-
MSRI/Evans Lecture
Location: UC Berkeley, 60 Evans Hall Speakers: Cedric Villani (Institute Henri Poincare)Created on May 07, 2013 10:00 AM PDT -
MSRI/Evans Lecture
Location: UC Berkeley, 60 Evans Hall Speakers: Wilfrid Gangbo (Georgia Institute of Technology)Created on May 07, 2013 10:01 AM PDT -
MSRI/Evans Lecture
Location: UC Berkeley, 60 Evans Hall Speakers: Christina Sormani (CUNY, Graduate Center)Created on May 07, 2013 10:02 AM PDT -
MSRI/Evans Lecture
Location: UC Berkeley, 60 Evans Hall Speakers: Kristen Moore (Potsdam University)Updated on Jul 22, 2013 03:58 PM PDT -
MSRI/Evans Lecture
Location: UC Berkeley, 60 Evans Hall Speakers: Vincent Moncrief (Yale University)Created on May 07, 2013 10:04 AM PDT
Past MSRI/Evans Lectures
-
MSRI/Evans Lecture: On the topology and future stability of the universe
Location: UC Berkeley, 60 Evans Hall Speakers: Hans Ringstrom (Royal Institute of Technology (KTH))The current standard model of the universe is spatially homogeneous, isotropic and spatially flat. Furthermore, the matter content is described by two perfect fluids (dust and radiation) and there is a positive cosmological constant. Such a model can be well approximated by a solution to the Einstein-Vlasov equations with a positive cosmological constant. As a consequence, it is of interest to study stability properties of solutions in the Vlasov setting. The talk will contain a description of recent results on this topic. Moreover, the restriction on the global topology of the universe imposed by the data collected by observers will be discussed.
Updated on Sep 11, 2013 01:02 PM PDT -
MSRI/Evans Lecture: On the topology of black holes and beyond.
Location: UC Berkeley, 60 Evans Hall Speakers: Greg Galloway (University of Miami)In recent years there has been an explosion of interest in black holes in higher dimensional gravity. This, in particular, has led to questions about the topology of black holes in higher dimensions. In this talk we review Hawking's classical theorem on the topology of black holes in 3+1 dimensions (and its connection to black hole uniqueness) and present a generalization of it to higher dimensions. The latter is a geometric result which imposes restrictions on the topology of black holes in higher dimensions. We shall also discuss recent work on the topology of space exterior to a black hole. This is closely connected to the Principle of Topological Censorship, which roughly asserts that the topology of the region outside of all black holes (and white holes) should be simple. All of the results to be discussed rely on the recently developed theory of marginally outer trapped surfaces, which are natural spacetime analogues of minimal surfaces in Riemannian geometry. This talk is based primarily on joint work with Rick Schoen and with Michael Eichmair and Dan Pollack.
Updated on Aug 19, 2013 10:38 AM PDT -
MSRI/Evans Lecture: Swarming by Nature and by Design
Location: UC Berkeley, 60 Evans Hall Speakers: Andrea Bertozzi (University of California, Los Angeles)Swarming by Nature and by Design
Andrea Bertozzi, University of California, Los AngelesThe cohesive movement of a biological population is a commonly observed natural phenomenon. With the advent of platforms of unmanned vehicles, such phenomena have attracted a renewed interest from the engineering community.
This talk will cover a survey of the speakers research and related work in this area ranging from aggregation models in nonlinear partial differential equations to control algorithms and robotic testbed experiments.
We conclude with a discussion of some interesting problems for the mathematics community.
