\[I_{G,k} = \langle g_1, \ldots, g_n \rangle \]
Outline of talk

• Introduction: Varieties and Ideals
• Gröbner Bases: Term Orderings, Polynomial Reduction, Basic Properties
• Algorithms: Buchberger’s Criterion
• Applications: Elimination Theory, Theorem Proving, Graph Coloring, Integer Programming
Algebraic Geometry

Given a set of polynomials $F \subseteq \mathbb{C}[x_1,...,x_n]$, we would like to understand the variety:

$$V(F) = \{ (v_1,...,v_n) \in \mathbb{C}^n \mid f(v) = 0 \text{ for all } f \text{ in } F \}$$

#points, dimension, singularities, ...
Ideals and Varieties

Definition: The ideal $I = \langle F \rangle$ generated by F is

$$I = \{ p_1 f_1 + \cdots + p_m f_m \mid p_i \in \mathbb{C}[x_1, \ldots, x_n],\ f_i \in F \}$$

Notice that

$$V(I) = V(\langle F \rangle) = V(F)$$

Important facts:

(HBT) Hilbert’s Basis Theorem: If $F \subseteq \mathbb{C}[x_1, \ldots, x_n]$, then

$$\langle F \rangle = \langle f_1, f_2, \ldots, f_m \rangle$$

for some $f_i \in F$

(HN) Hilbert’s Nullstellensatz:

$$V(I) = \emptyset \iff I = \langle 1 \rangle = \mathbb{C}[x_1, \ldots, x_n]$$
Ideals and Varieties

These theorems allow us to do computational mathematics with varieties.

Hilbert’s Basis Theorem (HBT): Every chain

\[I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq I_n \subseteq I_{n+1} \cdots \]

eventually stabilizes

\[I_N = I_{N+1} = I_{N+2} = \cdots \quad \text{for some } N \]

Hilbert’s Nullstellensatz (HN): There is an algebraic witness to a variety being empty:

\[V(\langle F \rangle) = \emptyset \quad \iff \quad 1 = p_1 f_1 + \cdots + p_m f_m \]
PID’s ($n = 1$)

For intuition, first consider polynomial rings $\mathbb{C}[x]$ in a single indeterminate x

HBT (PID): For any set of polynomials F, there is a polynomial g such that

$$\langle g \rangle = \langle F \rangle$$

g is the greatest common divisor $\gcd(F)$ of all polynomials in F. Finding g is the Euclidean Algorithm

HN (PID): There is a no common zero of all the polynomials in F if and only if $g = \gcd(F) = 1$

$$1 = p_1 f_1 + \cdots + p_m f_m$$
Algorithmic Motivation

The Nullstellensatz reduces the decidability question:

\[V(F) \text{ empty } \iff 1 \in \langle F \rangle \]

More generally, given an ideal \(I = \langle F \rangle \) and an arbitrary polynomial \(h \), we would like to answer

Ideal Membership: Is \(h \in I \) ?

Solution: Compute a nicer representation \(I = \langle G \rangle \) of the ideal \(I = \langle F \rangle \). The set \(G \) is a Grobner Basis for \(F \)

\[\begin{align*}
F & \quad \xrightarrow{\text{Buchberger}} \quad G \\
\text{Buchberger Reduction} & \quad \xrightarrow{\text{Reduction}} \quad \text{nf}_G(h) = 0?
\end{align*} \]
Monomial Term Orders

Definition: A term order (or monomial order) is a total order $<$ on the set of monomials $x^a = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ s.t.:

1. it is multiplicative: $x^a < x^b \Rightarrow x^{a+c} < x^{b+c}$
2. the constant monomial is smallest, i.e.

 $1 < x^a$ for all a in $\mathbb{N}^n \setminus \{0\}$

In one variable, only one order: $1 < x < x^2 < x^3 < \cdots$

For $n = 2$, we have

- degree lexicographic order

 $1 < x_1 < x_2 < x_1^2 < x_1 x_2 < x_2^2 < x_1^3 < x_1^2 x_2 < \cdots$

- purely lexicographic order

 $1 < x_1 < x_1^2 < x_1^3 < \cdots < x_2 < x_1 x_2 < x_1^2 x_2 < \cdots$
Initial monomials and Ideals

When $n = 1$, clear notion of largest term. For $n > 1$, Term orders necessary for the Buchberger Algorithm.

