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An Introduction to Height Functions

What Are Height Functions

Let X/K be a variety over a number field K.

A height function on X(K) is a function

H : X(K) −→ R

whose value H(P ) measures the arithmetic complexity
of the point P .

For example, in some sense the rational numbers

1
2 and 100000

200001

are “close” to one another, but intuitively the second is
more arithmetically complicated than the first.

Guiding Principles for a Theory of Height Functions:

(1) Only finitely many points of bounded height.

(2) Geometric relations lead to height relations.
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Heights on Projective Space

The Height of Q-Rational Points

The height of a rational number a/b ∈ Q, written in
lowest terms, is

H(a/b) = max
{|a|, |b|}.

More generally, the height of a point P ∈ PN (Q) is
defined by writing

P = [x0, . . . , xN ] with

x0, . . . , xN ∈ Z and gcd(x0, . . . , xN ) = 1

and setting

H(P ) = max
{|x0|, . . . , |xN |

}
.

It is easy to see that there are only finitely many points
P ∈ PN (Q) with height H(P ) ≤ B.
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Heights on Projective Space

The Height of Points over Number Fields

Let K/Q be a number field and let MK be a complete
set of (normalized) absolute values on K. Thus MK
contains an archimedean absolute value for each em-
bedding of K into R or C and a p-adic absolute value
for each prime ideal in the ring of integers of K.

The height of a point P = [x0, . . . , xN ] ∈ PN (K) is
defined by

HK(P ) =
∏

v∈MK

max
{‖x0‖v, . . . , ‖xN‖v

}
.

It is often convenient to use the absolute logarith-

mic height h(P ) =
1

[K : Q]
log HK(P ).

The absolute height is well-defined for P ∈ PN (Q̄).
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Heights on Projective Space

A Finiteness Property of the Height on PN

The height satisfies a fundamental finiteness property.
Theorem. (Northcott) There are only finitely many

P ∈ PN (K) with HK(P ) ≤ B.

Corollary. (Kronecker’s Theorem) Let α ∈ K∗. Then
HK(α) = 1 if and only if α is a root of unity.

Proof. Suppose HK(α) = 1. Then

HK(αn) = HK(α)n = 1 for all n ≥ 1.

Hence {1, α, α2, . . .} is a set of bounded height, hence
finite, hence αi = αj for some i > j. Therefore α is a
root of unity. (The other direction is trivial.) QED

More generally, there are only finitely many points of
bounded height and bounded degree:

#
{
P ∈ PN (Q̄) : h(P ) ≤ b and [Q(P ) : Q] ≤ d

}
< ∞
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Heights on Projective Space

Two Ways in Which Height Functions Are Used

Let V/K ⊂ PN
K be a variety and let S ⊂ V (K) be a

set of “arithmetic interest.”

(1) In order to prove that S is finite, show that it is a
set of bounded height.

(2) If S is infinite, describe its “density” by estimating
the growth rate of the counting function

N(S, B) = #
{
P ∈ S : HK(P ) ≤ B

}

Example. Consider Q ⊂ P1(Q). Then

N(Q, B) = #
{a

b
∈ Q : H

(a

b

)
≤ B

}

=
12

π2
B2 + O(B log B) as B →∞.
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Heights on Projective Space

Counting Algebraic Points in PN

More generally, it is an interesting problem to estimate
the size of the set{

P ∈ PN (K) : HK(P ) ≤ B
}

as a function of B.

Theorem. (Schanuel) As B →∞,

#
{
P ∈ PN (K) : HK(P ) ≤ B

} ∼ CK,NBN+1.

The constant CK,N is given explictly by

CK,N =
hKRK/wK

ζK(N + 1)

(
2r1(2π)r2
√

DiscK

)N+1

(N + 1)r1+r2−1.

The quest for analogous counting formulas for other va-
rieties is the subject of much current research. It will be
discussed in detail by other speakers at this workshop.
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Heights on Projective Space

A Transformation Property of the Height on PN

The height satisfies a natural transformation property.

Theorem. Let φ : PN → PM be a morphism of
degree d. Then

dh(P )− C1,φ ≤ h
(
φ(P )

) ≤ dh(P ) + C2,φ

for all P ∈ PN (Q̄).

• The proof of the upper bound uses only the triangle
inquality. It holds even if φ is only a rational map.

• The proof of the lower bound requires some version
of the Nullstellensatz.

• Notice how the theorem translates geometric infor-
mation (the degree of φ) into arithmetic informa-
tion (relation among heights).
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Heights on Projective Varieties

Let X be a projective variety with a given projective
embedding

φ : X ↪−→ PN .

(Everything defined over Q̄.)