Updated on Aug 12, 2013 02:46 PM PDT -
A motivic approach to Potts models
Location: UC Berkeley, 60 Evans Hall Speakers: Matilde MarcolliThe use of motivic techniques in Quantum Field Theory has been widely explored in the past ten years, in relation to the occurrence of periods in the computation of Feynman integrals. In this lecture, based on joint work with Aluffi, I will show how some of these techniques can be extended to a motivic analysis of the partition function of Potts models in statistical mechanics. An estimate of the complexity of the locus of zeros of the partition function, can be obtained in terms of the classes in the Grothendieck ring of the affine algebraic varieties defined by the vanishing of the multivariate Tutte polynomial, based on a deletion-contraction formula for the Grothendieck classes.Updated on Apr 15, 2013 06:42 AM PDT -
From Linear Algebra to Noncommutative Resolutions of Singularities (No April Fools\\' Joke!)
Location: UC Berkeley, 60 Evans Hall Speakers: Ragnar-Olaf Buchweitz (University of Toronto)Ten years ago, G.Bergman asked: "Can one factor the classical adjoint of a generic matrix?"
With G.Leuschke we showed that, yes, sometimes you can. We arrived at this by translating the question into one on morphisms between matrix factorizations of the determinant.
Understanding all such morphisms lead through joint work with Leuschke and van den Bergh to a description of a noncommutative desingularization of determinantal varieties in a characteristic-free way and we are just about to put the finishing touches on this work here at MSRI.
I will desribe the highlights of this journey and mention some resulting, and remaining open questions.Updated on Sep 18, 2013 02:29 PM PDT -
Geometry of Hurwitz Spaces
Location: UC Berkeley, 60 Evans Hall Speakers: Joe HarrisRiemann surfaces, which we now think of abstractly as smooth algebraic
curves over the complex numbers, were described by Riemann as graphs of
multivalued holomorphic functions-in other words, branched covers of the
Riemann sphere $\P^1$. The Hurwitz spaces, varieties parametrizing the
set of branched covers of $\P^1$ of given degree and genus, are still
central objects in the study of curves and their moduli. In this talk, we'll
describe the geometry of Hurwitz spaces and their compactifications, leading
up to recent work of Anand Patel and others.Updated on Mar 18, 2013 05:18 AM PDT -
Modules for elementary abelian groups and vector bundles on projective space
Location: UC Berkeley, 60 Evans Hall Speakers: David Benson (University of Aberdeen)I shall begin with a gentle introduction to modular representation theory of finite groups. Many questions about these reduce to the case of an elementary abelian p-group, so I shall spend most of the talk on these. In particular, I shall talk about modules of constant Jordan type, and what they have to do with algebraic vector bundles on projective space.Updated on May 24, 2013 10:08 AM PDT -
An Introduction to Noncommutative Algebraic Geometry
Location: UC Berkeley, 60 Evans Hall Speakers: Toby Stafford (University of Manchester)In recent years a surprising number of insights and results in noncommutative algebra have been obtained by using the global techniques of projective algebraic geometry. Many of the most striking results arise by mimicking the commutative approach: classify curves, then surfaces, and we will use this approach here. As we will discuss, the noncommutative analogues of (commutative) curves are well understood while the study of noncommutative surfaces is on-going. In the study of these objects a number of intriguing examples and significant techniques have been developed that are very useful elsewhere. In this talk I will discuss several of them.Updated on May 24, 2013 11:18 AM PDT -
Multiplicities of graded families of ideals
Location: UC Berkeley, 60 Evans Hall Speakers: Steven Cutkosky (University of Missouri)The multiplicity of a local ring R is its most fundamental invariant. For example, it tells us how singular the ring is. The multiplicity is computed from the limit as n goes to infinity of the length of R modulo the nth power of its maximal ideal. Many other multiplicity like invariants naturally occur in commutative algebra. We discuss a number of naturally occurring limits of this type, and show that in very general rings, such limits always exist.Updated on May 13, 2013 04:20 PM PDT -
(Quantum) fusion versus (quantum) intersection
Location: UC Berkeley, 60 Evans Hall Speakers: Catharina Stroppel (Hausdorff Research Institute for Mathematics, University of Bonn)Intersection theory grew out of very basic questions like: "given four generic lines in \mathbb{P}^3 - how many lines intersect all four of them?" Questions like that are one of the simplest examples of an application of Schubert Calculus, a very important tool in combinatorial representation theory. It is used to describe cohomology rings, but also to construct categories which describe representation theoretic problems geometrically. It serves as the basis of more sophisticated methods of enumerative geometry, like Gromov-Witten theory and Quantum Cohomology. An amazing fact is that the same combinatorics also occurs when decomposing tensor products of representations of a semisimple complex Lie algebra.
