)x+ (α3 + 1).

Theorem 1. Given an RS(pr, δ) code where δ = 2t+1, a transmitted word, ev(f(x)),
and a received word r = ev(f(x)) + e, where e is the error vector and wt(e) ≤ t, there
exists a nonzero solution, u(x), v(x), to the system of linear equations given by

Q(αi, ri) = u(αi)ri + v(αi) = 0 ∀ i = 0, 1, . . . , pr − 2, (6)

where ri is the ith entry of r, the degree of u(x) is less than or equal to t, and the
degree of v(x) is less than or equal to t+ k − 1.

Furthermore, if u(x) is of minimal degree, then (up to a constant multiple) u(x) =∏
i∈E(x+ αi) and v(x) = f(x)

∏
i∈E(x+ αi), where E is the set of error locations.
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Proof. Under these hypotheses the system of interpolation equations has at least one
solution corresponding to the error locator and the transmitted codeword. Since we
can rewrite that Q(x, y) as Q(x, y) = w(x)y − w(x)f(x), then u(x) = w(x) and
v(x) = w(x)f(x) is one of the solutions to the system of equations. Note that the
degree of w(x) ≤ t because we are assuming t or fewer errors and the degree of
w(x)f(x) ≤ t + k − 1 because w(x) has degree at most t and f(x) has degree k − 1
based on the length of our word. We can also generate additional solutions to the
system of equations by letting u(x) = w(x)p(x) for some polynomial p(x) whose
degree is less than or equal to t − wt(e). Of these, all u(x) have a degree greater
than or equal to w(x), with p(x) = 1 being the only solution whose degree is equal to
deg(w(x)), so w(x) is the solution with the smallest degree. The basis for all possible
solutions of this form consists of t− wt(e) + 1 basis elements. We would now like to
show that this form of solution is the only form for solutions to M , our coefficient
matrix.

Consider that Q(x, y) has the form:

Q(x, y) = (c0 + c1x+ · · ·+ ctx
t)y + (d0 + d1x+ · · ·+ dt+k−1x

t+k−1). (7)

Let us consider the number of equations and unknown variables we are working with
while solving the system of equations generated by the key equation, as presented
in (6). First, for the number of equations, we will create an equation for each i,
as defined in (6), so pr − 1 equations. Next, we have an unknown for each of the
coefficients for all of the terms involved in our equation. Breaking this down, we have
deg(u(x)y) = deg(u(x)) = t and deg(v(x)) = t + k − 1 = pr − t − 2, from the fact
that k = n− d+ 1, and d = 2t+ 1, and n = pr − 1.

This means that we have a total of (t + 1) + (pr − t − 2 + 1) = pr unknowns.
Since we have more equations than unknown variables, we are guaranteed to have a
solution in which the coefficients are not all zero.

We can represent the system of equations as the matrix multiplication:


r0 · (α0)0 r0 · (α0)1 · · · r0 · (α0)t (α0)0 (α0)1 · · · (α0)t+k−1

r1 · (α1)0 r1 · (α1)1 · · · r1 · (α1)t (α1)0 (α1)1 · · · (α1)t+k−1

r2 · (α2)0 r2 · (α2)1 · · · r2 · (α2)t (α2)0 (α2)1 · · · (α2)t+k−1

...
...

...
...

...
...

. . .
...

rpr−2 · (αp
r−2)0 rpr−2 · (αp

r−2)1 · · · rpr−2 · (αp
r−2)t (αp

r−2)0 (αp
r−2)1 · · · (αp

r−2)t+k−1





c0
...
ct
d0
...

dt+k−1


.

We can calculate the nullspace of the coefficient matrix M , and this will be a
basis consisting of one or more non-zero vectors. We are guaranteed to have at least
one nonzero vector in the nullspace since we know that we have at least one nonzero
solution to our system of equations.

To show that we have covered all possible solutions for our system of equations, we
will to show that the dimension of the null space of M is exactly equal to t−wt(e)+1,
using the fact that nullity(M)+rank(M) = number of columns in M . We know that
M has 2t+k+1 columns, so it will suffice to show that the rank of M is t+k+wt(e).
We can do this by using row and column operations on M to row-reduce it, and
counting the number of linearly independent, nonzero rows.
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M =

(
C1 D1

C2 D2

)
Figure 1: The breakdown of M

For discussion purposes, we will be denoting sections of M as in Figure 1, where
the dimensions of C1 are (t+ k)× (t+ 1), the dimensions of C2 are (t)× (t+ 1), the
dimensions of D1 are (t + k) × (t + k) and the dimensions of D2 are (t) × (t + k).
The submatrices C1 and C2 together make up the coefficients corresponding to the ci
variables, and we will call this (2t+ k)× (t+ 1) submatrix C. Similarly, D1 and D2

together make up the coefficients corresponding to the di variables, and we will call
this (2t+ k)× (t+ k) submatrix D.

