Site Search
Main Wiki
From Oscillatory Integrals to a Cubic Random Matrix Model"
Tue, October 26, 2010 10:00AM - 11:00AM
Tags: Graduate  --  Postdoc  --  Scientific
Time:10:00AM - 11:00AM
Location:MSRI
Speaker:Alfredo DeaƱo


Location: Bakerboard Room
Abstract:
In this talk I will present some results on complex orthogonal polynomials that
arise in the application of Gaussian quadrature to certain integrals obtained by
the classical method of steepest descent. The zeros of these complex orthogonal
polynomials are optimal nodes for the computation of oscillatory integrals with
high order stationary points defined on the real axis. In the case of a cubic-type
potential, it is possible to analyze the asymptotic behavior of these orthogonal
polynomials and their zeros by using Riemann-Hilbert techniques. Similar ideas can
be used to study the partition function and the free energy of the corresponding cubic
random matrix model. (Joint and ongoing work with P. Bleher, D. Huybrechs, A. B. J. Kuijlaars)