This talk will describe some of these basic ideas and use them to explain a connection between quantum fusion products and quantum cohomology, relating Verlinde algebras and quantum cohomology rings. All this is related to questions arising in commutative and noncommutative algebraic geometry, integrable systems, representation theory, combinatorics ...
Updated on Sep 13, 2013 09:50 AM PDT -
Quiver mutation and quantum dilogarithm identities
Location: UC Berkeley, 60 Evans Hall Speakers: Bernhard KellerA quiver is an oriented graph. Quiver mutation is an elementary operation on quivers which appeared in physics in Seiberg duality in the 1990s and in mathematics in Fomin-Zelevinsky's definition of cluster algebras in 2002. In this talk, I will show how, by comparing sequences of quiver mutations, one can construct identities between products of quantum dilogarithm series. These identities generalize Faddeev-Kashaev-Volkov's classical pentagon identity and the identities obtained by Reineke. Morally, the new identities follow from Kontsevich-Soibelman's theory of Donaldson-Thomas invariants. They can be proved rigorously using the theory linking cluster algebras to quiver representations.Updated on Nov 16, 2012 02:29 AM PST -
Secant Varieties, Symbolic Powers, Statistical Models
Location: UC Berkeley, 60 Evans Hall Speakers: Seth SullivantThe join of two algebraic varieties is obtained by taking the closure of the union of all lines spanned by pairs of points, one on each variety. The secant varieties of a variety are obtained by taking the iterated join of a variety with itself. The symbolic powers of ideals arise by looking at the equations that vanish to high order on varieties. Statistical models are families of probability distributions with special structures which are used to model relationships between collections of random variables. This talk will be an elementary introduction to these topics. I will explain the interrelations between these seemingly unrelated topics, in particular, how symbolic powers can shed light on equations for secant varieties, and how theoretical results on secant varieties shed light on properties of statistical models including mixture models and the factor analysis model. Particular emphasis will be placed on combinatorial aspects including connections to graph theory.Updated on Oct 19, 2012 02:31 AM PDT -
Recurrence relations and cluster algebras
Location: UC Berkeley, 60 Evans Hall Speakers: Pierre Guy PlamondonSergey Fomin and Andrei Zelevinsky defined cluster algebras by recursively constructing their generators via a process called mutation. This process is closely related to various sequences of integers, arising for instance from Coxeter-Conway friezes, whose terms can be seen as specializations of the generators of specific cluster algebras. Although the fact that these sequences contain only integers is sometimes surprising from their definition, the theory of cluster algebras provides a common explanation for it: the Laurent Phenomenon. In this talk, we will first list some examples of recurrence relations of integers, then we will try to understand them from the point of view of cluster algebras.Updated on Oct 11, 2012 07:05 AM PDT -
Categorification of quiver mutation
Location: UC Berkeley, 60 Evans Hall Speakers: Idun ReitinThe cluster algebras were introduced by Fomin-Zelevinsky in a paper which appeared 10 years ago. There are connections to many different areas of mathematics, including quiver representations. One direction of research has been to try to model the ingredients in the definition of cluster algebras in “nice” categories, like module categories or related categories. In this lecture we illustrate the idea and use of “categorification” by concentrating on only one ingredient in the definition of cluster algebras. This is the operation of quiver mutation, which we define. For finite quivers (i.e. directed graphs) without oriented cycles this leads to the so-called cluster categories, which are modifications of certain module categories. For other types of quivers some stable categories of maximal Cohen-Macaulay modules over commutative Gorenstein rings are the relevant categories. We start the lecture with background material on quiver representations.Updated on Oct 05, 2012 01:41 AM PDT -
