Dynamics of Climate Agreements

Bård Harstad

Meds/Kellogg/Northwestern

5 May 2009
Motivation

[Insert lots of tables here]
Motivation

[Add anecdotal evidence here]
1. What is the problem?
2. Are agreements always good?
3. What is the effect on R&D?
4. Subsidize R&D/trade in addition?
5. Short-run or long-run agreements?
6. How ambitious should the agreement be?
7. What is the best possible agreement?
Strands of Literature

1. **Environmental Agreements**

2. **Differential Games**

3. **Applied to Climate Change**
 - Dutta and Radner (2009, JEBO): Compare MPE, SPE, FB. (But no R&D)
 - Dutta and Radner (2006, ET): Allow technological differences. Discuss informally incentives to do R&D.

4. **Contracts, Hold-up and Renegotiation Design**
Outline

1. The Model
2. Business as usual (no agreement)
3. Short-term agreements
4. Long-term agreements
5. Renegotiation Design
6. Generalizations & Robustness
7. Conclusions & Extensions
(1) Model

\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (10,0);
\node at (1.5,0) {invest}; \node at (3,0) {\theta}; \node at (4.5,0) {pollute}; \node at (6,0) {invest}; \node at (7.5,0) {\theta}; \node at (9,0) {pollute}; \node at (10.5,0) {invest};
\end{tikzpicture}
\end{center}
(1) Model
(1) Model

\[G = (1 - d_G) G - + \sum g_i + \theta, \ i \in N = \{1, 2, ..., n\} \]
\[\theta \sim F (0, \sigma^2) \]
\[R_i = (1 - d_R) R_i - + br_i + e \sum r_j, \ j \in N \setminus i \]
\[g_i = y_i - R_i \]
\[u_i = -\frac{c}{2} G^2 - \frac{b}{2} (\bar{y} - y_i)^2 - kr_i \]
\[U_i = \sum u_i \delta^t \]

- Can contract on \(g_i \) but not \(r_i \)
Look for a MPE (Maskin and Tirole, 2001)

Define continuation values $V_i(G_-, R_-)$ and $W_i(G_-, R)$

Since $k(\cdot)$ linear, V_i linear in $R_-

From foc, $G_- - R$ constant

Thus, V_i linear in G_- as well

... and unique!
(2) Business as Usual
Results:

- If R_i is large, g_i is small, but g_j is large, $j \neq i$
 - Anticipating this, r_i decreases
- If G_- is large, r_j increases
 - Anticipating this, g_i increases
- A dynamic common pool problem that is worse than its static counterpart
(2) Business as Usual

\[
g_i^{bau} = \frac{\bar{v}\bar{y} - V_G - c \left((1 - d_G) G_+ + \theta - \sum_{j \neq i} R_j\right)}{nc + v} \\
\hspace{2cm} - \left(1 - \frac{c}{nc + v}\right) R_i
\]

\[
r_i^{bau} = \frac{(1 - d_G) G_+ - (1 - d_R) R_-}{nB} + \frac{\bar{y} - V_G}{B} - \frac{V_G}{vB} \\
\hspace{2cm} - \frac{(k - V_R) (v + nc)^2}{cnB (v + c)} + \frac{V_G (nc + v)}{cnB}
\]

\[
B \equiv \frac{\partial R}{\partial r_i} = b + (n - 1) e
\]

\[
\frac{\partial V}{\partial G} = -\frac{\delta d_G k [1 - \delta (1 - d_R)]}{Bn}
\]

\[
\frac{\partial V}{\partial R_j} = \frac{\delta (1 - d_R) k}{Bn} \forall j \in \{1, \ldots, n\}.
\]
(3) Short-Term Agreements

```
invest     θ     pollute
```

Negotiate
(3) Short-Term Agreements

- Pollution levels are first best ex post

Proposition

\[g_i^{st} = g_i^* (r^{st}) < g_i^{bau} \]
(3) Short-Term Agreements

- Pollution levels are first best ex post
- Hold-up problem: If R_i large, g_i^{st} small

