SOLUTION TO PROBLEM 5.2 (C)

CHRISTOPHER J. HILLAR

Abstract. We present a solution to the following problem: Let $a_1, \ldots, a_n \in \mathbb{C}$ and suppose that $S(k) = \sum_{i=1}^{n} a_i^k \in \mathbb{Z}$ for all $k \in \mathbb{P}$. Then,

$$\prod_{i=1}^{n} (t - a_i) \in \mathbb{Z}[t].$$

1. Newton Polynomials and Symmetric Functions

The problem above gives a converse to the following fact. Let α be an algebraic integer (a root of a monic polynomial, $g(t) \in \mathbb{Z}[t]$), then if $a_1, \ldots, a_n \in \mathbb{C}$ are the conjugates of this polynomial (all its roots), then $S(k) \in \mathbb{Z}$. This is an easier implication since the polynomial $f(x_1, \ldots, x_n) = \sum_{i=1}^{n} x_i^k$ is symmetric and thus can be written (over \mathbb{Z}) in terms of the elementary symmetric polynomials. Substituting (a_1, \ldots, a_n) for (x_1, \ldots, x_n) in f gives us the result (as the coefficients of g are the elementary symmetric polynomials evaluated at (a_1, \ldots, a_n)).

We will first prove that $g(t) = \prod_{i=1}^{n} (t - a_i)$ is a polynomial in $\mathbb{Q}[t]$. This will follow from Newton’s famous identities relating the coefficients of $g(t)$ to the values of $S(k)$.

Theorem 1.1. (Newton’s Identities) Let $a_1, \ldots, a_n \in \mathbb{C}$ and let

$$g(t) = \prod_{i=1}^{n} (t - a_i) = t^n + p_{n-1}t^{n-1} + \ldots + p_0.$$

Then,

$$S(k) + p_{n-1}S(k-1) + \ldots + p_{n-k+1}S(1) + kp_{n-k} = 0 \quad \text{for } k < n$$

$$S(k) + p_{n-1}S(k-1) + \ldots + p_1S(k-n+1) + p_0S(k-n) = 0 \quad \text{for } k \geq n$$

For clarity, we write a few of these identities down:

$$S(1) + p_{n-1} = 0, \quad S(2) + p_{n-1}S(1) + 2p_{n-2} = 0.$$

Proof. For simplicity, we define $S(0) = n$. We will prove the claim by evaluating $g'(t)$ in two ways. Notice that on the one hand we have

$$g'(t) = nt^{n-1} + (n-1)p_{n-1}t^{n-2} + \ldots + p_1.$$

On the other hand, since $g(t) = \prod_{i=1}^{n} (t - a_i)$ we have

$$g'(t) = \sum_{i=1}^{n} \frac{g(t)}{(t - a_i)}$$

Department of Mathematics, University of California, Berkeley, CA 94720. (chillar@math.berkeley.edu).
Viewing this expression as a Laurent series (in the variable t), we may expand

$$
\frac{1}{(t-a_i)} = (1/t) \sum_{j=0}^{\infty} (a_i/t)^j
$$

So then,

$$
g'(t) = \left(g(t)/t \right) \sum_{i=1}^{n} \sum_{j=0}^{\infty} (a_i/t)^j
$$

$$
= \left(g(t)/t \right) \sum_{j=0}^{\infty} \sum_{i=1}^{n} (a_i/t)^j
$$

$$
= t^{n-1} \left(\sum_{j=0}^{\infty} p_{n-j} t^{-j} \right) \left(\sum_{j=0}^{\infty} S(j) t^{-j} \right)
$$

in which $p_n = 1$ and $p_i = 0$ for $i < 0$. Writing this last expression more constructively, we have

$$
g'(t) = t^{n-1} \sum_{k=0}^{\infty} t^{-k} \sum_{i=0}^{k} S(i) p_{n-k+i}
$$

Equating coefficients of both series for $g'(t)$, we arrive at

$$
\sum_{i=0}^{k} S(i) p_{n-k+i} = (n-k) p_{n-k}.
$$

Since $S(0)p_{n-k} = np_{n-k}$, the formulas in the theorem drop out. □

Using Newton’s identities, we have $p_{n-1} = -S(1) \in \mathbb{Z}$, $2p_{n-2} = -S(2) - p_{n-1} S(1) \in \mathbb{Z}$, and in general, $n!p_i \in \mathbb{Z}$ for all $i = 0, \ldots, n - 1$. This not only proves that $g(t) \in \mathbb{Q}[t]$, but also much more. Since each of a_i is algebraic over \mathbb{Q} and $n!p_i \in \mathbb{Z}$, there is a constant c_n (only depending on n) such that each of $c_n a_i$ is an algebraic integer (we can actually choose $c_n = (n!)^n$). We will now prove that, in fact, each a_i is an algebraic integer. This will prove the claim that $g(t) \in \mathbb{Z}[t]$ since then we can express each p_i as an elementary symmetric polynomial in the a_i. Since algebraic integers form a ring and the only elements of \mathbb{Q} that are algebraic integers are elements of \mathbb{Z} we must have $p_i \in \mathbb{Z}$.

Let $\varrho \in \mathbb{P}$ and notice that a_1^r, \ldots, a_n^r satisfy the hypothesis that $\sum_{i=1}^{n} (a_i^r)^k \in \mathbb{Z}$ for all $k \in \mathbb{P}$. Whence, $\prod_{i=1}^{n} (t-a_i^r) \in \mathbb{Q}[t]$ and that, moreover, each of $c_n a_i^r$ ($r = 1, 2, \ldots$) is an algebraic integer. We will now show that $\{1, a_i, a_i^2, \ldots\}$ is a finitely generated \mathbb{Z}-module which will finally prove that each a_i is an algebraic integer and complete the proof. Let \mathcal{O} denote the ring of algebraic integers of $\mathbb{Q}(a_i)$. By well-known results in number theory, this ring is a finitely generated \mathbb{Z}-module and hence $(1/c_n)\varrho$ is a finitely generated \mathbb{Z}-module. The \mathbb{Z}-module generated by $\{1, a_i, a_i^2, \ldots\}$ is contained in $(1/c_n)\varrho$, and hence is finitely generated (since any submodule of a finitely generated module over a principal ideal domain is finitely generated), completing the proof.