Introduction to cluster algebras
Location: UC Berkeley, 60 Evans Hall Speakers: Andrei ZelevinskyCluster algebras are a class of commutative rings discovered by Sergey Fomin and the speaker about a decade ago. A cluster algebra of rank n has a distinguished set of generators (cluster variables) grouped into (possibly overlapping) n-subsets called clusters. These generators and relations among them are constructed recursively and can be viewed as discrete dynamical systems on a n-regular tree. The interest to cluster algebras is caused by their surprising appearance in a variety of settings, including quiver representations, Poisson geometry, Teichmuller theory, non-commutative geometry, integrable systems, quantum field theory, etc. We will discuss the foundations of the theory of cluster algebras, with the focus on their algebraic and combinatorial structural properties.Updated on Sep 11, 2013 09:10 AM PDT -
(Multigraded) Hilbert functions
Location: UC Berkeley, 60 Evans Hall Speakers: Diane MaclaganCommutative algebra often abstracts geometric problems into simple questions about algebraic invariants. I will illustrate this with some open problems on the Hilbert function (a simple algebraic invariant which measures the dimensions of graded pieces of a graded ring). Geometry enters the picture when the ring is the projective coordinate ring of a variety. When the ring has a multigrading we also get some interesting combinatorics. I will emphasize the computational and combinatorial sides of this story.Updated on Sep 10, 2013 10:21 AM PDT -
QUASI PERIODIC ORBITS: THE CASE OF THE NON LINEAR SCHRÖDINGER EQUATION
Location: UC Berkeley, 60 Evans Hall Speakers: Claudio ProcesiUpdated on Aug 24, 2012 05:52 AM PDT -
Self-Avoiding Walk
Location: UC Berkeley, 60 Evans Hall Speakers: Gregory Lawler (University of Chicago)The participants at the Random Spatial Processes program come from many different areas: combinatorics, probability, complex analysis, theoretical physics, computer science, representation theory. Although these give different perspectives, they all arise in the analysis of critical processes in statistical physics. I will discuss a simple (to state, not necessarily to analyze!) model, the self-avoiding walk and show how multiple perspectives are useful in its study. A (planar) self-avoiding walk is a lattice random walk path in the plane with no self-intersections. It can be viewed as a simple model for polymers. I will show how we now in one sense understand this model very well, and in another sense we still know very little!Updated on Sep 10, 2013 08:43 AM PDT -
Sampling Paths, Permutations and Lattice Structures
Location: UC Berkeley, 60 Evans Hall Speakers: Dana Randall (Georgia Institute of Technology)Random sampling is ubiquitous throughout mathematics, computing and the sciences as a means of studying very large sets. In this talk we will discuss simple, classical Markov chains for efficiently sampling paths and permutations. We will look at various natural generalizations with some surprising results. First, we show how to extend these Markov chain algorithms to sample biased paths, with applications to tile-based self-assembly, asymmetric exclusion processes, self-organized lists, and biased card shuffling. Next, we show how generating random configurations with mutliple paths allows us to sample planar tilings and colorings. Using insights from statistical physics, however, we will see why these methods break down and may be inefficient in models with non-uniform bias, in higher dimensions, or in weighted models with sufficiently high fugacity.Updated on Sep 11, 2013 02:04 PM PDT -