Let f(x) = b0 + b1x + b2x
2 + · · · + bk−1x

k−1. Consider the jth column of our
coefficient matrix written as:

(b0 + b1α
0 + · · · + bk−1(α

0)k−1 + e0) · 1
(b0 + b1α

1 + · · · + bk−1(α
1)k−1 + e1) · αj

(b0 + b1α
2 + · · · + bk−1(α

2)k−1 + e2) · α2j

...
(b0 + b1α

q−2 + · · · + bk−1(α
q−2)k−1 + eq−2) · α(q−2)j

 .

(Note: 0 ≤ j ≤ t.) If we look at all of the terms with coefficient bl where 0 ≤ l ≤ k−1,
notice that this is exactly bl multiplied by the column in D corresponding to αi(j+l).
Then each of these can be reduced using column operations to all zeroes in the entries
where the received word agrees with the codeword. For example, to get rid of the
entries with coefficient b0, we multiply b0 by the first column in D (corresponding to
α0) and subtract this from our column in C. To get rid of the entries with coefficient
b1, we multiply by the column in D corresponding to α, and similarly for all the bl .
When we do this for every bl, we are left with all zeroes in that column of C except for
in the rows corresponding to the error locations because the ei · αi(j+1) term remains
for all 0 ≤ i ≤ q − 2 where ei 6= 0.

We can do this for all the columns in C because the lowest term we need to get
rid of is the b0 term in the first column of C, which can be reduced by multiplying
the column in D corresponding to α0 by b0 and subtracting it from the column in
C. The highest term we need to get rid of is the bk−1 term in the j-th column of C
where j = t, which can be reduced by multiplying the column in D corresponding to
αt+k−1 by bk−1 and subtracting it from the column in C. Now after reducing every
column in C, we are left with the same number of nonzero rows as we have errors.
After column reduction, we move all the rows corresponding to the error locations to
the rows starting at the (t + k + 1)-th row of our matrix. Since we have t or fewer
errors, these rows will always fit in the bottom t rows of our matrix where they will
remain unaffected by the row reduction that follows.

Next, let us consider D. Any (t+ k)× (t+ k) submatrix of D is a Vandermonde
matrix of the form:
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(αi1)0 (αi1)1 · · · (αi1)t+k−1

(αi2)0 (αi2)1 · · · (αi2)t+k−1

· · · · · · . . . · · ·
(αit+k)0 (αit+k)1 · · · (αit+k)t+k−1

 ,

where αij 6= αik provided j 6= k. Note that this will be a Vandermonde matrix
regardless of the order of the ai’s, as long as they are all distinct, which is the case for
D, even after the row operations. Since this is a Vandermonde matrix, we know that
this set of t + k rows is linearly independent. Therefore, we can use row operations
on M to simplify D to a (t+ k)× (t+ k) identity matrix followed by t rows of zeroes
below. These row operations will not affect any values within C because we will be
adding linear combinations of the first t+ k rows of M to each other and to the last
t rows of M , but all of the first t + k rows in C have already been simplified to all
zeroes.

Finally, we have to consider the remaining t rows at the bottom of the matrix,
some of which may consist of all zeroes. We have wt(e) rows remaining. All of these
rows are linearly independent. To see this, consider any two rows, say i and j. The
first term in these rows is exactly ri and rj. Now, these are both constants so ri = a·rj
for some nonzero field element a, and we can add a times row j to row i and cancel
out the first term in row i. Looking at the second term in each, this means that we
added a · rjα2j to riα

2i = (a · rj)α2i, but a · rjα2j 6= a · rjα2i unless i = j, which we
know is not the case. Therefore, the remaining wt(e) nonzero rows in C2 are linearly
independent.

In summary, we have (t + k) + wt(e) linearly independent rows in matrix M .
Therefore, the rank of M is t + k + wt(e). This means that nullity(M) = (2t + k +
1)− (t+ k+wt(e)) = t+ 1−wt(e). Since the dimension of the basis of our nullspace
is exactly the number of basis elements we already know of, our nullspace consists of
exactly those vectors of the form Q(x, y) = w(x)p(x)y−w(x)p(x)f(x) and the element
of minimal degree out of all possible solutions is Q(x, y) = w(x)y − w(x)f(x).

