Logo

Mathematical Sciences Research Institute

Home » OT Programmatic Seminar: Geometric analysis on the space of metric measure space

Seminar

OT Programmatic Seminar: Geometric analysis on the space of metric measure space September 05, 2013 (03:45PM PDT - 04:45PM PDT)
Parent Program: Optimal Transport: Geometry and Dynamics
Location: MSRI: Simons Auditorium
Speaker(s) Theodor Sturm (Hausdorff Research Institute for Mathematics, University of Bonn)
Description No Description

Video
No Video Uploaded
Abstract/Media

The space $\mathbb X$ of all metric measure spaces $(X,d,m)$ plays an important r\^ole in image analysis, in the investigation of limits of Riemannnian manifolds and metric graphs as well as in the study of geometric flows that develop singularities. We show that the space $\mathbb X$ -- equipped with the $L^2$-distortion distance $\Delta\!\!\!\!\Delta$ -- is a challenging object of geometric interest in its own. In particular, we show that it has nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on $\mathbb X$ are presented.

No Notes/Supplements Uploaded No Video Files Uploaded