New Extremes for Random Walk on a Graph
Location: UC Berkeley, 60 Evans Hall Speakers: Peter Winkler (Dartmouth College)Random walk on a graph is a beautiful and (viewed from today) classical subject with elegant theorems, multiple applications, and a close connection to the theory of electrical networks. The subject seems to be livelier now than ever, with lots of exciting new results. We will discuss recent progress on some extremal problems. In particular, how long can it take to visit every edge of a graph, or to visit every vertex a representative number of times, or to catch a random walker? Can random walks be scheduled or coupled so that they don't collide? Can moving targets be harder to hit than fixed targets? Mentioned will be work by or with Omer Angel, Jian Ding, Agelos Georgakopoulos, Ander Holroyd, Natasha Komarov, James Lee, James Martin, Yuval Peres, Perla Sousi, and David Wilson.Updated on Sep 11, 2013 09:50 AM PDT -
Multi-scale tools and dependent percolation
Location: UC Berkeley, 60 Evans Hall Speakers: Maria VaresIn this talk I plan to discuss some examples of percolation models in random environment. The goal is to show how multi-scale methods can be used to answer some basic questions related to such models in the presence of strong dependence.Updated on Feb 22, 2012 12:09 PM PST -
Counting tricks with symmetric functions
Location: UC Berkeley, 60 Evans Hall Speakers: Greta PanovaSymmetric functions and Young tableaux arose from the representation theory of the symmetric and general linear groups, but found their central place in algebraic combinatorics and also ventured to other fields like algebraic geometry and statistical mechanics. In this talk we will review some of their combinatorial properties and then we will employ their power and various tricks to solve a counting problem: we will find a product formula for the number of standard Young tableaux of unusual, truncated shapes and we will pass through truncated plane partitions.Updated on Feb 06, 2012 03:42 AM PST -
From random interlacements to coordinate percolation
Location: UC Berkeley, 60 Evans Hall Speakers: Vladas SidoraviciusDuring the past few years, several percolation models with long (infinite) range dependencies were introduced. Among them Random Interlacements (introduced by A.-S. Sznitman) and Coordinate Percolation (introduced by P. Winkler). During the talk I will focus on the connectivity properties of these models. The latter model has polynomial decay in sub-critical and super-critical regime in dimension 3. I will explain the nature of this phenomenon and why it is difficult to handle these models technically. In the second half of the talk I will present key ideas of the multi-scale analysis which allows to reach some conclusions. At the end of the talk I will discuss applications and several open problems.Updated on Jan 26, 2012 04:24 AM PST -
Combinatorics of Donaldson–Thomas and Pandharipande–Thomas invariants
Location: UC Berkeley, 60 Evans Hall Speakers: Benjamin YoungI will discuss a combinatorial problem which comes from algebraic geometry. The problem, in general, is to show that two theories for "counting" curves in a complex three-dimensional space X (Pandharipande–Thomas theory and reduced Donaldson–Thomas theory) give the same answer. I will prove a combinatorial version of this correspondence in a special case (X is toric Calabi–Yau), where the difficult geometry reduces to a study of the ``topological vertex\'\' (a certain generating function) in these two theories. The combinatorial objects in question are plane partitions, perfect matchings on the honeycomb lattice and related structures.
There will be many pictures. This is a combinatorics talk, so no algebraic geometry will be used once I explain where the problem is coming from.
