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Abstract. A generalized word in two letters A and B is an expression of

the form W (A, B) = Ap1Bq1Ap2Bq2 · · · ApkBpkApk+1 in which pi,qi are real

numbers such that pi, qi 6= 0, i = 1, . . . , k, and pk+1 is arbitrary. We are
interested when positive definite (complex Hermitian) matrices are substituted

for A and B in the word W (A, B). Specifically, it is shown that two non-
identical generalized words cannot define the same function on the set of 2-by-

2 positive definite matrices. A corollary is that a generalized word is positive

definite for all positive definite A and B if and only if the word is symmetric
(“palindromic”). This elaborates upon a remark made in a previous work by

the author concerning positive definite word equations.

1. Introduction

A generalized word (g-word, for short) W = W (A,B) in two letters A and
B is an expression of the form W = Ap1Bq1Ap2Bq2 · · ·ApkBqkApk+1 in which
the exponents pi and qi are real numbers such that pi, qi 6= 0, i = 1, . . . , k,
and pk+1 is an arbitrary real number. The reversal of the g-word W is W ∗ =
Apk+1BqkApk · · ·Bq2Ap2Bq1Ap1 , and a g-word is symmetric if it is identical to its
reversal (in other contexts, the name “palindromic” is also used). We will call a
g-word, W , A-positive if all exponents of A in W are positive.

We are interested in the matrices that result when the two letters are positive
definite (complex Hermitian) n-by-n matrices. To make sure that W is well-defined
after substitution, we take primary powers (see [4, p. 433] and [4, p. 413]). That
is, given p ∈ R\{0}, a unitary matrix U , and a nonnegative diagonal matrix D, we
have (UDU∗)p = UDpU∗.

In [1], building on the work of [5], the authors study a certain type of matrix
equation involving A-positive symmetric g-words.

Definition 1.1. A symmetric word equation is an equation, S(A,B) = P , in which
S(A,B) is an A-positive symmetric g-word. If B and P are given positive definite
matrices, any positive definite matrix A for which the equation holds is called a
solution to the symmetric word equation.

A symmetric word equation is called solvable if there exists a solution for every
pair of positive definite n-by-n B,P . The main result of [1] is the following general
fact.

Theorem 1.2. Every symmetric word equation is solvable.
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The purpose of this note is to explain the significance of the symmetric restric-
tion in the definition of “symmetric word equation.” Specifically, we prove that a
generalized word is positive definite for all positive definite A and B if and only if
the word is symmetric.

2. Relations between positive definite words

We begin by illustrating some of the subtlety of the problem. Let B and P be
positive definite matrices. Then, it is known [5] that

P 1/2
(
P−1/2BP−1/2

)1/2

P 1/2 = B1/2
(
B−1/2PB−1/2

)1/2

B1/2,

even though both expressions appear to be quite different. In fact, both sides of
the above equality are the unique solution A to the symmetric word equation,

S(A,B) = AB−1A = P.

Fortunately, such behavior does not occur with g-words, as the following fact
illustrates. The idea for the argument was inspired from a calculation made in [2].

Theorem 2.1. A generalized word W (A,B) is equal to the identity matrix for all
substitutions of 2-by-2 positive definite A and B if and only if W is the empty word.

Proof. Let W = Ap1Bq1Ap2Bq2 · · ·ApkBqkApk+1 in which pi,qi are real numbers
such that pi, qi 6= 0, i = 1, . . . , k. If W = Ap1 (k = 0), then W is the identity if and
only if p1 = 0 or A = I (by the uniqueness of taking positive definite pth roots).
Therefore, we may assume that k ≥ 1. Furthermore, by performing a similarity
using the last letter, we may also suppose that W = Ap1Bq1Ap2Bq2 · · ·ApkBqk in
which pi,qi 6= 0.