The embedding allows us to define a height function

hφ : X(Q̄) −→ R, hφ(P ) = h
(
φ(P )

)
.

More intrinsically, a projective embedding corresponds
to a very ample divisor D and choice of sections gener-
ating L(D).

So for each very ample divisor D we can choose an em-
bedding φD : X → PN and get a height function

hD : X(Q̄) −→ R, hD(P ) = h
(
φD(P )

)
.
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Heights on Projective Varieties

These height functions have the following properties:

(1) Choosing a different embedding φ′D only changes
hD by a bounded function. We write

h
(
φD(P )

)
= h

(
φ′D(P )

)
+ O(1),

where the O(1) represents a function that is bounded
independent of the choice of P ∈ X(Q̄).

(2) If D ∼ E (linear equivalence), then

hD = hE + O(1).

So up to a bounded function, hD only depends on
the linear equivalence class of D.

(3) If D and E are both very ample, then

hD+E = hD + hE + O(1).
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Heights on Projective Varieties

The Weil Height Machine

There is a (unique) homomorphism

h : Pic(X) −→ (Functions X(Q̄) → R)

(Bounded Functions X(Q̄) → R)

satisfying:

• Normalization: If D is very ample, then

hD = h ◦ φD + O(1).

• Functoriality: Let φ : X → Y be a morphism.
Then

hX,φ∗D = hY,D ◦ φ + O(1).

• Positivity: hD ≥ O(1) for all points not in

the base locus of D.
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Heights on Projective Varieties

The Weil Height Machine

Normalization says that height functions contain a great
deal of arithmetic information.

Additivity and functoriality for morphisms say that


geometric facts
expressed via
divisor relations


 lead to

====⇒



arithmetic facts
expressed via
height relations




Thus Weil’s Height Machine may be viewed as a tool
that turns geometry into arithmetic.
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Abelian Varieties

Recall that an abelian variety is a projective vari-
ety A that has a group structure given by morphisms

+ : A× A
addition−−−−−→ A,

[−1] : A
inversion−−−−−→ A.

In particular, for every integer m there is a multipli-
cation-by-m morphism

[m] : A −→ A, [m](P ) = P + P + · · · + P︸ ︷︷ ︸
m copies

.
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Heights on Abelian Varieties

A Divisor Relation on Abelian Varieties

An important divisor relation that is a consequence of
the theorem of the cube:

Theorem. Let D ∈ Div(A) be a symmetric divisor,
i.e., [−1]∗D ∼ D. Then

[m]∗D ∼ m2D.

This immediately yields a relation on heights:

hD([m]P ) = m2hD(P ) + O(1) for all P ∈ A(Q̄).

Thus multiplication-by-m greatly increases the height of
a point. Roughly, the coordinates of mP have O(m2)
digits.
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Heights on Abelian Varieties

The Quadratic Growth of the Height on Abelian Varieties

We illustrate with the elliptic curve and point

E : y2 = x3 + x + 1 and P = (0, 1).

Here is a table of H(x(nP )) for n = 1, 2, . . . , 25.
1 1

2 2

3 13

4 36

5 685

6 7082

7 196249

8 9781441

9 645430801

10 54088691834

11 23545957758733

12 3348618159624516

13 3438505996705270765

14 2389279734043328028530

15 3568842156502352911081681

16 9147174028201584695660404993

17 40437302897155037003168469209281

18 144041052884595077187155035625188225

19 4077551427539061268365818617070082487981

20 29247742836717181569573123126609380958628633

21 1644662183623605030943992459758717959368038089933

22 76795559807444450146033952048248025474377706486132570

23 6037390795706541540397642739132383429233648456214266105001

24 816297679393916005694837838808362431503501229559444925278681793

25 242513738949178952234806483689465816559631390124939658301320990605073

26 47803232530993255659471421491008524334965293857886857075847338386784976289

27 67559659782039617237841184516992302782851604142385500859648938761010393239431661

28 32014345486637038681521545788678891610665676156825092102996356573331436095404542962201

29 75366079100860358183774143789438882594269554344230013075428451465317687946832468865183904333

30 235596097713466330738098972552422422374156906907547045290688341377958875910979032848694872594995042

31 949929776724866709094954536710367778326401614961417743163923974793524931042092311077415673676701373662241

32 6939337780803547166840419022721964472182663632045063388197164628060008767530358928827755424306465309623700644865

33 138560009627230805680861712729089150246171433367872626810509092219015283874452951868081163892328387927559567336088640513

34 1470496183658794212496122961743692131111461785062102204982019653166220314029845380022856443720777836633186409902489575338782721

35 107010592458999940561955702180302050658481740392774624430340775789803872514791716886258854994198364978765941985457904860326401460918221

Notice the parabolic shape,
reflecting the quadratic growth
in the number of digits.
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Heights on Abelian Varieties

A Parallelogram Divisor Relation

There are many other divisor relations on abelian vari-
eties that give important height relations. For example,
consider the following four maps

π1, π2, σ, δ : A× A −→ A.

