The classical Nullstellensatz asserts that a reduced affine variety is known by its closed points; algebraically, a prime ideal in an affine ring is the intersection of the maximal ideals containing it. A leading special case of our theorem says that any affine scheme can be distinguished from its subschemes by its closed points with a bounded index of nilpotency; algebraically, an ideal I in an affine ring A may be written as

$$I = \bigcap_{\mathfrak{m} \in \mathcal{N}} (\mathfrak{m}^e + I),$$

where \mathcal{N} is the set of maximal ideals containing I, and e is an integer depending on the degree of nilpotency of A/I.

Our theorem might also be thought of as a sharpening of Zariski's Main Lemma on holomorphic functions [4]. Roughly speaking, this lemma asserts that if a regular function f on an irreducible affine variety V vanishes to order e at each of a dense set \mathcal{N} of closed points of V, then it vanishes to order e at the generic point; that is, if P is the prime ideal in $k[x_1, \ldots, x_n]$ defining V, then

$$\bigcap_{\mathfrak{m} \in \mathcal{N}} \mathfrak{m}^e = P(e),$$

the eth symbolic power of P, where the intersection is taken over a dense set of maximal ideals \mathfrak{m} of $k[x_1, \ldots, x_n]$ containing P. Of course this implies that, if I is a P-primary ideal containing $P^{(e)}$, then

$$I \supset \bigcap_{\mathfrak{m} \in \mathcal{N}} \mathfrak{m}^e;$$

(*), above, is a sharpening that includes (**).

Our proof is related to Zariski's but is simpler than his.

* Both authors are grateful for the support of the NSF during the preparation of this work, and to the organizers of the CBMS conference at Dekalb, 1977, for providing a congenial environment, in which the work was done.
Throughout this paper, all rings will be commutative and Noetherian, with identity. If R is a ring and P is a prime ideal of R, a finitely generated module M is said to be P-coprimary if P is the only associated prime of M [2]. The eth symbolic power $P^{(e)}$ of P is by definition the inverse image of P^e in R ($P^e \cap R$ if R is a domain), which is the P-primary component of P^e.

Results

Theorem. Let R be a ring, and let P be a prime ideal of R. Let \mathcal{N} be a set of maximal ideals m containing P such that R_m/P_m is a regular local ring, and such that

$$\bigcap_{m \in \mathcal{N}} m = P.$$

If M is a finitely generated P-coprimary module annihilated by P^e, then

$$\bigcap_{m \in \mathcal{N}} m^e M = 0.$$

(Note: Since M is P-coprimary, P^e annihilates M if and only if $P^{(e)}$ does.)

Corollary 1 (Zariski's Main Lemma on Holomorphic Functions [4]). With $R, P,$ and \mathcal{N} as above we have

$$P^{(e)} \supseteq \bigcap_{m \in \mathcal{N}} m^e \supseteq \bigcap_{m \in \mathrm{max \ spec} R, m \supseteq P} m^e.$$

If R is regular, the inclusions may be replaced by equalities.

Proof. The first statement, which is the original "Lemma," follows from our theorem with $M = R/P^{(e)}$. For the second statement, it suffices to prove $m^e \supseteq P^{(e)}$ for any $m \supseteq P$; this is the content of a theorem of Nagata [3, p. 143] and Zariski (see [1, Theorem 1]). The next corollary answers a question of B. Wehrfritz which originally motivated this study.

Corollary 2. Let A be a ring finitely generated over a field or over the integers, and let M be a finitely generated A-module. For sufficiently large e, we have

$$\bigcap_{m \in \mathrm{max \ spec} A} m^e M = 0.$$

(In fact, if $0 = \bigcap M_i$ is a primary decomposition of $0 \subseteq M$, with M/M_i P_i-coprimary, and $P_i^e(M/M_i) = 0$, then we may take e to be the maximum of the e_i).

Proof. By [2, Ch. 12 and 13], the regular locus of any domain A/P, finitely generated over the integers or a field, is open and therefore dense. Thus we
may apply our Theorem to the coprimary modules M/M_i, with the desired result. \[\]

Remarks. (1) Clearly, it suffices in Corollary 2 that A be an excellent Hilbert ring.

(2) The hypothesis of the Theorem that the smooth points are dense in max-spec R cannot simply be dropped: there is a 2-dimensional Noetherian regular factorial ring R whose maximal ideals form a countable set, say $\{m_1, m_2, \ldots\}$, such that $\bigcap_i m_i$ is a nonzero, principal ideal (f), whose generator f is in the ith power of m_i for all i. Setting $\bar{R} = R/(f^2)$, we see that there is no integer k such that the intersection of the kth powers of the maximal ideals of \bar{R} is 0.

