EXERCISES 1

Exercise 1.1. Let $X = (|X|, \mathscr{O}_X)$ be a scheme and I is a quasi-coherent \mathscr{O}_X -module. Show that the ringed space $X[I] := (|X|, \mathscr{O}_X[I])$ is also a scheme.

Exercise 1.2. Let \mathcal{C} be a category and $h : \mathcal{C} \to \operatorname{Func}(\mathcal{C}^\circ, \underline{\operatorname{Set}})$ the Yoneda embedding. Show that for any arrows $X \to Y$ and $Z \to Y$ in \mathcal{C} , there is a natural isomorphism $h_{X \times_Z Y} \xrightarrow{\sim} h_X \times_{h_Y} h_Z$.

Exercise 1.3. Let $A \to R$ be a ring homomorphism. Verify that under the identification of $\text{Der}_A(R, \Omega_{R/A})$ with the sections of the diagonal map $R \otimes_A R/J^2 \to R$ given in lecture, the universal derivation $d: R \to \Omega^1_{R/A}$ corresponds to the section given by sending $x \in R$ to $1 \otimes x$.

Exercise 1.4. Let $Aff_{\mathbb{Z}}$ be the category of affine schemes. The Yoneda functor h gives rise to a related functor

$$h^{\operatorname{Aff}} : \operatorname{Sch}_{\mathbb{Z}} \to \operatorname{Func}(\operatorname{Aff}_{\mathbb{Z}}^{\circ}, \operatorname{\underline{Set}})$$

which only considers the functor of points for affine schemes. Is this functor still fully faithful?

Cultural note: since $\operatorname{Aff}_{\mathbb{Z}}^{\circ}$ is equivalent to the category of rings (\mathbb{Z} -algebras!), we can also view h as defining a (covariant) functor on the category of rings. When X is an affine scheme of the form $\mathbb{Z}[\{x_i\}]/(\{f_j\}]$, the value of h_X^{Aff} on A is just the set of solutions of the f_j with coordinates in A.

Exercise 1.5. Let R be a ring and $H : Mod_R \to Set$ a functor which commutes with finite products. Verify the claim in lecture that H(I) has an R-module structure.

Exercise 1.6. Given a category \mathcal{C} and a functor $F : \mathcal{C}^{\circ} \to \underline{\text{Set}}$, produce a natural bijection $\hom(h_X, F) \xrightarrow{\sim} F(X)$ for every object X of \mathcal{C} .

Exercise 1.7. Let k be a field, X/k a scheme, and $x \in X(k)$ a k-valued point. Let R = k and let $k \to R$ be the identity morphism. Define

$$F: k - Alg/k \rightarrow Set$$

to the functor sending a diagram $k \to C \to k$ to the set of dotted arrows over Spec(k) filling in the following diagram:

$$\operatorname{Spec}(k) \longrightarrow \operatorname{Spec}(C)$$

$$\downarrow^{x}_{X}$$

Show that the hypotheses discussed in lecture for F to have a tangent space hold, and that the resulting k-vector space T_F is canonically isomorphic to the tangent space of X at x.

EXERCISES 1

Suppose now that $x \in X$ is an arbitrary point, with residue field k(x). We can define a similar functor on k - Alg/k(x) by trying to fill in diagrams

Do we still get the tangent space to X at x? (What happens when x is a generic point of X?) How does this construction relate to the sheaf of relative differentials $\Omega^1_{X/k}$?

Exercise 1.8. A criterion for representability. (Save this for last. If you find it impenetrable, read it a few times and come back to it tomorrow.)

Let \mathcal{C} be a category. A *subfunctor* of a functor F is an equivalence class of pairs consisting of a functor G and a natural transformation $G \to F$ such that for all $T \in \mathcal{C}$, the induced map $G(T) \to F(T)$ is injective. (The equivalence relation is given by isomorphisms of G and G'which commute with the inclusions in F.) If $G \to F$ is a subfunctor and $H \to F$ is arbitrary, check that $G \times_F H \to H$ is a subfunctor.

Suppose S is a fixed base scheme. Write Sch_S for the category of S-schemes.

Definition 1.9. A subfunctor $G \hookrightarrow F$ on Sch_S is an *open subfunctor* if for every S-scheme X and every map $h_X \to F$, the induced subfunctor $G \times_F h_X \hookrightarrow h_X$ has the property that $G \times_F h_X$ is representable, say it is isomorphic to h_Y , and the map $h_Y \to h_X$ arises from an open immersion $Y \hookrightarrow X$.

A collection of open subfunctors $G_i \to F$ is an *open covering* if for every X and every map $h_X \to F$ as above, the collection $G_i \times_F h_X \to h_X$ comes from a collection of open immersions $Y_i \hookrightarrow X$ which form a covering in the Zariski topology.

Definition 1.10. A functor $F : \operatorname{Sch}_{S}^{\circ} \to \underline{\operatorname{Set}}$ is a Zariski sheaf (the terminology will make sense tomorrow) if for all S-schemes X, the association $U \mapsto F(U)$ (for open subschemes $U \subset X$) defines sheaf on X in the Zariski topology.

Prove that a functor $F : \operatorname{Sch}_{\mathbb{Z}}^{\circ} \to \underline{\operatorname{Set}}$ is representable if and only if it is a Zariski sheaf and has an open cover by representable subsheaves.