π1(P,Q) = P, σ(P,Q) = P + Q,

π2(P,Q) = Q, δ(P,Q) = P −Q.

Theorem. (Geometry) For any divisor D ∈ Div(A),

σ∗D + δ∗D ∼ 2π∗1D + 2π∗2D.

This yields the height parallelogram law:

Theorem. (Arithmetic)

hD(P + Q) + hD(P −Q) = 2hD(P ) + 2hD(Q) + O(1).
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Canonical Heights on Abelian Varieties

Canonical Heights

On abelian varieties we can get rid of those pesky O(1)’s.

Theorem (Néron, Tate). Let D ∈ Div(A) be a sym-
metric divisor. Then the limit

ĥD(P ) = lim
n→∞

1

n2
hD([n]P )

exists and has the following properties:

• ĥD(P ) = hD(P ) + O(1).

• ĥD([n]P ) = n2ĥD(P ).

• ĥD(P + Q) + ĥD(P −Q) = 2ĥD(P ) + 2ĥD(Q).

• If D is ample, than ĥD(P ) = 0 iff P ∈ A(K̄)tors.

• More generally, ĥD for ample D induces a positive
definite quadratic form on the real vector space

A(K)⊗ R ∼= Rr, where r = rank A(K).
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Canonical Heights on Abelian Varieties

The Height Regulator

The inner product

〈P, Q〉D := ĥD(P + Q)− ĥD(P )− ĥD(Q)

gives A(K) ⊗ R ∼= Rr the structure of a Euclidean
space, and A(K)/A(K)tors

∼= Zr is a lattice in Rr.
The volume of a fundamental domain of this lattice is
the regulator of A/K (with respect to D).

Concretely, let P1, . . . , Pr ∈ A(K) be a basis for the
quotient A(K)/A(K)tors. Then

Regulator(A/K) = RA/K = det
(〈Pi, Pj〉

)
1≤i,j≤r.

Notice the analogy with the classical regulator, which
measures the volume of a fundamental domain of the
unit group via the logarithmic embedding

O∗K −→ Rr1+r2, α 7−→ (
log ‖α‖v

)
v∈MK

.
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Canonical Heights on Abelian Varieties

Descent and the Mordell-Weil Theorem

Mordell-Weil Theorem Let A/K be an abelian va-
riety. Then A(K) is a finitely generated abelian group.

The proof of the Mordell-Weil Theorem proceeds in two
steps. The first uses reduction modulo p to limit the
ramification in the field extension K

(
[m]−1A(K)

)
and

deduce the

Weak Mordell-Weil Theorem There is an m ≥ 2
such that A(K)/mA(K) is a finite.

The second step is prove the implication

Weak Mordell-Weil =⇒ Mordell-Weil.

The descent argument uses height functions and is quite
elegant when done with canonical heights.
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Canonical Heights on Abelian Varieties

Weak Mordell-Weil Theorem =⇒ Mordell-Weil Theorem

Let P1, . . . , Pn ∈ A(K) be representatives for the finite
set A(K)/mA(K).

Claim: A(K) is generated by the finite set

G =
{

R ∈ A(K) : ĥD(R) ≤ max
i

ĥD(Pi)
}

.

Proof. Suppose not. Let P ∈ A(K) be a point of
smallest height not in Span(G). Write P = mQ + Pj
for some index j. Then

m2ĥD(Q) = ĥD(mQ)

= ĥD(P − Pj)

≤ 2ĥD(P ) + 2ĥD(Pj)

< 4ĥD(P ) since Pj ∈ G and P /∈ G.

Since m ≥ 2, we conclude ĥD(Q) < ĥD(P ). Therefore
Q ∈ Span(G), contradicting P /∈ Span(G). QED
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Canonical Heights on Abelian Varieties

A Diophantine Question About Canonical Heights

Let D be an ample symmetric divisor on an abelian
variety A. As already noted,

ĥD(P ) = 0 ⇐⇒ P ∈ Ators.

If P /∈ Ators, it is natural to ask about the arithmetic
properties of the number ĥD(P ).

Analog. α ∈ Z, α ≥ 2 =⇒ log α is transcendental.

Current Status. There are no examples of points with
ĥD(P ) 6= 0 for which it is known that ĥD(P ) /∈ Q!