The result of Theorem 1 tells us that when we find the nullspace of our coefficient
matrix, we can factor any element of the nullspace and still recover the original f(x)
from among the factors.

We will now extend the idea behind the key equation to cases where we may have
more than one candidate f(x).

4 Lists of Size Greater than One

So far, we have considered only the special case of list sizes equal to one. We would
now like to consider cases of list sizes that are greater than one. We can use the
Guruswami-Sudan list decoding method to increase the desired multiplicity for a
polynomial root of our Q(x, y), which will not decrease our decoding radius. At some
point, the multiplicity will continue to increase, but the decoding radius, having
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reached its maximum, will remain the same. We are concerned with the multiplicity
at which the maximum radius is first reached.

For any set values of n, k, and multiplicity m, we can calculate the corresponding
decoding radius, tm using the following process:

1. Pick l so that C(k − 1, l) > n
(
m+1

2

)
.

2. Pick Km so that Km = min {K : C(k − 1,mK − 1) > n
(
m+1

2

)
}.

3. If mKm > l, then tm = n−Km.

For any n and k, the value of tm will increase up to a certain point, denoted t∞.
As given in [5], the value of K∞ for which Km will no longer decrease is given by the
formula:

K∞ = b
√
vn+ 1c. (8)

Therefore, using v = k − 1, we have:

t∞ = n− 1− b
√

(k − 1)nc. (9)

To understand how the procedures for calculating tm and t∞ for a given n, k, and
m, consider the following example.

Example 2. Let n = 15 and k = 6. For m = 2, we have the following calculations
for K2 and t2:

l = 18, because C(5, 18) = 46 and 15

(
3

2

)
= 45,

K2 = 10, because C(5, 19) = 50 while C(5, 17) = 42,

t2 = 15− 10 = 5.

We can also achieve a better decoding radius, as can be seen by the values of K∞
and t∞:

K∞ = b
√

(6− 1)15c+ 1 = 9,

t∞ = 15− 1− b
√

(6− 1)15c = 6.

As a note, it can be shown that this maximum decoding radius will first be achieved
when m = 6.

Example 3. We will use an RS(24, 13) code with multiplicity m = 1. The code
parameters give n = 15, k = 3. The first thing we will need to do is to calculate the
values of l and t1 so that we will know what polynomial to use for Q(x, y) and the
number of errors we can expect to correct.

First, we construct a table showing l and C(2, l) for a range of values of l, as seen
in Figure 2.

We need C(2, l) > 15
(
2
2

)
= 15, so we pick l = 6. Then, we need the minimum K

such that C(2, 1 · K − 1) > 15, so we have K1=7. Since we meet the condition of
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l 0 1 2 3 4 5 6 7 8 9 10
C(2, l) 1 2 4 6 9 12 16 20 25 30 36

Figure 2: Table of C(2, l)

mKm > l because 7 > 6, we will have the decoding radius t1 = 15− 7 = 8. Note that
this is an improvement over the number errors we would expect to correct with one
of the standard decoding methods as we have 13 = 2t+ 1 so t = 6.

Since k− 1 = 2 and l = 6, our Q(x, y) polynomial will include all monomials with
degree at most 6 using a w = (1, 2) weighted degree. Therefore, we have the following
Q(x, y):

Q(x, y) = c1y
3 + (c2 + c3x+ c4x

2)y2 + (c5 + c6x+ c7x
2 + c8x

3 + c9x
4)y

+(c10 + c11x+ c12x
2 + c13x

3 + c14x
4 + c15x

5 + c16x
6).

Letting α be a primitive element of the field F24 , we can begin the transmission
and decoding of an actual codeword. First, let our codeword, b(x), be:

b(x) = x14 + αx13 + x12 + (α3 + α2 + α + 1)x11 + (α3 + α2)x9 + (α + 1)x8

+αx7 + (α3 + α2)x6 + (α3 + α2 + α)x5 + (α + 1)x4

+(α3 + α2 + α + 1)x3 + (α3 + α2 + 1)x2 + (α3 + α2 + 1)x.