Updated on May 29, 2013 09:25 AM PDT -
The Second Law of Probability: Entropy Growth in the Central Limit Theorem
Location: UC Berkeley, 60 Evans Hall Speakers: Keith BallThis talk will explain how a geometric principle led to the solution of a 50 year old problem: to prove an analogue of the second law of thermodynamics for the central limit process.Updated on Oct 13, 2011 10:58 AM PDT -
Mean curvature flow
Location: UC Berkeley, 60 Evans Hall Speakers: Tobias ColdingMean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. Thus, in some sense, the topology is encoded in the singularities. In this lecture I will discuss new and old results about singularities of mean curvature flow focusing on very results about generic singularities.Updated on Sep 18, 2013 03:09 PM PDT -
Differentiation at large scales
Location: UC Berkeley, 60 Evans Hall Speakers: Irine PengThe usual notion of differentiation is a way of understanding the infinitesimal behaviour of a map, i.e. the map restricted to ever decreasing scales. However there are elements of the differentiation process that make sense at larger scales as well. I will discuss the utility of this view point in the work of Eskin-Fisher-Whyte on quasi-isometries of the 3 dimensional solvable group and some subsequent generalization.Updated on Oct 13, 2011 10:54 AM PDT -
Dimension reduction in discrete metric geometry
Location: UC Berkeley, 60 Evans Hall Speakers: William JohnsonUpdated on Oct 03, 2011 11:11 AM PDT -
Simple connectivity is complicated: an introduction to the Dehn function
Location: UC Berkeley, 60 Evans Hall Speakers: Robert YoungA lot of good math starts by taking an existence theorem and asking ``How many?'' or ``How big?'' or ``How fast''. The best-known example may be the Riemann hypothesis. Euclid proved that infinitely many primes exist, and the Riemann hypothesis describes how quickly they grow. I'll discuss what happens when you apply the same idea to simple connectivity. In a simply-connected space, any closed curve is the boundary of some disc, but how big is that disc? And what can that tell you about the geometry of the space?Updated on Sep 16, 2011 03:44 AM PDT -
Graph Sparsification
Location: UC Berkeley, 60 Evans Hall Speakers: Nikhil SrivastavaWe consider the following type of question: given a finite graph with nonnegative weights on the edges, is there a sparse graph on the same set of vertices (i.e., a graph with very few edges) which preserves the geometry of G? The answer of course depends on what we mean by preserves and geometry. It turns out that if we are interested in preserving (1) pairwise distances between all pairs of vertices or (2) weights of boundaries of all subsets of vertices, then the answer is always yes in a certain strong sense: every graph on n vertices admits a sparse approximation with O(nlogn) or O(n) edges. We discuss some of the ideas around the proof of (2), which turns out to be a special case of a more general theorem regarding matrices. The original motivation for this problem was in the design of fast algorithms for solving linear equations, but lately the ideas have found other uses, for instance in metric embeddings and probability. Joint work with J. Batson and D. Spielman.Updated on Sep 02, 2011 02:45 AM PDT -
MSRI Evans Lecture
Location: UC Berkeley, 60 Evans Hall Speakers: Marianna Csornyei (University College)Differentiability of Lipschitz functions and tangents of sets
Differentiability of Lipschitz functions and tangents of sets
We will show how elementary product decompositions of measures can detect directionality in sets, and show how this can be used to describe non-differentiability sets of Lipschitz functions on R^n, and to understand the phenomena that occur because of behaviour of Lipschitz functions around the points of null sets.
In order to prove this we will need to prove results about the geometry of sets of small Lebesgue measure: we show that sets of small measure are always contained in a "small" collection of Lipschitz surfaces.
The talk is based on a joint work
with G. Alberti, P. Jones and D. Preiss.
Updated on Sep 18, 2013 03:19 PM PDT -
Boundary singular solutions associated with connecting thin tubes
Location: UC Berkeley, 60 Evans Hall Speakers: Susanna TerraciniRefreshments after lecture at La Val's Pizza.
Consider two domains connected by a thin tube so that the mass of a given eigenfunction (linear or nonlinear) concentrates in only one of the two domains. The restriction on the other domain develops a singularity at the junction of the tube, as the section of the channel shrinks to zero. The asymptotics for this type of solutions can be precisely described. This is a result obtained in collaboration with L. Abatangelo and V. FelliUpdated on Apr 19, 2011 04:28 AM PDT -
Counting Points on Curves over Finite Fields
Location: UC Berkeley, 60 Evans Hall Speakers: Melanie WoodRefreshments after lecture at La Val's Pizza
Updated on Apr 05, 2011 09:14 AM PDT -
Linearization Techniques in Free Boundary Problems
Location: UC Berkeley, 60 Evans Hall Speakers: John AnderssonRefreshments after lecture at La Val\\\\\\'s Pizza.
Updated on Mar 17, 2011 04:25 AM PDT -
SSL group, course "Space Weather"
Group will visit the first floor terrace to catch a view of the satellite dish.