Wild Conjecture. If P1, . . . , Pr ∈ A(Q̄) are inde-
pendent,∗ then

ĥD(P1), . . . , ĥD(Pr) are algebraically indep. over Q̄.

∗ Independent means over the group ring (End(A)⊗Q)[Gal(Q̄/Q)].
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Canonical Heights on Abelian Varieties

Variation of the Canonical Height in Families - I

Let
π : A −→ T

be a one-parameter family of abelian varieties. Thus for
each t ∈ T 0 ⊂ T , the fiber At = π−1(t) is an abelian
variety.

We know that on any fiber, the difference

ĥAt,Dt
(P )− hA,D(P )

is bounded, independent of P ∈ At(K̄), but it is useful
to know how the bound varies with t.

Theorem (Silverman, Tate) Fix a height on T . There
are constants c1, c2 > 0 so that∣∣ĥAt,Dt

(P )− hA,D(P )
∣∣ ≤ c1hT (t) + c2

for all P ∈ A0(K̄) and t = π(P ).
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Canonical Heights on Abelian Varieties

Variation of the Canonical Height in Families - II

Now consider an algebraic family of points

P : T −→ A.

These sections form a group A(T ), and there is a func-
tion field canonical height ĥA,D : A(T ) → R.

Theorem (Silverman) For all P ∈ A(T ),

lim
t∈T (K̄)
h(t)→∞

ĥAt,Dt
(Pt)

hT (t)
= ĥA,D(P ).

Corollary Assume that A → T has no constant part.
Then the specialization homomorphism

σt : A(T ) −→ At(K̄), σt(P ) = Pt,

is injective except on a set of bounded height in T (K̄).
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Canonical Heights on Abelian Varieties

Counting Rational Points on Abelian Varieties

The canonical height allows us to accurately count the
rational points of bounded height on abelian varieties.

Theorem. (Néron) Let D be an ample symmetric di-
visor on A/K and let r = rank A(K). Then

#
{
P ∈ A(K) : ĥD(P ) ≤ B

} ∼ CBr/2.

The constant C is given explicitly by

C = C(A/K) =
πr/2

Γ(r/2 + 1)
· #A(K)tors

RA/K
.

The theorem is stated using the logarithmic height. For
comparison with later results, we rewrite it as

#
{
P ∈ A(K) : HD(P ) ≤ B

} ∼ C(log B)r/2.
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Counting Functions

What Do Counting Functions Look Like?

Let X/K ⊂ PN
K be a projective variety and let U ⊂ X

be a Zariski open subset with U(K) 6= ∅. What sort of
behavior might we expect for the counting function

N(U(K), B) = #
{
P ∈ U(K) : HK(P ) ≤ B

}
?

The answer depends on the particular embedding (i.e.,
choice of a particular height function), but all known
examples grow roughly like a power of B or like a power
of log B.

Thus the growth rate of the quantity

log log N(U(K), B)

seems to be independent of the embedding and to pro-
vide a coarse measure of the distribution of rational
points. This leads to the following question.
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Counting Functions

A Coarse Question About Counting Functions

Question. Let X/K ⊂ PN
K be a projective variety

and let U ⊂ X be a Zariski open subset with U(K) 6= ∅.
Is it true that N(U(K), B) always satisfies one of the
following conditions?∗

lim
B→∞

log log N(U(K), B)

log log B
= 1 (polynomial growth)

lim
B→∞

log log N(U(K), B)

log log log B
= 1 (logarithmic growth)

N(U(K), B) = O(1) (bounded growth)

To describe N(U(K), B) more precisely, we must con-
sider the relationship between geometry and arithmetic.
∗ At the conference, Bjorn Poonen noted that if Z is Diophantine in Q, then

log log N(U(K), B) may have many other types of growth rates, including any

log iterate log log · · · log B.
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Counting Functions

Geometry to Arithmetic

A fundamental tenet of the modern theory of Diophan-
tine equations is

Geometry Determines Arithmetic

One aspect of this philosophy is a growing body of con-
jectures and theorems describing the growth rate of the
counting function N(U(K), B) in terms of the under-
lying geometry of U and X .

The case of curves is well-understood (which is why this
semester is devoted to “higher dimensions”!):

genus type of curve (metric) rational points

0 rational curve (parabolic) N(B) ≈ cB2

1 elliptic curve (flat) N(B) ≈ c(log B)r/2

≥ 2 general (hyperbolic) N(B) ≈ c
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Counting Functions

Geometry to Arithmetic

A coarse, but extremely useful, measure of the geometric
complexity of a variety is the “size” of its canonical class.

Recall that a variety is of general type if a multiple of
its canonical divisor KX gives a birational embedding

X
birat.
↪−→ |mKX |.

These are analogues of “curves of genus ≥ 2.”

