On Geometric Riccati and Raychaudhuri Equations

MSRI Summer Graduate Workshop on

Mathematical General Relativity

July, 2012

On Geometric Riccati and Raychaudhuri Equations

向下 イヨト イヨト

Mⁿ: an *n*-dimensional spacetime

 N^k : a spacelike submanifold of dimension k < n

 $\gamma: [0, L) \to M$, is a causal geodesic with $\gamma(0) = p \in N$ and $\gamma'(0) \perp N$.

Ask: What kind of Jacobi fields V along γ takes account of the pair $(\gamma, \textit{N})?$

It is natural to consider those Jacobi fields V satisfying

$$V(0) \in T_{\rho}N, \tag{1}$$

 $\langle V'(0), W \rangle = -\langle \gamma'(0), \mathbb{II}(V(0), W) \rangle, \ \forall \ W \in T_{\rho}N,$ (2)

where \mathbb{II} : $T_pN \times T_pN \to (T_pN)^{\perp}$ is the second fundamental form of N at p.

(4月) (4日) (4日) 日

The set $\tilde{\mathcal{V}}$ of all Jacobi fields V satisfying (1) and (2) is a vector space of dimension k + (n - k) = n.

A point $q = \gamma(t)$, t > 0, is said to be a focal point of N along γ if there exists a nontrivial element $V \in \tilde{\mathcal{V}}$ such that $V|_q = 0$. If V is such a Jacobi field, it is clear that $V \perp \gamma'$ everywhere.

Therefore, in stead of $\tilde{\mathcal{V}}$, one can focus on

$$\mathcal{V} = \{ V \in \tilde{\mathcal{V}} \mid V \perp \gamma' \}$$

whose dimension is n - 1.

$$\text{For each } t \geq \mathsf{0} \text{, let } \gamma'(t)^{\perp} = \{ \mathsf{v} \in \mathit{T}_{\gamma(t)} \mathit{M} \mid \langle \mathsf{v}, \gamma'(t) \rangle = \mathsf{0} \}.$$

直 と く ヨ と く ヨ と

Suppose $\gamma(t)$ is *not* a focal point of N along γ for any $t \in (0, L)$:

Then, for each $t \in (0, L)$, the map

$$B = B(t) : \mathcal{V} \to \gamma'(t)^{\perp}$$
 given by $B(t)(\mathcal{V}) = \mathcal{V}(t)$

is a linear isomorphism. Now consider

$$A = A(t) : \gamma'(t)^{\perp} \to \gamma'(t)^{\perp}$$
(3)

given by

$$A(t)(v) = \left[B(t)^{-1}(v)\right]'(t)$$
(4)

where " $^{\prime}$ " denotes covariant differentiation along $\gamma.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

By definition, one has

$$A(t)(V(t)) = V'(t), \quad \forall \ V \in \mathcal{V}.$$
(5)

In particular, $\{A(t)\}_{t \in (0,L)}$ is a smooth (1,1) tensor field in the (n-1)-dimensional vector bundle $\gamma'(t)^{\perp}$ over γ .

Ask: What is
$$A'(t) =
abla_{\gamma'(t)}A(t) : \gamma'(t)^{\perp} o \gamma'(t)^{\perp}$$
?

Recall that $\nabla_{\gamma'(t)}A(t)$ is defined by

$$\left[\nabla_{\gamma'(t)}A(t)\right](W(t)) = \nabla_{\gamma'(t)}[A(t)(W(t))] - A(t)[\nabla_{\gamma'(t)}W(t)].$$

for any vector field W = W(t) along γ .

ヨット イヨット イヨッ

Therefore, given any $V = V(t) \in \mathcal{V}$, we have

$$\begin{aligned} A'(t)(V(t)) &= [A(t)(V(t))]' - A(t)(V'(t)) \\ &= [V'(t)]' - A(t)(A(t)(V(t))) \\ &= -R(V(t), \gamma'(t))\gamma'(t) - A(t) \circ A(t)(V(t)) \end{aligned}$$
(6)

where in the last step we used the Jacobi equation. This shows Proposition

$$A = A(t) : \gamma'(t)^{\perp} \rightarrow \gamma'(t)^{\perp}$$
 satisfies
 $A' = -R(\cdot, \gamma')\gamma' - A \circ A.$ (7)

Taking trace in $\gamma'(t)^{\perp}$, one has

$$(\operatorname{tr}_{\gamma'^{\perp}} A)' = -\operatorname{Ric}(\gamma', \gamma') - \operatorname{tr}_{\gamma'^{\perp}}(A \circ A).$$
(8)

高 とう モン・ く ヨ と

э

Applications

1) N = S is a spacelike hypersurface:

In this case, γ is necessarily timelike. The spacetime metric restricted to $\gamma'(t)^{\perp}$ is positive definite, still denoted by $\langle \cdot, \cdot \rangle$.

Lemma $A(t): \gamma'(t)^{\perp} \to \gamma'(t)^{\perp}$ is self-adjoint w.r.t $\langle \cdot, \cdot, \rangle$.

Remark The self-adjointness of A does make use of the initial conditions (1) and (2) for V.