Proposition

$$g_i^{st} = g_i^* (r_i^{st}) < g_i^{bau}$$
Pollution levels are first best ex post
Hold-up problem: If R_i large, g_i^{st} small
Anticipating this, r_i decreases

Proposition

\[g_i^{st} = g_i^* (r^{st}) < g_i^{bau} \]
(3) Short-Term Agreements

- Pollution levels are first best ex post
- Hold-up problem: If R_i large, g_i^{st} small
- Anticipating this, r_i decreases

Proposition

- $g_i^{st} = g_i^* (r_i^{st}) < g_i^{bau}$
- $r_i^{st} < r_i^{bau}$
(3) Short-Term Agreements

- Pollution levels are first best ex post
- Hold-up problem: If R_i large, g_i^{st} small
- Anticipating this, r_i decreases

Proposition

- $g_i^{st} = g_i^*(r_i^{st}) < g_i^{bau}$
- $r_i^{st} < r_i^{bau}$
- $u_i^{st} < u_i^{bau}$ if δ large, σ small, n large
(3) Short-Term Agreements

\[
\left(1 - \frac{1}{n}\right)^2 - \left(\frac{1 - \delta (1 - d_R)}{n}\right)^2 < u^{st} < u^{bau} \text{ if }
\]

\[
\frac{(v + c)(\sigma vcB / k)^2}{(n^2 c + v)(nc + v)^2}
\]

ie, \textit{always if}

\[
\delta (1 - d_R) \rightarrow 1 \quad \sigma \rightarrow 0.
\]
(4) Long-Term Agreements
(4) Long-Term Agreements
(4) Long-Term Agreements

- Fix g_i before r_i? No adverse effect of r_i on g_i.
- r_i decreases in g_i

Proposition

- $g_{lt} < g^* (r_{lt})$ and agreement should be more ambitious if e and δ are large

The agreement should be more ambitious if it is "short-lasting" and externalities are large

\[
 g_{lt}^1 = Eg_{lt}^* (r_{lt}) - \frac{k(n-1)}{B(n^2c + v)} \left(\frac{e}{b} + \frac{\delta(1 - d_R)}{n} \left(1 - \frac{e}{b} \right) \right)
\]
(4) Long-Term Agreements: Multiple Periods

invest θ pollute invest θ pollute invest

Negotiate
Suppose g_i fixed for time $1, 2, \ldots, T$.

Proposition
- Optimally, g_i should increase over time
- g_i should be smaller if e is large (just as before)
- T should be larger if e is large (2OC holds)
Long-Term Agreements with Renegotiation
(5) Long-Term Agreements with Renegotiation
(5) Long-Term Agreements with Renegotiation
(5) Long-Term Agreements with Renegotiation

Proposition

- First best possible: $g^{de} < E g^* (r^{de})$ and initial agreement should be more ambitious if δ and e are large

Intuition:
- After renegotiation, g is set at its first best level
- If $g^{de} < E g^* (r^*)$, countries renegotiate to a less ambitious deal
- A small R_i makes i "desperate" and it will have to "pay" more
- To avoid this, i invests to increase R_i and thus its bargaining power.
- To exploit this effect, set:

$$g_{i}^{de} = E g_{i}^* (r^{de}) - \frac{k}{Bv} \left[\delta (1 - d_R) + \frac{en}{b - e} \right]$$
(6) Robustness

- Patents: Suppose j can pay i to get the full value of R_i
 - Large e means poor patent protection
 - Let s measure external subsidy on R&D-trade

\[g_i^{de} = E g_i - \frac{k}{bnv} \left[\delta (1 - d_R) + \frac{n(1 - z)}{z(n - 1)} \right], \text{ where} \]
\[z \equiv (1 + s) (1 - e / (b - e)). \]

- s should be larger if g_i is small, e large, δ large
- Side transfers possible or not: Identical results
- Permits tradable or not: Identical results
- If Pigou taxes instead:

\[t_i^{de} = Et_i - \frac{k}{bn} \left[\delta (1 - d_R) + \frac{n(1 - z)}{z(n - 1)} \right] \]

- If $u_i = v(y_i) - c(G) - kr_i$:

\[V_i^{de} - Ev_i = \frac{k}{bn} \left[\delta (1 - d_R) + \frac{n(1 - z)}{z(n - 1)} \right] \]
Questions - And Conclusions
Questions - And Conclusions

1. What is the problem?

A dynamic common pool / hold-up problem

2. Are agreements always good?

No!