At the opposite extreme are Fano varieties, whose anti-
canonical divisors−KX are ample. These are analogues
of “curves of genus 0.”

And in the middle are varieties with KX ∼ 0 (or more
generally, nKX ∼ 0). These are analogues of “curves
of genus 1.” Examples include abelian varieties, K3
surfaces, and Calabi-Yau varieties.
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Refined Counting Questions — Fano Varieties

Let X/K be a smooth projective variety whose anti-
canonical divisor−KX is ample. We use the height H−K
to count points.

Conjecture. (Batyrev-Manin) There is a Zariski open
subset U ⊂ X , an integer ρ ≥ 1, and a finite exten-
sion K ′/K so that for all finite extensions L/K ′,

N(U(L), B) ∼ cB(log B)ρ−1 as B →∞.

With a careful choice of counting function, Peyre has
given a conjectural formula for c = c(U,L) in terms of
local data such as the measure of X(Lw) for completions
w ∈ ML.

This conjecture of Baryrev and Manin and various re-
finements will be prominently featured in other talks
during this workshop and during the rest of the semester.
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Refined Counting Questions — Trivial Canonical Bundle

Conjecture. (Batyrev-Manin) Let X/K be a smooth
projective variety and suppose that the canonical divi-
sor is trivial (or even nKX ∼ 0 for some n ≥ 1). Then
for every ε > 0 there is a Zariski open subset Uε ⊂ X
satisfying

N(Uε(K), B) ¿ Bε.

We have seen that the conjecture is true for abelian
varieties in the stronger form

N(A(K), B) ¿ (log B)r/2.

However, it is easy to produce examples of K3 sur-
faces X/Q with the property that for every nonempty
open subset U ⊂ X there is a δ = δ(U) > 0 satisfying

N(U(Q), B) À Bδ.
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Counting Functions

Refined Counting Questions — Ample Canonical Bundle

Conjecture (Bombieri, Lang). If X is of general
type, then X(K) is not Zariski dense in X .

Notice that if X is a curve, then it is of general type if
and only if g(X) ≥ 2.

A refinement of the Bombieri-Lang conjecture due to
Vojta quantifies the relation between the canonical divi-
sor KX and the heights of rational (and integral) points
on X . However, before stating Vojta’s conjecture, we
need to explain how to decompose height functions into
a sum of local heights.
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Local Heights and Integral Points

Local Heights

Recall that the height h(P ) of a point in projective space
is a sum over the different completions,

h(P ) =
1

[K : Q]

∑

v∈MK

log max
{‖x0‖v, . . . , ‖xN‖v

}
.

In general, it is possible to decompose heights into a
sum of local pieces.

Theorem. Let D be an effective divisor on X . Then
for each v ∈ MK there is a function

λD,v : X(K̄v)r Support(D) −→ R

that makes sense of the intuition

λD,v(P ) = − log(v-adic distance from P to D).
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Local Heights and Integral Points

Local Heights

Example. Let X = PN and D = {x0 = 0}. Let v be
a p-adic absolute value and write P = [x0, . . . , xN ] ∈
PN (Q) as usual. Then

λD,v(P ) = − log |x0|v.
Local heights fit together to give the global height

hD(P ) =
∑

v∈MK

λD,v(P ) + O(1) for P /∈ Support(D).

This often allows one to exploit geometric and/or ana-
lytic properties of local heights in order to make global
arithmetic deductions. E.g., let P1, P2, . . . , Pn ∈ X(K).

Avg. Ht. =
1

n

n∑

i=1

hD(Pi) =
∑

v∈MK

(1

n

n∑

i=1

λD,v(Pi)
)

+ O(1).
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Local Heights and Integral Points

Local Heights and Integrality

We can use local heights to characterize integrality.

Continuing with the example, we have

P ∈ AN (Z) ⇐⇒ λD,v(P ) = 0 for all p-adic v

⇐⇒ hD(P ) =
∑

v arch

λD,v(P )

In general, let S ⊂ MK and let D be an effective ample
divisor, so we can embed X r Support(D) ↪→ AN .

Then a set of S-integral points in X r Support(D) is
characterized by the condition

hD(P ) =
∑

v∈S

λD,v(P ) + O(1).

An Introduction to Height Functions – 33–



Vojta’s Conjecture



Vojta’s Conjecture

Vojta’s Conjecture

Conjecture (Vojta) Let

K/Q a number field,

X/K a smooth projective variety,

A a big divisor on X (ample on an open subset),

KX a canonical divisor on X ,

D an effective normal crossings divisor on X ,

S a finite subset of MK ,

ε > 0 an arbitrary small constant.

