Packages in Macaulay 2

There are many levels at which one can work in Macaulay 2. In increasing order of sophistication we

have:

1.
2.
3.
4.

typing information in to the M2 session.
typing information into a file and using F11 to execute commands in Macaulay 2.

load a file.

load or install a package.

We have now discussed the first three and proceed to packages. These are very similar to just having
a file with the functions you need in it with a few key additions.

Packages are good for

functions someone else in the world might be interested in using,
debugging,

testing,

creating documentation for your functions,

publishing your work,

and I'm sure several other things I can’t think of at the moment.

There is a journal, the Journal of Software for Algebra and Geometry www.j-sag.org that publishes
short papers combined with packages. This is important for two reasons.

1.

This is a fantastic resource for seeing what a well-constructed package looks like. As with any
peer-reviewed system, they are not perfect, but they are generally very good and serve as a good
model/example as you begin to construct your own package.

As you build your own packages, consider publishing. The journal is peer-reviewed and has a
well-respected editorial board, so it counts!

The ingredients of a package:

1.

2.

3.

Code — your functions, both internal and those exported.
Documentation

(a) Ezternal documentation must be complete to have an error-free install.

(b) Internal documentation is critical both to yourself and others. It is unlikely that you will
be the only person to ever work on “your” package, therefore good internal documentation is
absolutely critical. A good example of good internal doc is Binomials.m2. It very likely that
at some point 6 months or more passes between times you work on your own package and
you've forgotten what you were doing. You will save yourself a lot of time with good internal
documentation.

Tests — this helps both you and later others make sure your code is working as expected and any
changes to Macaulay 2 have not broken your code.

More on each of these pieces now.

Code To build a package, check out packages in the documentation. However, here is information to
get you started. The basic package format is shown with the following “silly” example. Some discussion
follows. Consider changing various aspects of the package to things you might want/need. We make
suggestions of things to change below.

newPackage (
"FirstPackage",
Version => "1.0",
Date => "February 11, 2004",
Authors => {{Name => "Jane Doe",
Email => "doeC@math.uiuc.edu",
HomePage => "http://www.math.uiuc.edu/"doe/"}},
Headline => "an example Macaulay2 package",
DebuggingMode => true
)

needsPackage"SimpleDoc"
export {firstFunction}

firstFunction = method(TypicalValue => String)
firstFunction ZZ := String => n -> if n == 1 then "Hello World!" else "D’oh!"

beginDocumentation()
doc ///
Key
FirstPackage
Headline
an example Macaulay2 package
Description
Text
This package is a basic package to be used as an example.
Caveat
Still trying to figure this out.
/17

doc ///
Key
firstFunction
(firstFunction,ZZ)
Headline
a silly first function
Usage
f = firstFunction n
Inputs
n:727z
Outputs
f:String
a silly string, depending on the value of QTT "n"@
Description
Text
Here we show an example.
Example
firstFunction 1
firstFunction O

11/

TEST ///

assert (firstFunction 2 == "D’oh!")
/17
end
You can write anything you want down here... I like to keep examples
as I’'m developing here. Clean it up before submitting for
publication.

1. You must save a package as file with nothing but the package in it (you can put anything you want,
actually, as long is it comes after an end in the file). The name of the file must match the
name of the package. So for example, you must save this package as “FirstPackage.m2”

2. The discussion here is just about the overall structure of a package. There are examples of more
sophisticated documentation nodes and tests that follow this discussion. Consider using that to
help make changes to this document.

3. Debugging code is an important skill. Learning the meaning of error messages and how to use
Macaulay 2’s debugging features go a long way with this. With this in mind, try introducing errors
to the package. Think like a scientist — introduce them one at a time in a way that you know what
the error is, and then see what Macaulay 2 tells you.

(a) Start with the pre-amble.
(b) Try not exporting the function — just export nothing.

(¢) Introduce and error into the function. Here we can force with using the command error (check
it out in the documentation). This can be useful when developing code. More on this in a
moment.

(d) Now introduce errors into the documentation.

(e) Finally change the test so that the test is false and see what happens.

Macaulay 2 has some nice debugging features. We won’t go into them all now, but one key concept
is that if an error occurs while loading a package, or while running functions from a package,
Macaulay 2 moves into debugging mode which is indicated by a change of the input icon to having
two i’s — for example ii4:. This mode allows access to locally defined variables in the function
where the error occurred. If that function is called by another, access to the higher level function
is accessed through the use of the command break. This allows you to experiment and play around
with the internal structure of the function. Sometimes you might want to do this even when
Macaulay 2 does not think there is an error. The function error is good for this. In this case you
might want Macaulay 2 to continue the computation after you have had a chance to inspect things
and the function “continue” does this.

Documentation Internal documentation is easy, just use two dashes, for example the line before the
method, and after and then later are all internal comments as they start with two dashes.

-- Cellular decomposition of binomial ideals:
binomialCellularDecomposition = method (Options => {returnCellVars => false, verbose=>truel})
binomialCellularDecomposition Ideal := Ideal => o -> I -> (
-- Based on code by Ignacio Ojeda and Mike Stillman
R := ring I;
n := numgens R;
Answer := {};
L := null;

IntersectAnswer := ideal(1_R);

ToDo := {{{1_R},toList(0..n-1),I}};

-- Each entry of the ToDolist is a triple:

-- #0 contains list of variables with respect to which is already saturated
-- #1 contains variables to be considered for cell variables

-- #2 is the ideal to decompose

Below is basic skeleton and then an example of an external documentation node, from the published
package Naughty, using the package SimpleDoc.
The skeleton:

doc ///
Key
Headline
Usage
Inputs
Outputs
Consequences
Item
Description
Text
Code
Pre
Example
Subnodes
Caveat
SeeAlso

///

An example of a full node for the package itself:

doc ///
Key
Nauty
Headline
Interface to nauty
Description
Text
This package provides an interface from Macaulay2 to many of the functions provided in
the software nauty by Brendan D. McKay, available at @HREF "http://cs.anu.edu.au/ bdm/na
The nauty package provides very efficient methods for determining whether
given graphs are isomorphic, generating all graphs with particular properties,
generating random graphs, and more.