3. What’s the effect on R&D?

R&D under short-term (ambitious long-term) agreement

4. Subsidize R&D/trade in addition?

Yes, particularly under short-term agreements

5. Short-term or long-term agreements?

Long-term if weak patent system and no R&D subsidises

6. How ambitious should the agreement be?

More ambitious if short-term and weak patent system

7. What is the best possible agreement?

First-best possible by initial agreement with renegotiation.
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What's the effect on R&D?
 - R&D under short-term (ambitious long-term) agreement

4. Subsidize R&D/trade in addition?
 - Yes, particularly under short-term agreements

5. Short-term or long-term agreements?
 - Long-term if weak patent system and no R&D subsidises

6. How ambitious should the agreement be?
 - More ambitious if short-term and weak patent system

7. What is the best possible agreement?
 - First-best possible by initial agreement with renegotiation.
Questions - And Conclusions

1. **What is the problem?**
 - A dynamic common pool / hold-up problem

2. **Are agreements always good?**

3. **What's the effect on R&D?**
 - Under short-term agreements, R&D is less likely to occur under ambitious long-term agreements.
 - Subsidize R&D/trade in addition, particularly under short-term agreements.

4. **Short-term or long-term agreements?**
 - Long-term if weak patent system and no R&D subsidises.

5. **How ambitious should the agreement be?**
 - More ambitious if short-term and weak patent system.

6. **What is the best possible agreement?**
 - First-best possible by initial agreement with renegotiation.

Harstad (Meds/Kellogg/Northwestern) Dynamics of Climate Agreements 5 May 2009 28 / 29
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What's the effect on R&D?
 - R&D under short-term (ambitious long-term) agreement

4. Subsidize R&D/trade in addition?
 - Yes, particularly under short-term agreements

5. Short-term or long-term agreements?
 - Long-term if weak patent system and no R&D subsidises

6. How ambitious should the agreement be?
 - More ambitious if short-term and weak patent system

7. What is the best possible agreement?
 - First-best possible by initial agreement with renegotiation.
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What’s the effect on R&D?
 - R&D under short-term (ambitious long-term) agreement
 - Yes, particularly under short-term agreements

4. Short-term or long-term agreements?
 - Long-term if weak patent system and no R&D subsidises

5. How ambitious should the agreement be?
 - More ambitious if short-term and weak patent system

6. What is the best possible agreement?
 - First-best possible by initial agreement with renegotiation.
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What’s the effect on R&D?
 - R&D ↓ (↑) under short-term (ambitious long-term) agreement
1. What is the problem?
 - A dynamic common pool / hold-up problem
2. Are agreements always good?
 - No!
3. What’s the effect on R&D?
 - R&D ↓ (↑) under short-term (ambitious long-term) agreement
4. Subsidize R&D/trade in addition?
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What’s the effect on R&D?
 - R&D ↓ (↑) under short-term (ambitious long-term) agreement

4. Subsidize R&D/trade in addition?
 - Yes, particularly under short-term agreements
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What’s the effect on R&D?
 - R&D ↓ (↑) under short-term (ambitious long-term) agreement

4. Subsidize R&D/trade in addition?
 - Yes, particularly under short-term agreements

5. Short-term or long-term agreements?

 More ambitious if short-term and weak patent system
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What's the effect on R&D?
 - R&D ↓ (↑) under short-term (ambitious long-term) agreement

4. Subsidize R&D/trade in addition?
 - Yes, particularly under short-term agreements

5. Short-term or long-term agreements?
 - Long-term if weak patent system and no R&D subsidises
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What’s the effect on R&D?
 - R&D ↓ (↑) under short-term (ambitious long-term) agreement