Then there is a constant C and a proper Zariski closed
subset Z ⊂ X so that∑

v∈S

λD,v(P ) + hKX
(P ) ≤ εhA(P ) + C

for all P ∈ (X r Z)(K).
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Vojta’s Conjecture

Vojta’s Conjecture and Sets of S-Integral Points

Suppose that D +KX is big and let P be an S-integral
point in X r Support(D). Then Vojta’s conjecture with
A = D +KX says that

hA(P ) ≤ εhA(P ) + C for P /∈ Z.

But there are only finitely many points of bounded A-
height. Hence:

Consequence of Vojta’s Conjecture.
If D + KX is big, then the set of S-integral points in
X r Support(D) is not Zariski dense.

Special Case (Bombieri-Lang Conjecture) If X is of
general type, then X(K) is not Zariski dense in X (since
we can take A = KX and D = 0).
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Vojta’s Conjecture

Vojta’s Conjecture on Varieties with Trivial KX

Let X be a variety with trivial canonical bundle, or
more generally satisfying nKX ∼ 0 for some n ≥ 1.
Then Vojta’s conjecture says

D big

=⇒ (X r Support D)(RS) not Zariski dense.

In particular, the conjecture predicts that S-integral
points on affine subvarieties of K3 surfaces and Cala-
bi-Yau varieties should not be Zariski dense.
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Vojta’s Conjecture

A Concrete Example

The simplest examples of K3 surfaces are nonsingular
quartic hypersurfaces in P3.

So let F (x, y, z) ∈ Z[x, y, z] be a homogeneous polyno-
mial of degree 4 (with appropriate nonsingularity con-
ditions). Then Vojta’s conjecture predicts that the so-
lutions to

F (x, y, z) = 1 with x, y, z ∈ ZS

are not Zariski dense on the surface F (x, y, z) = w4.

Challenge Problem. Prove that
{
(x, y, z) ∈ Z3 : x4 + y4 − z4 = 1

}
is not Zariski dense.
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Theorems on Sparsity of Rational and Integral Points

Schmidt’s Subspace Theorem

There are many conjectures, but few general theorems,
proving that rational or integral points are sparse on
higher dimensional varieties. One of the most important
is Wolfgang Schmidt’s generalization of Roth’s theorem.

Subspace Theorem. (Schmidt,. . . ) Let D0, . . . , DN
be hyperplanes in PN in general position (defined over K̄)
and let D = D0 + · · · + DN . Let S be a finite set of
places of K, extended in a fixed way to K̄, and let ε > 0.
Then the set{

P ∈ PN (K) :
∑

v∈S

λD,v(P ) ≥ (N + 1 + ε)h(P )
}

is contained in a finite union of hyperplanes in PN .

The canonical bundle on PN is −(N + 1) times a hy-
perplane, so this is Vojta’s conjecture in this setting.
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Theorems on Sparsity of Rational and Integral Points

Rational and Integral Points on Abelian Varieties

Vojta developed new methods of Diophantine approxi-
mation to give a new proof of the Mordell Conjecture.
Faltings generalized these ideas to prove strong results
for both rational and integral points on abelian varieties.

Theorem (Faltings) Let X be an abelian variety, let
Y ⊂ X be a subvariety that contains no translate of an
abelian subvariety of X , and let U ⊂ X be an affine
open subset of X .
(a) Y (K) is finite.
(b) U(RS) is finite.

The abelian variety A has trivial canonical bundle and
the subvariety Y is of general type, so these are (essen-
tially) cases of Vojta’s conjecture.
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Theorems on Sparsity of Rational and Integral Points

Vojta’s Inequality and Finiteness of Y (K) ⊂ A(K)

Proof Sketch. Assume P1, . . . , Pm ∈ Y (K) are
points of rapidly increasing height.

Construct auxiliary functions as sections to line bundles
for certain Vojta divisors DV ∈ Div(Am).

Prove the functions do not vanish to too high order at
(P1, . . . , Pm). [Roth Lemma, Faltings Product Thm.]

Use the fact that the pullback of DV to Y m has certain
effectivity properties to conclude that for some i, j:

〈Pi, Pj〉 ≤
3

4

√
ĥ(Pi)ĥ(Pj) Vojta’s Inequality

Consequence: A(K)⊗R = Rr is covered by finitely
many cones Γj with the property that Γj ∩ Y (K) con-
tains only finitely many points.
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Theorems on Sparsity of Rational and Integral Points

Vojta’s Conjecture and Blowups

Let X be P1 × P1 blown up at (1, 1), let E be the
exceptional divisor, and let

D =
(
(0)× P1

)
+

(
(∞)× P1

)
+

(
P1 × (0)

)
+

(
P1 × (∞)

)

A canonical divisor on X is KX = −D + E, so Vojta’s
conjecture says that

hE(P ) ≤ εhA(P ) for P ∈ (X rD)(RS) = (R∗S)2.