Definition: Every polynomial $f \in \mathbb{C}[x_1, \ldots, x_n]$ has an initial monomial (given a term order) denoted by $\text{in}_<(f)$

Example: if $n = 2$ and our term order is degree lex,

$$\text{in}_<(x_1 + 2x_1^3x_2^2 + 5x_2^4 + 3x_1^2x_2^3) = 3x_1^2x_2^3$$

Definition: For every ideal I of $\mathbb{C}[x_1, \ldots, x_n]$, we can form the initial ideal of I (with respect to $<$) generated by all initial monomials of polynomials in I:

$$\text{in}_<(I) = \langle \text{in}_<(f) \mid f \in I \rangle$$
Defining Gröbner Bases

Definition: A finite subset G of an ideal I is a Gröbner basis (w.r.t to $<$) if

$$\text{in}_<(I) = \langle \text{in}_<(g) \mid g \in G \rangle$$

Example: (pure lex) Let $F = \{x_2^2 - x_1, \ x_2\}$. Then F is not a Gröbner basis for $I = \langle F \rangle$ since

$$x_1 = x_2 \cdot x_2 - 1 \cdot (x_2^2 - x_1) \in I$$

so that $x_1 \in \text{in}_<(I)$ but

$$x_1 \notin \langle x_2^2, x_2 \rangle = \langle x_2 \rangle$$

However, $G = \{x_1, x_2\}$ is a Gröbner basis
Gröbner Bases

Fact: A Gröbner basis generates the ideal I

Theorem: Fixing an ideal I contained in $\mathbb{C}[x_1,\ldots,x_n]$ and a term order $<$, there is an algorithm to find a unique reduced Gröbner Basis G for I

- Existence of a Gröbner basis follows from HBT
- Algorithm for producing G given F by Buchberger (1965), under supervision of his advisor Gröbner
- Hironaka developed something similar (standard bases) for his theorem on resolutions of singularites
Fundamental Thm of Algebra

Theorem (FTA): The number of zeroes $|V(I)|$ is the number of monomials not inside $\text{in}_<(I)$.

Example: $F = \{x_2^2 - x_1, x_2\}$. Using purely lex order, we have Grobner basis $G = \{x_1, x_2\}$ so $\text{in}_<(I) = \langle x_1, x_2 \rangle$ and thus $|V(\langle F \rangle)| = 1$.

Example: ($n = 1$) $F = \{f(x)\}$. Then, $G = \{f\}$ is a Grobner basis for $I = \langle F \rangle$. Thus,

$$\text{in}_<(I) = \langle x^{\deg(f)} \rangle$$

and so there are $\deg(f)$ zeroes for f.
Computing Gröbner Bases

Fix a term order \prec. Given a set of polynomials G and a polynomial h, there is a way to divide h by G and produce a normal form, called the division algorithm

$$h = p_1g_1 + \cdots + p_mg_m + r$$

Definition: Take g, g' in G and form the S-polynomial $m'g - mg'$ where m, m' are monomials of lowest degree s.t. $m' \cdot \text{in}_<(g) = m \cdot \text{in}_<(g')$

Theorem (Buchberger’s Criterion): G is a Gröbner Basis iff every S-polynomial has normal form zero w.r.t. G

If G is a Gröbner basis, then $\text{nf}_G(h) = r$ is unique
Buchberger’s Algorithm

Input: Finite list F of polynomials in $\mathbb{C}[x_1,\ldots,x_n]$

Output: Reduced Gröbner Basis G for F.

Step 1: Apply Buchberger’s Criterion to check whether F is a GB.

Step 2: If “yes,” then F is a GB. goto Step 4.

Step 3: If “no,” we found $r = \text{nf}_F(m'g-mg) \neq 0$. Set $F = F \cup \{r\}$ and goto step 1.

Step 4: Replace F by the reduced Gröbner Basis G and output G.

-Terminates by **Hilbert’s Basis Theorem**
Solving with Gröbner Bases

The Grobner basis G encodes more transparently the information about the ideal (and hence the variety).

Given a set $F = \{f_1, \ldots, f_m\}$, if one computes a Grobner Basis G, then one solves

\begin{enumerate}
\item (1) Deciding if there are any solutions
\[V(F) = \{ v \mid f_1(v) = 0, f_2(v) = 0, \ldots, f_m(v) = 0 \}\]
\item (2) Determining $|V(F)|$, $\dim(V(F))$, Hilbert Polynomials, ...
\item (3) Ideal membership: Is $h \in I$? (Check $\text{nf}_G(h) = 0$)
\end{enumerate}

$\dim = 1$
Elimination example

With appropriate term orders, one can use Grobner bases to eliminate indeterminates from equations.

Example: Find the defining equation over the rationals for the algebraic number z defined as the solution to

$$p(z) = z^5 + \sqrt{2} z^3 - a^2z + a = 0$$

where a is a solution to $a^3 + a - 1 = 0$.

$F = \{x^2 - 2, a^3 + a - 1, z^5 + xz^3 - a^2z + a\}$, $<$ is lex with $a > x > z$. Compute a GB G. There will be an element of G only involving z. This is the answer.
Automatic Theorem Proving

Theorem: The altitude and midpoints of a right triangle lie on a circle

proof: Write down the equations for the input (sides of triangle, midpoints, circle with altitude as chord, etc), compute a GB G, and then check that

$$nf_G(h) = 0$$

for polynomials h that say the midpoints lie on the circle.
Graph Colorings

Let G be a simple graph $G = (V,E)$ with vertices $V = \{1,2,...,n\}$, edges E

Definition: A k-coloring of G is an assignment of k colors to the vertices of G

Definition: A k-coloring is proper if adjacent vertices receive different colors

Definition: A graph is k-colorable if it has a proper k-coloring
Algebraic Colorability