Most methods can handle graphs in either the Macaulay2 @TO "Graph"@ type as provided by
the @TO "Edgeldeals"@ package or as Graph6 and Sparse6 strings as used by nauty.

The purpose of this is that graphs stored as strings are greatly more efficient than
graphs stored as instances of the class QTO "Graph'"@.

(See Q@TO "Comparison of Graph6 and Sparse6 formats"@.)

It is recommended to work with graphs represented as strings while using nauty-provided
methods and then converting the graphs to instances fo the class @TO "Graph"@ for furthe
(e.g., computing the chromatic number) .

The theoretical underpinnings of nauty are in the paper:
B. D. McKay, "Practical graph isomorphism," Congr. Numer. 30 (1981), 45--87.

SeeAlso
"Comparison of Graph6 and Sparse6 formats"
"Example: Checking for isomorphic graphs"
"Example: Generating and filtering graphs"

/17
and for a function in the package:
doc ///
Key
buildGraphFilter
(buildGraphFilter, HashTable)
(buildGraphFilter, List)
Headline
creates the appropriate filter string for use with filterGraphs and countGraphs
Usage

s = buildGraphFilter h
s = buildGraphFilter 1
Inputs
h:HashTable
which describes the properties desired in filtering

1l:List
which describes the properties desired in filtering
Outputs
s:String
which can be used with QTO "filterGraphs"@ and QTO "countGraphs"@
Description
Text

The Q@TO "filterGraphs"@ and Q@TO "countGraphs"@ methods both can use a tremendous number

which are described by a rather tersely encoded string. This method builds that string

in the @TO "HashTable"@ h or the @TO "List"@ 1. Any keys which do not exist are sim
any values which are not valid (e.g., exactly -3 vertices) are also ignored.

The values can either be Q@TO "Boolean"@ or in @TO "ZZ"@. @TO "Boolean"@ values are trea
as expected. Numerical values are more complicated; we use an example to illustrate how
can be used, but note that this usage works for all numerically valued keys.

The key QTT "NumEdges"@ restricts to a specific number of edges in the graph. If the va
the integer n, then only graphs with QEM "exactly"@ n edges are returned.

Example
R = QQ[a..f];
L = {graph {a*b}, graph {axb, bxc}, graph {a*b, bxc, cxd}, graph {a*b, bxc, cxd, d*el}};

s = buildGraphFilter {"NumEdges" => 3};

filterGraphs(L, s)
Text

If the value is the Q@TO "Sequence"@ (m,n), then all graphs with at least m and at mo
Example

s = buildGraphFilter {"NumEdges" => (2,3)};

filterGraphs(L, s)
Text

If the value is the @TO "Sequence"@ $(,n)$, then all graphs with at most n edges are r
Example

s = buildGraphFilter {"NumEdges" => (,3)};

filterGraphs(L, s)
Text

If the value is the @TO "Sequence"@ $(m,)$, then all graphs with at least m edges are

Example

Text

s = buildGraphFilter {"NumEdges" => (2,)};
filterGraphs(L, s)

Moreover, the associated key QTT "NegateNumEdges"@, if true, causes the QEM "opposite"Q@

Example

Text

s = buildGraphFilter {"NumEdges" => (2,), "NegateNumEdges" => true};
filterGraphs(L, s)

The following are the boolean options: "Regular", "Bipartite", "Eulerian", "VertexTransi

The following are the numerical options (recall all have the associate "Negate" option):

"MinDegree", "MaxDegree", "Radius", "Diameter", "Girth", "NumCycles", "NumTriangles", "G
"FixedPoints", "Connectivity", "MinCommonNbrsAdj", "MaxCommonNbrsAdj", "MinCommonNbrsNon
Caveat
@TT "Connectivity"@ only works for the values $0, 1, 2$ and uses the following definitio
A graph is k-connected if k is the minimum size of a set of vertices whose complemen
Thus, in order to filter for connected graphs, one must use QTT "{\"Connectivity\" => O,
Q@TT "NumCycles"@ can only be used with graphs on at most n vertices, where n is the
nauty was compiled, typically $32% or 64.
SeelAlso
countGraphs
"Example: Generating and filtering graphs"
filterGraphs

11/

This is a particularly good example as it is for a method with multiple implementations and uses most
of the structures.

Tests Any good package has a series of asserts to make sure everything is working as expected. For
example we include a test from Binomials.m2 and IntegralClosure.m2
From Binomials.m2:

TEST ///

R = QQlc,d,x,y,z,w];

I = ideal(x"3*d"2*w-c*z"2,x"5xy " 2-w"7,w"3-2"8,2"2-d*w*x"7)
time bpd = binomialPrimaryDecomposition (I,verbose=>false);
assert (intersect bpd == I)

///
From IntegralClosure.m2

-- integrally closed test

TEST ///

R = QQ[u,v]/ideal (u+2)

time J = integralClosure (R,Variable => symbol a)
use ring ideal J

assert(ideal J == ideal(u+2))
icFractions R -- NOT GOOD?
///

Now that you have examples of all the pieces, the best thing to do is start building your own package.
Use the many examples available, the wiki and the google group. This information is available in the
Introductory Lab document.

