Introduction to Symplectic Geometry and Topology Margaret Symington MSRI, August 2009

Lecture 1

- I. Introduction and Motivation
 - Definitions and examples
 - Motivating questions
 - Remarkable results
- II. Linear Symplectic Geometry
 - Bilinear forms
 - Subspaces and splittings
 - The symplectic group

Lecture 2

- IV. Complex Structures
 - Compatible complex structures
 - Symplectic and complex vector bundles
- V. Examples of Symplectic Manifolds
 - Surfaces
 - Spheres only in dimension two
 - Kähler manifolds
 - Cotangent bundles
- VI. Lack of Local Invariants (no proofs)
 - Darboux's Theorem
 - Neighborhood theorems
 - Moser's method

Lecture 3

- VII. Constructions of Symplectic Manifolds
 - Hamiltonian circle actions and symplectic reduction
 - Blowing up and down
 - Symplectic cutting and symplectic sum
 - Fibrations and Lefschetz fibrations

Lecture 4

VIII. Gompf's Theorem about Fundamental Groups

- Idea, smooth construction
- Comment on symplectic aspects

IX. Origins: Hamiltonian Mechanics

- Hamilton's equations
- Harmonic oscillator
- Integrable systems
- Toric manifolds

Lecture 5

X. Toric Geometry

- Moment maps and convexity
- Delzant's Theorem
- Reading moment polytopes

Primary reference:

Introduction to Symplectic Topology, 2nd ed., McDuff and Salamon. Oxford Science Publications, 1998.