Corvaja and Zannier prove this result via an ingenious
argument reducing it to Schmidt’s Subspace Theorem.
Here is a striking special case (proven similarly):

Theorem (Bugeaud, Corvaja, Zannier ) Let a, b ∈ Z
be multiplicatively independent. Then for all ε > 0,

gcd(an − 1, bn − 1) ≤ eεn

for all n ≥ C(a, b, ε).
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Points of Small Height

Points of Small Height

Recall Kronecker’s Theorem: Let α ∈ Q̄∗. Then

h(α) = 0 ⇐⇒ α is a root of unity.

Roots of unity are torsion points in the multiplicative
group Gm. Similarly for abelian varieties:

Let D be an ample symmetric divisor on an abelian
variety A and let P ∈ A(Q̄). Then

ĥD(P ) = 0 ⇐⇒ P ∈ Ators.

These statements lead to the natural question:

Question. If the height is positive, how small can it be?

Height lower bounds have various applications, includ-
ing estimating the number of solutions to Diophantine
problems and making Diophantine algorithms effective.
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Points of Small Height

The Lehmer Conjecture

The formulæ

h( m
√

a ) =
1

m
h(a) and ĥD

(
1

m
P

)
=

1

m2
ĥD(P )

show that nonzero heights can be arbitrarily small.

However, m
√

a and 1
mP are defined over fields of increas-

ingly large degree. Let

d(α) =
[
Q(α) : Q

]
and d(P ) =

[
Q(A,P ) : Q

]

denote the degree of the minimal field of definition.

Lehmer Conjecture. Let α ∈ Q̄∗ be a nonroot of
unity. Then

h(α) ≥ c

d(α)
.

(Maybe even with c = log(1.17628 . . . ) = 0.16235 . . ..)
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Points of Small Height

The Lehmer Conjecture for Abelian Varieties

There is a natural analog of the Lehmer conjecture for
abelian varieties.

Lehmer Conjecture for Abelian Varieties. Let
A/Q̄ be an abelian variety and D an ample symmetric
divisor on A. Then

ĥD(P ) ≥ cA,D

d(P )
for all nontorsion P ∈ A(Q̄).

The past few decades have seen a great deal of work on
the Lehmer conjecture and its various generalizations.
This will be discussed in subsequent talks.
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Points of Small Height

Height Lower Bounds in a Different Direction

The Lehmer conjecture fixes a group variety and asks
for a lower bound as the field of definition of P varies.

Dem’janenko and Lang ask for bounds in which the field
is kept constant and the (abelian) variety varies.

Their original conjecture suggests that “complicated el-
liptic curves” should have “complicated points.”

Conjecture. (Dem’janenko, Lang) There are abso-
lute constants c1, c2 > 0 so that for all elliptic curves
E/Q and all nontorsion points P ∈ E(Q),

ĥ(P ) ≥ c1 log |DiscE/Q | − c2.

The conjecture is known to be true for elliptic curves
with integral j-invariant. It is also known to be a con-
sequence of the abc conjecture.
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Points of Small Height

A Height Lower Bound for Varying Abelian Varieties

To generalize to higher dimensional abelian varieties, we
need something to replace the discriminant.

Definition Let Mg be the moduli space of abelian

varieties of dim. g. Fix an embedding j : Mg ↪→ PN .
The height of an abelian variety A/K is

h(A) = h(j(A)) +
1

[K : Q]
log

(
NK/QCondA/K

)
.

Conjecture (Dem’janenko, Lang, Silverman)
Let K/Q be a number field and g ≥ 1. There are con-
stants c1, c2 > 0, depending only on K and g, so that for
all principally polarized abelian varieties (A,D)/K of
dimension g and all points P ∈ A(K) with ZP Zariski
dense in A,

ĥD(P ) ≥ c1h(A)− c2.
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Points of Small Height

Points of Small Height on Subvarieties

Manin and Mumford conjectured that “complicated”
curves should contain very few torsion points.

Theorem. (Raynaud) Let C ↪→ A be a curve of
genus ≥ 2 embedded in an abelian variety. Then

C ∩ Ators is finite.

The torsion points in A are characterized as being points
of height 0. Bogomolov suggested that one might allow
points of slightly larger height.

Theorem. (Ullmo, Zhang) Let X ⊂ A be a subva-
riety of an abelian variety and assume that X is not
a translate of an abelian subvariety of A. Let D be an
ample symmetric divisor on A. Then there is a constant
ε = εX,A,D > 0 so that

{
P ∈ X(Q̄) : ĥD(P ) < ε

}
is not Zariski dense.
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Points of Small Height

Equidistribution of Points of Small Height

Points of small height are not merely sparse, their Galois
conjugates are well spread out.

