CHARACTERISTIC EQUATION PROBLEM SOLUTION

CHRISTOPHER J. HILLAR

Abstract. Proposed by Matthias Beck, Jesus DeLoera, Mike Develin, and Julian Pfeifle. Let \(d \) be a positive integer, \(t_1, \ldots, t_d \) be integers, and \(\lambda_1, \ldots, \lambda_d \) be real numbers. Prove that if \(\sum_{k=1}^{d} \lambda_k t_k^j \) is an integer for \(1 \leq j < d \), then also \(\sum_{k=1}^{d} \lambda_k t_k^d \) is an integer.

1. Solution

The statement as published is false. Take for example \(d = 2, t_1 = 2, t_2 = -1, \lambda_1 = \sqrt{2}/2, \lambda_2 = \sqrt{2} \). Then, \(\sum_{k=1}^{2} \lambda_k t_k = 0 \) is an integer whereas \(\sum_{k=1}^{2} \lambda_k t_k^2 = 3\sqrt{2} \) is not. One fix (see below for another) is to add the additional assumption that \(\lambda_1 + \cdots + \lambda_d \) is also an integer, and with this in place, we argue as follows.

Let \(a_n = \sum_{k=1}^{d} \lambda_k t_k^n \) for \(n \geq 1 \), and define \(a_0 = \lambda_1 + \cdots + \lambda_d \). From the elementary theory of linear recurrences, this sequence satisfies:

\[
a_{n+d} = \sum_{i=1}^{d} (-1)^{i-1} e_i a_{n+d-i},
\]

in which \(e_i = e_i(t_1, \ldots, t_d) \) is the \(i \)-th elementary symmetric function evaluated at \(t_1, \ldots, t_d \). For example, with \(d = 2 \), this identity simply reads:

\[
\lambda_1 t_1^{n+2} + \lambda_2 t_2^{n+2} = (t_1 + t_2)(\lambda_1 t_1^{n+1} + \lambda_2 t_2^{n+1}) - (t_1 t_2)(\lambda_1 t_1^n + \lambda_2 t_2^n).
\]

From this identity and the assumptions, it follows easily that \(a_n \) is integral for all \(n \geq 0 \).

Remark 1.1. We note that one could also “fix” the statement by stating instead:

Prove that if \(\sum_{k=1}^{d} \lambda_k t_k^j \) is an integer for \(1 \leq j \leq d \), then also \(\sum_{k=1}^{d} \lambda_k t_k^{d+1} \) is an integer.

The recurrence above would also work in this case.

Department of Mathematics, University of California, Berkeley, CA 94720
E-mail address: chillar@math.berkeley.edu