Home | Research Topic | People | Colloquia | Research Projects | Pictures |

**Research leader/advisor: Victor H. Moll, Tulane University**

http://www.math.tulane.edu/~vhm

**Prerequisites:** Participating students should have already taken the Calculus sequence and a course in Linear Algebra. A course in numerical analysis would be helpful. For maximum benefit, it would be useful if the students have taken a course in physics, chemistry or biology.

**Overview of the summer program:**

The MSRI-UP summer program is designed for undergraduate students who have completed two years of university-level mathematics courses and would like to conduct research in the mathematical sciences.

During the summer, each of the 18 student participants will:

- participate in the mathematics research program under the direction of Dr. Moll
- complete a research project done in collaboration with other MSRI-UP students
- give a presentation and write a technical report on his/her research project
- attend a series of colloquium talks given by leading researches in their field
- attend workshops aimed at developing skills and techniques needed for research careers in the mathematical sciences; and
- learn techniques that will maximize a student's likelihood of admissions to graduate programs as well as the likelihood of winning fellowships

After the summer, each student will:

- have an opportunity to attend a national mathematics or science conference where students will present their research
- be part of a network of mentors that will provide continuous advice in the long term as the student makes progress in his/her studies
- be contacted regarding future research opportunities

**Topic description:**

The last twenty years have been witness to a fundamental shift in the way mathematics is practiced. With the continued advance of computational power and accesibility, the view that "real mathematicians do not compute" no longer exists for the current generations. In this program the students will take real advantage of the computational tools that exists in symbolic languages like Mathematica and Maple to investigate interesting problems most of which come from the question of evaluation of definite integrals. As background the applicants must have a solid knowledge of one variable Calculus. Some experience with Discrete Mathematics and Linear Algebra would be helpful but it is not essential. The program will show how computation is used to gain insight and intuition in Mathematics. We will use it to discover new facts, patterns, and relationships. In particular we will show how Analysis, Discrete Mathematics and Computations are just different aspects of the same science: Mathematics. Projects. The first two weeks of the program will be devoted to prepare the students for the most interesting part: *the projects*. These are mathematical problems for which the instructors and assistants have some ideas on how to solve them, but they are open problems. Our past experience has shown that students will provide unexpected insight into these problems. Here are some examples to show how exciting they could be:

- An elementary calculation gives the integral of
*1/(x² + 1)*over the positive real line. Express the integral of^{m}*1/(x*as a function of the parameters^{4}+ 2ax² + 1)^{m}*a*and*m*. The result will involve a polynomial of degree*m*with rational coefficients. The project consists in exploring the factroization of these coefficients as products of primes. Many beautiful patterns will appear, most of them without a traditional proof. The paper "The 2-adic valuation of a sequence arising from a rational integral" can be downloaded from my website. - The Stirling numbers
*S(n, k)*count the number of ways to partition*n*objects into*k*non-empty parts. These numbers are integers, because they count something. What can you say about the power of 2 that divides them? The paper "The 2adic valuation of Stirling numbers" present interesting conjectures and beautiful pictures. - The recurrence
*x[n] = (n + x[n - 1])/(1 - nx[n - 1])*comes from a simple finite sum of values of the arctangent function. Starting at*x[0] = 0*you will see that*x[n]*is an integer for n ≤ 4. We have conjectured that this never happens again. The paper "Arithmetical properties of a sequence arising from an arctangent sum" contains some dynamical systems that needs to be explored. - Why is it that the sums
are easy to evaluate, but the one with the cubes of binomial coefficients does not appear in elementary texts?

- After a numerical calculation, you find that the answer to your problem is
s = 10.56275158164930392825 What is the real answer? We will learn how to figure out that it has be π

^{2}+ ln 2. This is a remarkable new insight: from a*numerical*approximation, we get the exact answer.

Professor Moll served as seminar leader/research director in the 2000 and 2002 SIMUs. He has extensive experience in directing graduate and undergraduate student research in areas of integration of rational functions, special functions, experimental mathematics, and symbolic computation. He maintains an active research program in these areas and has published with undergraduate co-authors [BMN, AABKMR, BJM, BMR, MSRW, AMRSW, MS]. Prof. Moll offered an MAA Short Course in Experimental Mathematics at the 2006 Joint Mathematics Meetings. He is also teaching a pilot course in Experimental Mathematics at Tulane University in the Fall of 2007. The course material will be the basis for the 2008 MSRI-UP projects.