Let $h = h(t) : \gamma'(t)^{\perp} \times \gamma'(t)^{\perp} \to \mathbb{R}^1$ be the associated symmetric bilinear form. Define

$$\theta(t) = \operatorname{tr}_{\gamma'(t)^{\perp}} A(t) = \operatorname{tr}_{\gamma'(t)^{\perp}} h(t),$$

then

$$\mathrm{tr}_{\gamma'(t)^{\perp}}[A(t)\circ A(t)]=|h(t)|^2\geq rac{1}{n-1} heta(t)^2.$$

マボン イラン イラン 一日

Therefore, we have shown

Proposition Let S be a spacelike hypersurface in an n-dimensional spacetime. Let γ be a timelike geodesic with

 $\gamma(0) \in S$ and $\gamma'(0) \perp S$.

Suppose S does not have focal points along γ in (0, L), then there is a well defined smooth function $\theta = \theta(t)$ on (0, L) such that

$$\theta'(t) \leq -\operatorname{Ric}(\gamma',\gamma') - \frac{1}{n-1}\theta(t)^2.$$
(9)

Ask: What is $\lim_{t\to 0+} \theta(t)$?

周 と くき とくきょ

Let $\{V_i \mid i = 1, ..., n-1\}$ be a basis for \mathcal{V} , let $\sigma_{ij} = \langle V_i, V_j \rangle$. By definition, we have

$$\theta(t) = \sigma^{ij}(t) \langle V'_i(t), V_j(t) \rangle$$
(10)

which tends to $\sigma^{ij}(0)\langle V'_i(0), V_j(0)\rangle$, as $t \to 0+$.

Using initial conditions (1) and (2), we know

$$\langle V_i'(0), V_j(0) \rangle = -\langle \gamma'(0), \mathbb{II}(V_i(0), V_j(0)) \rangle.$$
(11)

Therefore, we conclude that

$$\theta(0+) := \lim_{t \to 0+} \theta(t) = -\langle \gamma'(0), \dot{H} \rangle$$
(12)

where \vec{H} is the mean curvature vector of S at p.

高 とう ヨン うまと

2) $N^k = \Sigma$ is a codimension-2 spacelike submanifold and γ is a null geodesic:

This case is slightly different from the previous case because the spacetime metric restricted to $\gamma'(t)^{\perp}$ is degenerate. However, this can be easily overcome by considering the quotient space

$$\gamma'^{\perp}/\sim$$

where $v \sim w$ if $(v - w) \parallel \gamma'$. One easily checks the following

- 1. the spacetime metric descends to a positive definition metric on γ'^{\perp}/\sim , denoted by $\langle\cdot,\cdot\rangle_{\sim}.$
- 2. $A: \gamma'^{\perp} \to \gamma'^{\perp}$ descends to $\tilde{A}: \gamma'^{\perp} / \sim \to \gamma'^{\perp} / \sim$, since $A(t\gamma'(t)) = \gamma'(t)$, and \tilde{A} is self-adjoint w.r.t $\langle \cdot, \cdot \rangle_{\sim}$.

3.
$$R(\cdot, \gamma')\gamma' : \gamma'^{\perp} \to \gamma'^{\perp}$$
 descends to
 $\tilde{R}(\cdot, \gamma')\gamma' : \gamma'^{\perp}/ \sim \to \gamma'^{\perp}/ \sim$, since $R(\gamma', \gamma')\gamma' = 0$.

(四) (日) (日)

 $\{\tilde{A}(t)\}\$ is a smooth (1, 1) tensor field in the (n-2)-dimensional vector bundle γ'^{\perp}/\sim over γ . Let "'" be the corresponding covariant differentiation in this vector bundle. From (7) it follows

$$ilde{A}' = - ilde{R}(\cdot, \gamma')\gamma' - ilde{A} \circ ilde{A}.$$
 (13)

Let $\tilde{h} = \tilde{h}(t) : \gamma'(t)^{\perp} / \sim \times \gamma'(t)^{\perp} / \sim \to \mathbb{R}^1$ be the associated symmetric bilinear form. Define

$$heta(t) = \mathrm{tr}_{\gamma'(t)^{\perp}/\sim} \tilde{h}(t),$$

then

$$\mathrm{tr}_{\gamma'(t)^{\perp}/\sim}[ilde{A}(t)\circ ilde{A}(t)]=| ilde{h}(t)|^2\geq rac{1}{n-2} heta(t)^2.$$

On Geometric Riccati and Raychaudhuri Equations

伺下 イヨト イヨト

Therefore, we have

Proposition Let Σ be a co-dimension 2 spacelike submanifold in an n-dimensional spacetime. Let γ be a null geodesic with

 $\gamma(0) \in \Sigma$ and $\gamma'(0) \perp \Sigma$.

Suppose Σ does not have focal points along γ in (0, L), then there is a well defined smooth function $\theta = \theta(t)$ on (0, L) such that

$$\theta'(t) \leq -\operatorname{Ric}(\gamma',\gamma') - \frac{1}{n-2}\theta(t)^2.$$
(14)

Moreover,

$$\theta(0+) := \lim_{t \to 0+} \theta(t) = -\langle \gamma'(0), \vec{H} \rangle$$
(15)

where \vec{H} is the mean curvature vector of Σ at p.