4. Subsidize R&D/trade in addition?
 - Yes, particularly under short-term agreements

5. Short-term or long-term agreements?
 - Long-term if weak patent system and no R&D subsidises

6. How ambitious should the agreement be?
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What’s the effect on R&D?
 - R&D ↓ (↑) under short-term (ambitious long-term) agreement

4. Subsidize R&D/trade in addition?
 - Yes, particularly under short-term agreements

5. Short-term or long-term agreements?
 - Long-term if weak patent system and no R&D subsidises

6. How ambitious should the agreement be?
 - More ambitious if short-term and weak patent system
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What’s the effect on R&D?
 - R&D ↓ (↑) under short-term (ambitious long-term) agreement

4. Subsidize R&D/trade in addition?
 - Yes, particularly under short-term agreements

5. Short-term or long-term agreements?
 - Long-term if weak patent system and no R&D subsidises

6. How ambitious should the agreement be?
 - More ambitious if short-term and weak patent system

7. What is the best possible agreement?
Questions - And Conclusions

1. What is the problem?
 - A dynamic common pool / hold-up problem

2. Are agreements always good?
 - No!

3. What’s the effect on R&D?
 - R&D ↓ (↑) under short-term (ambitious long-term) agreement

4. Subsidize R&D/trade in addition?
 - Yes, particularly under short-term agreements

5. Short-term or long-term agreements?
 - Long-term if weak patent system and no R&D subsidises

6. How ambitious should the agreement be?
 - More ambitious if short-term and weak patent system

7. What is the best possible agreement?
 - First-best possible by initial agreement with renegotiation.
8. What happens with heterogeneity?
8. What happens with heterogeneity?

- If k_i varies, only i s.t. $k_i = k$ (should) innovate
8. What happens with heterogeneity?

- If k_i varies, only i s.t. $k_i = k$ (should) innovate
- May want to require $g_i < g_j$ if $k_i < k_j$, but renegotiate
8. What happens with heterogeneity?
 - If k_i varies, only i s.t. $k_i = k$ (should) innovate
 - May want to require $g_i < g_j$ if $k_i < k_j$, but renegotiate

9. What if n is endogenous?
8. What happens with heterogeneity?
 - If k_i varies, only i s.t. $k_i = k$ (should) innovate
 - May want to require $g_i < g_j$ if $k_i < k_j$, but renegotiate

9. What if n is endogenous?
 - If few show up, they prefer short-term agreement and strategic status-quo
Questions - Continued

8. What happens with heterogeneity?
 - If k_i varies, only i s.t. $k_i = k$ (should) innovate
 - May want to require $g_i < g_j$ if $k_i < k_j$, but renegotiate

9. What if n is endogenous?
 - If few show up, they prefer short-term agreement and strategic status-quo
 - Anticipating this, participation may increase
Questions - Continued

8. What happens with heterogeneity?
 - If k_i varies, only i s.t. $k_i = k$ (should) innovate
 - May want to require $g_i < g_j$ if $k_i < k_j$, but renegotiate

9. What if n is endogenous?
 - If few show up, they prefer short-term agreement and strategic status-quo
 - Anticipating this, participation may increase

10. What if countries can adapt to the new climate?
8. What happens with heterogeneity?
 - If k_i varies, only i s.t. $k_i = k$ (should) innovate
 - May want to require $g_i < g_j$ if $k_i < k_j$, but renegotiate

9. What if n is endogenous?
 - If few show up, they prefer short-term agreement and strategic status-quo
 - Anticipating this, participation may increase

10. What if countries can adapt to the new climate?
 - Countries adapt *too much* to gain bargaining power
8. What happens with heterogeneity?
 • If k_i varies, only i s.t. $k_i = k$ (should) innovate
 • May want to require $g_i < g_j$ if $k_i < k_j$, but renegotiate

9. What if n is endogenous?
 • If few show up, they prefer short-term agreement and strategic status-quo
 • Anticipating this, participation may increase

10. What if countries can adapt to the new climate?
 • Countries adapt *too much* to gain bargaining power
 • Under over-ambitious agreement: Adapt *too little*