We will show, by way of contradiction, that W cannot be the identity matrix for
all 2-by-2 positive definite A and B. First, notice that at least one of the pi must
be negative since setting B = I and A 6= I gives a contradiction. Next, let

A =
[

1 0
0 ε

]
, B =

[
1/2 + ε 1/2

1/2 1/2

]
for some ε > 0. An easy computation shows that the matrix

(2.1) 2
∑

qj<0 qj ε
−(

∑
pj<0 pj+

∑
qj<0 qj)Ap1Bq1Ap2Bq2 · · ·ApkBqk

is the product of 2k matrices the (2j − 1)-st of which is
[

1 0
0 εpj

]
if pj > 0 or[

ε−pj 0
0 1

]
if pj < 0, and the 2j-th of which is

[
1/2 + ε 1/2

1/2 1/2

]qj

if qj > 0 or[
1/2 −1/2
−1/2 1/2 + ε

]−qj

if qj < 0, j = 1, . . . , k.

Thus, the limit of (2.1) for ε → 0 exists and equals

(2.2) P1Q1P2Q2 · · ·PkQk,

where Pj is P =
[

1 0
0 0

]
if pj > 0 and I−P if pj < 0, and Qj is Q =

[
1/2 1/2
1/2 1/2

]
if qj > 0 and I −Q if qj < 0.
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Assuming that the word W is the identity matrix for all A,B, it follows that for
all ε > 0, expression (2.1) is just 2

∑
qj<0 qj ε

−(
∑

pj<0 pj+
∑

qj<0 qj)I. Since the limit of
(2.1) exists, it must agree with

lim
ε→0

2
∑

qj<0 qj ε
−(

∑
pj<0 pj+

∑
qj<0 qj)I = 0

(since −(
∑

pj<0 pj +
∑

qj<0 qj) > 0). Finally, Lemma 2.2 below shows that (2.2)
can never be zero, a contradiction that finishes the proof. �

Lemma 2.2. Let Pi, Qi be letters (i = 1, . . . , k), and let W be a word with alter-
nating Pi’s and Qi’s (e.g. P1Q1P2Q2 · · ·PkQk, Q1P2Q2 · · ·PkQk). Then, for all

substitutions of the Pi from the set
{[

1 0
0 0

]
,

[
0 0
0 1

]}
and the Qi from the set{[

1 1
1 1

]
,

[
1 −1
−1 1

]}
, we never have W = 0.

Proof. Let M be the matrix produced after substitution of the letters Pi, Qi into a
word W as in the statement of the lemma. We claim that M 6= 0. Indeed, suppose
that M = 0; we will derive a contradiction. By multiplying (if necessary) M on the

right by
[

1 0
0 0

]
, we may assume that W ends in the letter Pk. Let v = [x, y]T

and suppose that W begins with Q1. Then, the only possible outcomes for Mv
are: [±x,±x]T , [±x,∓x]T , [±y,±y]T , [±y,∓y]T . Similarly, if W begins with P1,
then Mv must be one of the following: [±x, 0]T , [0,±x]T , [±y, 0]T , [0,±y]T . These
statements are easily proved by induction on the length of the word W . It is
therefore clear that one can choose x and y such that Mv 6= 0. This contradiction
completes the proof of the lemma. �

We now list some corollaries to Theorem 2.1.

Corollary 2.3. If two generalized words are equal for all 2-by-2 substitutions of
positive definite A and B, then they are identical.

Proof. Clear from Theorem 2.1. �

Corollary 2.4. The following are equivalent for a generalized word W .

(1) W is positive definite for all substitutions of positive definite A and B
(2) W is Hermitian for all substitutions of positive definite A and B
(3) W is Hermitian for all 2-by-2 substitutions of positive definite A and B
(4) W is symmetric (“palindromic”)

In particular, if a generalized word is Hermitian for all 2-by-2 substitutions of
positive definite A and B, then the word is necessarily positive definite for all such
substitutions.

Proof. (1) ⇒ (2) ⇒ (3) is clear. If W (A,B) is always Hermitian for 2-by-2 positive
definite A and B, then W (A,B)∗ = W (A,B) for all such A and B. But then
Corollary 2.3 says that W ∗ and W must be identical as words. It follows that W
is symmetric. This proves (3) ⇒ (4). Finally, if W is symmetric, an elementary
congruence argument (see, for instance, [1] or [3, p. 223]) shows that W will always
be positive definite for any positive definite A and B. This completes the proof. �
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