Logo

Mathematical Sciences Research Institute

Home > Public > Public Events and Initiatives > Congressional Briefings

MSRI & American Mathematical Society Congressional Briefings

MSRI and the American Mathematical Society (AMS) host two Congressional briefings on mathematical topics each year in Washington, D.C. to inform members of Congress and Congressional staff about new developments made possible through federal support of basic science research.

You can learn more about MSRI's first Congressional events that took place as part of the inaugural National Math Festival here.


May 22, 2018: Erik Demaine, Massachusetts Institute of Technology - "Origami Meets Math, Science, and Engineering"

On May 22, 2018, Erik Demaine of the Massachusetts Institute of Technology (MIT) spoke on Capitol Hill on "Origami Meets Math, Science, and Engineering". Speakers at the Congressional briefing included Representative Jerry McNerney of California, MSRI Director Dr. David Eisenbud, AMS Associate Executive Director Dr. Karen Saxe, and AMS President Dr. Ken Ribet (University of California, Berkeley). An event flyer (PDF) is available for download.

Surprising applications in manufacturing, robotics, animation, biology, meicine, nanotech, and space technology have grown from new fundamental research in computational origami, the study of the mathematical and geometric underpinnings of the simple act of folding. Erik Demaine, MacArthur Fellow and MIT computer scientist, has been instrumental in these developments.

Dr. Demaine is also an acclaimed artist, and was featured on NOVA's "The Origami Revolution." His works have been shown at major museums, and his pieces are in the permanent collections of Washington D.C.’s Smithsonian Renwick Gallery and New York’s Museum of Modern Art (MoMA).

You can watch this short video featuring Dr. Demaine talking about his art and research, with highlights from the event:



December 6, 2017: Shafi Goldwasser, Massachusetts Institute of Technology

On December 6, 2017, Shafi Goldwasser of the Massachusetts Institute of Technology (MIT) and incoming Director of the Simons Institute for the Theory of Computing at the University of California, Berkeley, spoke on Capitol Hill on "Cryptography: How to Enable Privacy in a Data-Driven World".

Speakers at the Congressional briefing included House Minority Leader Nancy Pelosi, Representative Jerry McNerney of California, and Representative Dan Lipinski of Illinois. An event flier is here.

You can view photos from the event here.

In the last 40 years, the field of cryptography has shown how to use basic mathematics to enable secure electronic commerce. Nowadays, we are faced with a new challenge. Medical breakthroughs, smart infrastructure, economic growth by clever consumer targeting, and surveillance for national security, have become possible due to the enormous amounts of data collected on individuals. Yet, this data collection seems to stand in contradiction to patients' rights, consumers' privacy, unfair pricing, and the basic 'Right to be Left Alone'. The question is, can mathematics and technology make it possible to maintain privacy and make progress at the same time? We will show how modern encryption methods, zero-knowledge proofs, and multi-party secure computation go a long way to get the best of both worlds.

We hope you enjoy a 3-minute movie, showing a behind-the-scenes peek at briefing day in Washington!


Dr. Shafi Goldwasser is the RSA Professor of Electrical Engineering and Computer Science at MIT. Goldwasser's pioneering contributions include the introduction of zero-knowledge interactive proofs, protocols, and multi-party secure protocols, which are key technologies for online identification, utilizing blockchains for distributed transactions and for data-intensive collaborations in regulated industries. Dr. Goldwasser was the recipient of the ACM Turing Award for 2012, the highest award given in the field of computer science, as well as the Gödel Prize in 1993 and 2001, the ACM Grace Murray Hopper Award, the RSA Award in Mathematics, the ACM Athena Award for women in computer science, the Benjamin Franklin Medal, and the IEEE Emanuel R. Piore Award. She is a member of the American Association for the Advancement of Science (AAAS), the National Academy of Sciences (NAS), the National Academy of Engineering (NAE), the Israeli Academy of Science, and the Russian Academy of Science. She is an honorary member of the London Royal Mathematical Society and holds honorary degrees from universities around the world.

Goldwasser received a B.S. degree in applied mathematics from Carnegie Mellon University in 1979, and M.S. and Ph.D. degrees in computer science from the University of California, Berkeley, in 1984. She will be joining the University of California, Berkeley in 2017 as the Director of the Simons Institute for the Theory of Computing.


June 28, 2017: David Donoho, Stanford University

On June 28, 2017, David Donoho, Professor of Statistics at Stanford University, presented "Blackboard to Bedside: How high-dimensional geometry is transforming the MRI industry" at the Russell Senate Office Building in Washington, D.C. An event flier is here.

You can view photos from the event here.

Among the attendees of the event were Senator Charles Schumer and Leader Nancy Pelosi, both of whom gave remarks.

Recently the FDA approved a device for dynamic cardiac imaging that gathers data 15 times faster than before and another device that speeds up 3D brain imaging by a factor of 8. The speedup will allow more patients to be served at a lower cost per patient, giving US taxpayers a better return on the tens of billions of dollars in annual MRI charges. Professor Donoho's presentation tells the story of how U.S. investment in basic research in the mathematical sciences led to this breakthrough.

Dr. Donoho is a MacArthur Fellow and National Academy of Sciences member. One of the world’s leading mathematical statisticians, he is currently the Anne T. and Robert Bass Professor of Humanities and Sciences and professor of statistics, Stanford University. His Stanford patents on compressed sensing are licensed by both GE and Siemens in their new generation FDA-approved scanners.

You may view the full-length interview below, or the five-minute highlights, as it traces:

  • How both young children and older patients will benefit from the new technology;
  • How the charismatic proof of mathematics opened the door for corporate investment;
  • How the mathematics of random sampling undergirds diagnostic certainty;
  • The story arc of Federal funding that made a 10-year progression possible, from blackboard to bedside.

This development holds the promise that many patients who today do not receive MRI imaging at all—prior to brain or heart surgery, or whose imaging is delayed, cost-prohibitive, or non-diagnostic in quality, now will have more readily available, diagnostically meaningful scans at lower cost. The savings of lives, the improved surgical preparation and outcomes, and the ability to use MRI imaging technology to inform a wider range of medical conditions in neurosurgery, cardiac, and other applications, is significant for patients of all ages.

Additional Materials

Here is a PDF summary by Professor Donoho of many of the points he made in his briefing for those who would like further information.