We will introduce the error, e(x) as:

e(x) = x14 + x13 + x12 + x11 + x3 + x2 + x+ 1

This gives us the received word, r(x):

r(x) = (α + 1)x13 + (α3 + α2 + α)x11 + (α3 + α2)x9 + (α + 1)x8 + αx7

+(α3 + α2)x6 + (α3 + α2 + α)x5 + (α + 1)x4 + (α3 + α2 + α)x3

+(α3 + α2)x2 + (α3 + α2)x+ 1.

Using r(x) to create a system of equations using Q(x, y), we create a coefficient matrix
and find the nullspace. The nullspace of this system has dimension exactly four, of
which we will consider one in detail. Using one and plugging in the values for the
coefficients in Q(x, y) and factoring Q(x, y), we get the following:

Q(x, y) = (α3 + α2 + 1)(y + αx2 + (α3 + α2)x+ α3 + α2 + α + 1)

× y(y + αx2 + (α3 + α2)x+ α3 + α2 + α).

This gives us the following as the possible polynomials to use in our ev(f(x)) mapping:

f1(x) = αx2 + (α3 + α2)x+ α3 + α2 + α + 1,

f2(x) = 0,

f3(x) = αx2 + (α3 + α2)x+ α3 + α2 + α.
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So, using the ev(f(x)) mapping, we get the three candidate codewords:

b1(x) = (α + 1)x13 + (α3 + α2 + α)x11 + x10 + (α3 + α2 + 1)x9 + αx8

+(α + 1)x7 + (α3 + α2 + 1)x6 + (α3 + α2 + α + 1)x5 + αx4

+(α3 + α2 + α)x3 + (α3 + α2)x2 + (α3 + α2)x+ 1,

b2(x) = 0,

b3(x) = x14 + αx13 + x12 + (α3 + α2 + α + 1)x11 + (α3 + α2)x9 + (α + 1)x8

+αx7 + (α3 + α2)x6 + (α3 + α2 + α)x5 + (α + 1)x4

+(α3 + α+α + 1)x3 + (α3 + α2 + 1)x2 + (α3 + α2 + 1)x.

Both b1(x) and b3(x) are codewords within a Hamming distance of 8 from our received
codeword, so they are on the list. Note that b3(x) is the original codeword that was
transmitted. Also, it can be checked that using any of the other elements in the
nullspace would yield lists containing both b1(x) and b3(x) as candidates for the
transmitted word.

This is an example of Theorem 7.19 from [5], which guarantees that the factors
(y − f(x)) appear in Q(x, y).

Theorem 2. Let Q(x, y) be an interpolating polynomial of (1, v)-weighted degree ≤ l
such that Dr,sQ(xi, yi) = 0 for i = 1, 2, . . . , n and for all r + s < m. (That is,
each(xi, yi) is interpolated up to order m.) Let p(x) be a polynomial of degree at most
v such that yi = p(xi) for at least Km values of i in {1, 2, . . . , n}. If mKm > l, then
(y − p(x)) | Q(x, y).

5 Multiplicity

Expanding on the work done in [1], we created multiplicity graphs for 4 ≤ n ≤ 127.
These graphs take a given n and calculate the multiplicity, m(k), as defined below,
for each 2 ≤ k ≤ n.

Definition 10. Given a blocklength, n, the value m(k) represents the multiplicity
for which the maximum decoding radius, t∞ is first reached for a given k-value.

First we compared the overall shape of the graphs. Each graph had a similar
pattern of peaks and valleys as seen in Figure 4a-c. For every n = 4s where s ∈ N
the smoother curve normally occurring near k = 1

4
n + 1 is replaced by two higher

peaks as shown in Figure 4d. Also, note that for k ≥ n − 1 the code cannot correct
any errors.

Then we considered the maximum point of these graphs. In all the cases that
Eriksson looked at the maximum was unique, so we studied whether or not this was
always true.

Proposition 1. The value of k for which m(k) is maximal is not necessarily unique.
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Figure 3: m(k) as a function of k for n = 81.

Proof. Consider the graph of m(k) for n = 81. As seen in Figure 3, we have m(33) =
m(41) = 107. Also, note that the value of m(58) = 106, so it is not a third maximum.
Therefore, the value of k for which m(k) is maximal is not unique. It is still unknown
whether three absolute maxima can exist.

Then we looked at the n-values for which n = q − 1, where q is the size of the
field. These values represent the most commonly studied blocklengths. The results
can be seen in Figure 5.

Codes for other n also exist and are called shortened Reed-Solomon codes. We
also considered these cases. The following graph shows the relationship between every
n and the k where the maximum m(k) occurs. The upper bound is the line k = n−1
because k � n by definition. (Note: There are two k-values for n = 81.)