Created on Mar 10, 2011 01:27 AM PST -
MSRI-Evans Lecture- Henryk Iwaniec
Location: UC Berkeley, 60 Evans Hall Speakers: Henryk IwaniecRefreshments after lecture at La Val's Pizza.
Updated on Jan 15, 2011 08:15 AM PST -
MSRI/Evans Talk: "Hamiltonian group actions"
Location: UC Berkeley, 60 Evans Hall Speakers: Dr. Yael KarshonThis talk is about symplectic manifolds equipped with compact group actions that are generated by moment maps. Such structures model symmetries in classical mechanics and often arise in purely mathematical contexts. The moment map encodes manifold information into polytopes and graphs. We will show how to obtain moment map ``pictures” and how to use these pictures to extract symplectic geometric information.Updated on May 13, 2013 11:01 PM PDT -
MSRI/Evans Lecture Series: "Boundedness of varieties of general type "
Location: UC Berkeley, 10 Evans Hall Speakers: Christopher HaconView abstract (PDF 30KB)Updated on May 13, 2013 11:01 PM PDT -
MSRI/Evans Lecture Series
Location: UC Berkeley, 60 Evans Hall Speakers: Dr. Ravi VakilUpdated on May 13, 2013 11:01 PM PDT -
MSRI/Evans Lecture Series: "Algebraic stacks without schemes"
Location: UC Berkeley, 60 Evans Hall Speakers: Dr. Barbara FantechiAlgebraic stacks are about 40 years old, and play a growing role both within algebraic geometry and in its relation with high energy physics; increasingly, they are seen as geometric objects, interesting in their own right. In this talk we'll give an outline of the relevant definitions, focusing on the case of smooth stacks over the complex numbers so as to avoid scheme-related complications. We'll then outline a few classical applications and a selection of current research. The focus will be on examples rather than on detailed rigor. Prerequisites for the talk are some familiarity with the basics of complex manifolds, or at least differentiable manifolds; a nodding acquaintance with categories and functors would be helpful. No algebra or algebraic geometry is needed.Updated on May 13, 2013 11:01 PM PDT -
MSRI/Evans Lecture Series
Location: UC Berkeley, 60 Evans Hall Speakers: Dr. William FultonUpdated on May 13, 2013 11:01 PM PDT -
MSRI/Evans Lecture Series: "Hall algebras and wall-crossing"
Location: MSRI: Simons Auditorium Speakers: Tom BridgelandThe Hall algebra construction goes back to work of Steinitz in the early years of the last century. In the 1990s Ringel used the same construction as an approach to quantum groups. More recently, Joyce, Kontsevich, Soibelman and others have used Hall algebras as a tool for studying wall-crossing phenomena. Following Reineke I will explain how this works in the down-to-earth setting of representations of quivers, where all the key ideas can already be seen.Updated on May 13, 2013 11:01 PM PDT -
MSRI/Evans Lecture Series: "Which powers of holomorphic functions are integrable?"
Location: UC Berkeley, Evans Hall Speakers: Dr. János KollárUpdated on May 13, 2013 11:01 PM PDT -
MSRI/Evans Lecture Series - Positivity Properties of Divisors and Higher Codimension Cycle
Location: UC Berkeley, Evans Hall Speakers: Dr. Robert LazarsfeldA very basic idea in algebraic geometry is to try to study a variety by considering all the hypersurfaces (and non-negative linear combinations thereof) inside it. This allows one to construct various interesting cones of cohomology classes, whose structure often reflects the geometry of the underlying variety. Remarkably, the precise shape of these cones is unknown even for some quite simple surfaces. After quickly reviewing the classical theory, I will survey more contemporary developments concerning the codimension one situation. Then I will present some questions and conjectures about what one might expect for cycles of higher codimension.Updated on May 13, 2013 11:00 PM PDT -
January 14-16, 2009: Kickoff Presentations
Updated on Apr 01, 2011 05:06 AM PDT