Main Idea (implicit in work of Bayer, de Loera, Lovász):

1. Colorings are points in varieties
2. Varieties are represented by ideals
3. Ideals can be manipulated with Groebner Bases
k-Colorings as Points in Varieties

Setup: F is an algebraically closed field, $(\text{char } F) \nmid k$

So F contains k distinct kth roots of unity. Let

$$I_k = \langle x_1^k - 1, x_2^k - 1, \ldots, x_n^k - 1 \rangle \subset F[x_1, \ldots, x_n]$$

This ideal is radical, and $|V(I_k)| = k^n$

Can think of point $v = (v_1, \ldots, v_n)$ in $V(I_k)$ as assignment

$$v = (v_1, \ldots, v_n) \iff \text{vertex } i \text{ gets color } v_i$$

Eg. If $1 = \text{Blue}$, $-1 = \text{Red}$, then $v = (1, -1, 1)$ is coloring
Proper k-Colorings of Graphs

We can also restrict to proper k-colorings of graph G

$$I_{G,k} = I_k + \langle x_i^{k-1} + x_i^{k-2}x_j + \cdots + x_j^{k-1} : (i,j) \in E \rangle$$

This ideal is radical, and $|V(I_{G,k})| = \# \text{ proper } k\text{-colorings}$

Proof: (=>) If v in $V(I_{G,k})$, wts v proper. If $v_i = v_j$ for $(i,j) \in E$, then

$$0 = v_i^{k-1} + v_i^{k-2}v_j + \cdots + v_j^{k-1} = kv_i^{k-1}$$

(<=) If v proper, then $v_i \neq v_j$ and

$$(v_i - v_j) \cdot (v_i^{k-1} + \cdots + v_j^{k-1}) = v_i^k - v_j^k = 1 - 1 = 0$$

Thus, $v_i^{k-1} + \cdots + v_j^{k-1} = 0$ and v in $V(I_{G,k})$
Algebraic Characterization

Notice that if \(I_{G,k} = \langle 1 \rangle = F[x_1,\ldots,x_n] \) then
\[
V(I_{G,k}) = \emptyset \quad \Rightarrow \quad G \text{ is not } k\text{-colorable}
\]

Therefore, we have a test for \(k\)-colorability:

Algorithm: Compute a reduced Groebner basis \(B \) for \(I_{G,k} \). Then, \(B = \{1\} \) iff \(G \) is not \(k\)-colorable.

\[
I_{G,k} = \langle x_1^2 - 1, x_2^2 - 1, x_3^2 - 1, \ x_1 + x_2, \ x_2 + x_3, \ x_1 + x_3 \rangle
\]

\[
= \langle 1 \rangle
\]

\[
2x_1^2 = (x_1-x_2)(x_1+x_2) + (x_2-x_3)(x_2+x_3) + (x_1-x_3)(x_1+x_3)
\]
Computer Proof

This leads to the following concrete application:

Theorem: There is an algorithm to decide k-colorability (and find the coloring) that is significantly better than pure search.

3-colorable?

Uniquely 3-colorable?
Computer Proof

This leads to the following concrete application:

Theorem: There is an algorithm to decide \(k\)-colorability (and find the coloring) that is significantly better than pure search.

3-colorable?

Uniquely 3-colorable?
Computer Proof

This leads to the following concrete application:

Theorem: There is an algorithm to decide k-colorability (and find the coloring) that is significantly better than pure search.

3-colorable?
Uniquely 3-colorable?
Yes!
Integer Programming

Gröbner Bases: Transforms integer programming feasible sol’n using local moves into global optimum.

Minimize $P+N+D+Q$
Subject to $P,N,D,Q \geq 0$ and $P+5N+10D+25Q = 117$

Integer solution: $(P,N,D,Q) = (2,1,1,4)$

Represent a collection C of coins by a polynomial $h = p^a n^b d^c q^d$ in p,n,d,q. (eg, 2 pennies, 4 dimes is p^2d^4)

Input set $F = \{p^5-n, p^{10}-d, p^{25}-q\}$
Output set $G = \{p^5-n, n^2-d, d^2n-q, d^3-nq\}$

- Expresses a more useful set of replacement rules. Eg, the expression d^3-nq translates to: replace 3 dimes with a nickel and a quarter
Integer Programming

Given a collection C of coins, we use rules encoded by G to transform (in any order) C into a set of coins C' with equal monetary value but smaller number of elements.

Example (solving previous integer program):

$$p^{17}n^{10}d^5 \rightarrow p^{12}n^{11}d^5 \rightarrow \cdots \rightarrow p^2n^{13}d^5 \rightarrow p^2n^{12}d^3q \rightarrow p^2n^{13}dq^2 \rightarrow \cdots \rightarrow p^2ndq^4$$

Computing $\text{nf}_G(h)$ with $G = \{p^5-n, n^2-d, d^2n-q, d^3-nq\}$
Great Reference: Cox, Little, O’Shea, Ideals Varieties and Algorithms.

The End
(of talk)