Taking a closer look at Figure 6, we conjecture that for every n = 4ps where p is
prime and s ∈ N, k = 1

4
n + 2. Also, note that for n > 32 this appears to be a lower

bound for the graph.
Returning to our original graphs, we then studied the two peaks appearing at

k = 1
4
n and k = 1

4
n + 2 for any n that is a multiple of 4. We noticed that the

multiplicity attained at these points was dependent on n. For k = 1
4
n, m(k) is of the

form

m(k) =
1

4
n

(
1

2
n− 1

)
,

and for k = 1
4
n+ 2, m(k) is of the form

m(k) =
1

4
n

(
1

2
n+ 1

)
.

We also noted that the point between the peaks at k = 1
4
n + 1 had a very low

multiplicity. The multiplicity at this point also has a closed form, m(k) = b1
2
kc.

(Note: It is not known whether or not these formulas hold for n > 127.)

84



(a) n = 61 (b) n = 62

(c) n = 63 (d) n = 64

Figure 4: Graphs of k vs. m(k) for several values of n.
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q n k m(k)
4 3 2 2
8 7 6 6
16 8 9 33
32 31 18 69
64 63 49 385
128 127 98 777
256 255 113 9633

Figure 5: Table for n = q − 1

Figure 6: Data for which k produces the maximum m(k) given n.

6 Further Research

Looking at the data we collected, we made many interesting observations, but did
not have time to explore them all. The first of which is proving our equations dealing
with the two peaks for all n = 4s and not just n ≤ 127.

Another intriguing observation that we noted was that given any n ≤ 127, the
multiplicity never exceeds

1

3

(
4

9
n2 − 1

)
,

and this bound is reached by every n that is a multiple of 3, but not a multiple of 9.
We would also like to further explore the reason for the special properties that

occur at n = 4s for s ∈ N.
We would like to extend our collection of graphs past n = 127. This will help

to demonstrate our conjectured bounds further and maybe lead to proofs of these
bounds.
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7 Conclusions

In this paper, we discussed the Guruswami-Sudan method for list decoding algo-
rithms, including the special case of lists of length one. We adapted the Welch-
Berlekamp decoding method for Reed-Solomon codes to decode with lists of length
exactly one. We proved that the modified version of the Welch-Berlekamp key equa-
tion will always give a system of equations whose solutions are made up of polynomials
whose roots always include the polynomial that was used to generate the transmitted
codeword.

We also looked at lists with length greater than one and examined the effects of
increasing the multiplicity used for decoding with fixed code parameters n and k.
For any values of n and k, increasing the desired multiplicity increases the decoding
radius, up to a certain value of m, called m(k), at which point tm = t∞ for all higher
multiplicities m, such that m ≥ m(k). We generated and analyzed the data contained
in the results for 4 ≤ n ≤ 127 and the corresponding values 2 ≤ k ≤ n−2. We showed
that there is not necessarily a value of k for a given n that would require a uniquely
high multiplicity to attain the maximum decoding radius, and also presented several
other conjectures on patterns and bounds relating combinations of n, k, m(k), and
tm(k). We finished by presenting several of the patterns and bounds in the graphs
that we did not have time to fully investigate.
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universitet (No. 1010), 2006.

[2] Guruswami, V.; Sudan, M., “Improved Decoding of Reed-Solomon Codes and
Algebraic Geometry Codes,” IEEE Trans. Info. Theory, vol. 45, no. 6., pp.
1757–1767, Sept. 1999.

[3] Hankerson, D.C.; G. Hoffman; D.A. Leonard; et. al., Coding Theory and Cryp-
tography: The Essentials, 2nd Ed., Marcel Dekker, New York, 2000.

87



[4] Little, John, MSRI-UP 2009 Coding Theory, MSRI-UP text, Berkeley, CA,
2009.

[5] Moon, Todd K., Error Correction Coding, Wiley-Interscience, Hoboken, 2005.

[6] Sudan, M., “Decoding of Reed-Solomon Codes Beyond the Error-Correction
Bound,” J. Complexity, vol. 13, pp. 180–193, 1997.

88


	TitlePagePrefaceContents
	ChancellorHenryLeEdited
	AmayaHarryVegaEdited
	CarbonaraMurilloOrtizEdited
	GaudinezOutingVegaEdited2
	AlmodovarCodyMoralesEdited
	HeuParmeleeEdited