The example may be constructed as follows: Let $\{X_n\}$, $\{Y_n\}$ be countable families of indeterminates over an algebraically closed field K. Set:

\[
\begin{align*}
f_n &= X_n^n - Y_n^{n+1}; \\
I_n &= (f_2 - f_1, \ldots, f_n - f_1) K[X_1, Y_1, \ldots, X_n, Y_n]; \\
S_n &= K[X_1, Y_1, \ldots, X_n, Y_n]/I_n; \\
U_n &= S_n - \bigcup_{i=1}^n (X_i, Y_i) S_n.
\end{align*}
\]

Then U_n is a multiplicatively closed set in S_n, and we set $R_n = U_n^{-1}S_n$. There is an obvious injection $R_n \to R_{n+1}$ which is faithfully flat. We set

\[
R = \lim_{\to} R_n,
\]

and let f be the image of f_n in R.

One can verify that the maximal ideals of R are precisely the ideals (X_i, Y_i), and that R and f have the properties above (To prove that R is Noetherian, use Cohen's Theorem [3], noting that primes of R are either maximal, and of the form (X_i, Y_i), or of height 1, and thus principal). The ideal (f) is a prime. Note that R is not pseudogeometric; the integral closure of $R/(f)$ is not a finite $R/(f)$-module.

(3) A different approach to the proof of the Theorem could be obtained by proving some kind of "Uniform Artin-Rees Theorem," which we pose as a problem:

Problem. Let R be an affine ring, and suppose that $M \subseteq N$ are finitely generated R-modules. Is there an integer k_0 such that for all $k > k_0$ and all maximal ideals m of R

\[
M \cap m^k N = m^{k-k_0}(M \cap m^{k_0}N)\?
Of course remark 2) shows that this could not be true for all rings over an algebraically closed field.

Proof of the Theorem. Let \(M_i = P^i M \) for \(0 \leq i \leq e \). Since \((M_i/M_{i+1})_P \) is an \(R/P \)-vector space, we can choose an element \(f \in R - P \) such that each \((M_i/M_{i+1})_f \) is \((R/P)_f \)-free.

We now claim that for any \(f \in R - P \), it suffices to prove the corresponding Theorem for the ring \(R_f \), the set \(\mathcal{N}_f = \{ mR_f : m \in \mathcal{N}, f \notin m \} \) of maximal ideals of \(R_f \) and the finitely generated \(R_f \)-module \(M_f \). For,

\[
\cap_{m \in \mathcal{N}} m = \cap_{m \in \mathcal{N}} m_{\mathcal{N}_f} - \left(\cap_{m \in \mathcal{N}} m_{\mathcal{N}_f} \right)_f = P_f,
\]

and \(M_f \) is \(P_f \) coprimary, so the hypothesis of the Theorem is satisfied, and, on the other hand \(M \subset M_f \) and

\[
\bigcap_{m \in \mathcal{N}} m^k M \subset \bigcap_{m \in \mathcal{N}} m^k M_f,
\]

so if the latter module is 0, the former is as well.

Thus we may assume that each \(M_i/M_{i+1} \) is \(R/P \)-free from the outset. Under this hypothesis we will show

\[
\cap_{m \in \mathcal{N}} m^k M \cap M_i = \cap_{m \in \mathcal{N}} m^k M_i\quad (***)
\]

for each \(M_i \) and each \(m \in \mathcal{N} \).

Once this is established, the Theorem will follow at once, since if \(x \in M_i \cap \bigcap_{m \in \mathcal{N}} m^i M \), then by (***), \(x \in \bigcap_{m \in \mathcal{N}} m^i M_i \), so \(x + M_{i+1} \subset \bigcap_{m \in \mathcal{N}} m(M_i/M_{i+1}) = 0 \), so \(x \in M_{i+1} \cap \bigcap_{m \in \mathcal{N}} m^i M \), and, continuing in this way, \(x = 0 \).

It remains to prove (***). Because of the behavior of sets of associated primes with respect to exact sequences,

\[
\text{Ass}(M|mM_i) \subset \text{Ass}(M/M_i) \cup \text{Ass}(M_i/mM_i) = \{ P, m \},
\]

So it suffices to prove (***), after localizing at \(m \).

We will now change notation, and write \(R, M, \ldots \) for \(R_m, M_m, \ldots \). Since \(R/P \) is a regular local ring, \(m/P \) is generated by a regular sequence \(x_1, \ldots, x_d \). Lifting these elements to \(x_1, \ldots, x_d \in R \), we see that \(x_1, \ldots, x_d \) is an \(M_i/M_{i+1} \)-regular sequence for each \(i \). It follows at once that \(x_1, \ldots, x_d \) is an \(M_i/M_i \)-regular sequence for each \(i > 0 \), and thus that

\[
(x_1, \ldots, x_d)M \cap M_i = (x_1, \ldots, x_d)M_i.
\]

On the other hand, \(m = P + (x_1, \ldots, x_d) \), so
A NULLSTELLENSATZ WITH NILPOTENTS

\[m^eM \cap M_i = \left(\sum_{j+k=e} P^j(x_1, \ldots, x_d)^k M \right) \cap M_i \]
\[\subseteq (P^eM + (x_1, \ldots, x_d)M) \cap M_i \]
\[= (x_1, \ldots, x_d)M \cap M_i \]
\[= (x_1, \ldots, x_d)M_i \]
\[\subseteq mM_i , \]

as required for (***)}. This completes the proof.

REFERENCES

1. H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic 0, Ann. of Math. 79 (1964), 205–326.