Theorem (Szpiro-Ullmo-Zhang) Fix an embedding
K̄ ⊂ C. Let P1, P2, . . . ∈ A(K̄) be a “generic” se-
quence of points satisfying ĥ(Pi) → 0. Let µi denote
the uniform probability measure on the finite set{

Pσ
i : σ ∈ Gal(K̄/K)

}
.

Then µi converges weakly to normalized Haar measure
on A(C).

Remark. I have restricted attention to abelian vari-
eties, but there are important analogs for tori, for semi-
abelian varieties, and more generally for preperiodic
points and/or points of small height associated to mor-
phisms φ : X → X .
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Height Zeta Functions

Height Zeta Functions

Let X/K be a smooth projective variety and D an
ample divisor on X . Fix a height HD ≥ 1. Follow-
ing Batyrev and Manin, we define the Height Zeta
Function of an open subset U ⊂ X to be

Z(U(K), D; s) = ZD(s) =
∑

P∈U(K)

1

HD(P )s
.

The abscissa of convergence of ZD(s) is denoted

βD = inf
{
b ∈ R : ZD(s) converges for Re(s) > b

}
.

Clearly there is a relation between βD and the growth
rate of the counting function

N(U(K), D; B) = #
{
P ∈ U(K) : HD(P ) ≤ B

}
.
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Height Zeta Functions

Height Zeta Functions

In many situations, one expects (i.e., hopes!) that for a
careful choice of HD there will be a relation

N(U(K), D; B) ∼ cBβD(log B)t−1 as B →∞

⇐⇒ ZD(s) ∼ cΓ(t)βD

(s− βD)t
as s → β+

D.

In any case, it would be extremely interesting to find a
geometric interpretation for the arithmetic invariant

βD = βD(U/K).

The Nevanlinna invariant αD is defined by

αD = inf

{
p

q
∈ Q≥0 : pD + qKX is big

}
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Height Zeta Functions

The Batyrev-Manin Conjecture

Conjecture (Batyrev, Manin). Let X/K be a smooth
variety and D an ample divisor on X .
(a) For every ε > 0 there is a Zariski open subset Uε ⊂

X such that

βD(Uε(K)) ≤ αD + ε.

(b) Assume that no multiple of KX is effective. Then
for all sufficiently large number fields L/K and all
sufficiently small Zariski open subsets U ⊂ X ,

βD(U(L)) = αD.

Example. If KX = 0, then αD = 0, so the conjecture

implies N(U(K), D; B) ¿ Bε for all ε > 0.

Example. If −KX is big, then α−KX
= 1, so the

conjecture says N(U(L),−KX ; B) ≈ B
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Dynamics and Canonical Heights

Dynamical Canonical Heights on PN

Let φ : PN → PN be a morphism of degree d ≥ 2
defined over a number field K. A standard property of
height functions says that

h(φ(P )) = dh(P ) + O(1) for all P ∈ PN (K̄).

The Néron-Tate construction gives a canonical height
function

ĥφ(P ) = lim
n→∞

1

dnh
(
φn(P )

)

satisfying

ĥφ

(
φ(P )

)
= dĥφ(P )

and

ĥφ(P ) = h(P ) + O(1).
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Dynamics and Canonical Heights

An Application to Rational Preperiodic Points

Definition. A point P ∈ PN (K̄) is called preperi-
odic for φ if its forward orbit

{P, φ(P ), φ2(P ), . . .} is finite.

Theorem. ĥφ(P ) = 0 if and only if P is preperiodic
for φ.

Proof. One way is trivial. For the other, suppose

ĥφ(P ) = 0. Then ĥφ

(
φn(P )

)
= dnĥφ(P ) = 0. Hence

{
φn(P ) : n = 0, 1, 2, . . .

}

is a set of bounded height, so it is finite. QED.

Corollary. (Northcott)
Let φ : PN → PN be a morphism of degree d ≥ 2
defined over a number field K. Then PN (K) contains
only finitely many preperiodic points of φ.
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Additional Topics and Acknowledgements

Additional Topics and Acknowledgements

Important topics that have not been covered due to time
constraints:

• Heights Over Function Fields

•Metrized Line Bundles

– Height of a Subvariety

– Modular Height of an Abelian Variety

– Arakelov Intersection Theory

• p-adic Heights

•Mahler Measure and Special Values of L-Series

Acknowledgements. I would like to thank Matt Baker,
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on the material in this presenation.
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