Logo

Mathematical Sciences Research Institute

Home > Scientific > Workshops > All Workshops

Current all workshops

No Current workshops

Upcoming all workshops

  1. 2018 Blackwell-Tapia Conference and Award Banquet

    The NSF Mathematical Sciences Institutes Diversity Committee hosts the 2018 Blackwell-Tapia Conference and Awards Ceremony. This is the ninth conference since 2000, held every other year, with the location rotating among NSF Mathematics Institutes. The conference and prize honors David Blackwell, the first African-American member of the National Academy of Science, and Richard Tapia, winner of the National Medal of Science in 2010, two seminal figures who inspired a generation of African-American, Native American and Latino/Latina students to pursue careers in mathematics. The Blackwell-Tapia Prize recognizes a mathematician who has contributed significantly to research in his or her area of expertise, and who has served as a role model for mathematical scientists and students from underrepresented minority groups, or has contributed in other significant ways to addressing the problem of underrepresentation of minorities in math.

    The 2018 recipient of the Blackwell-Tapia Prize is Dr. Ronald E. Mickens, the Distinguished Fuller E. Callaway Professor in the Department of Physics at Clark Atlanta University.

    The conference will include scientific talks, poster presentations, panel discussions, ample opportunities for networking, and the awarding of the Blackwell-Tapia Prize. Participants are invited from all career stages and will represent institutions of all sizes across the country, including Puerto Rico.

    Updated on May 08, 2018 12:46 PM PDT
  2. Hamiltonian systems, from topology to applications through analysis II

    Organizers: Alessandra Celletti (University of Rome Tor Vergata), Rafael de la Llave (Georgia Institute of Technology), Diego del-Castillo-Negrete (Oak Ridge National Laboratory), Lawrence Evans (University of California, Berkeley), Philip Morrison (University of Texas at Austin), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)
    Web image
    An invariant set inhibiting transport in a two degree-of-freedom Hamiltonian system (courtesy J. D. Szezech)

    This is a main workshop of the program “Hamiltonian systems, from topology to applications through analysis.”  It  will feature current developments pertaining to finite and infinite-dimensional Hamiltonian systems, with a mix of rigorous theory and applications.  A broad range of topics will be included, e.g., existence of and transport about invariant sets (Arnold diffusion, KAM, etc.),  techniques for projection/reduction of infinite to finite systems, and the role of topological invariants in applications.

    Updated on Jul 13, 2018 01:45 PM PDT
  3. Connections for Women: Derived Algebraic Geometry, Birational Geometry and Moduli Spaces

    Organizers: Julie Bergner (University of Virginia), LEAD Antonella Grassi (University of Pennsylvania), Bianca Viray (University of Washington), Kirsten Wickelgren (Georgia Institute of Technology)
    Image
    Image created by Tristan Hübsch

    This workshop will be on different aspects of Algebraic Geometry relating Derived Algebraic Geometry and Birational Geometry. In particular the workshop will focus on connections to other branches of mathematics and open problems. There will be some colloquium style lectures as well as shorter research talks. The workshop is open to all.

    Updated on Oct 17, 2018 08:50 AM PDT
  4. Introductory Workshop: Derived Algebraic Geometry and Birational Geometry and Moduli Spaces

    Organizers: Julie Bergner (University of Virginia), Bhargav Bhatt (University of Michigan), Christopher Hacon (University of Utah), LEAD Mircea Mustaţă (University of Michigan), Gabriele Vezzosi (Università di Firenze)
    Tuelle picture
    A picture of a singularity, courtesy of Herwig Hauser

    The workshop will survey several areas of algebraic geometry, providing an introduction to the two main programs hosted by MSRI in Spring 2019. It will consist of 7 expository mini-courses and 7 separate lectures, each given by top experts in the field. 

    The focus of the workshop will be the recent progress in derived algebraic geometry, birational geometry and moduli spaces. The lectures will be aimed at a wide audience including advanced graduate students and postdocs with a background in algebraic geometry.
     

    Updated on Sep 10, 2018 11:47 AM PDT
  5. Critical Issues in Mathematics Education 2019: Mathematical Modeling in K-16: Community and Cultural Context

    Organizers: Julia Aguirre (University of Washington - Tacoma), LEAD Cynthia Anhalt (University of Arizona), Staffas Broussard (The Algebra Project), Ricardo Cortez (Tulane University), Michael Driskill (Math for America ), Sol Garfunkel (Consortium for Mathematics and Its Applications (COMAP)), Genetha Gray (Salesforce), Maria Hernandez (North Carolina School of Science and Mathematics), LEAD Rachel Levy (MAA - Mathematical Association of America), Javier Rojo (Oregon State)

    Mathematical Modeling (MM) now has increased visibility in the education system and in the public domain. It appears as a content standard for high school mathematics and a mathematical practice standard across the K-12 curriculum (Common Core Standards; and other states’ standards in mathematics education).  Job opportunities are increasing in business, industry and government for those trained in the mathematical sciences. Quantitative reasoning is foundational for civic engagement and decision-making for addressing complex social, economic, and technological issues. Therefore, we must take action to support and sustain a significant increase in the teaching and learning of mathematical modeling from Kindergarten through Graduate School.
    Mathematical modeling is an iterative process by which mathematical concepts and structures are used to analyze or gain qualitative and quantitative understanding of real world situations. Through modeling students can make genuine mathematical choices and decisions that take into consideration relevant contexts and experiences.
    Mathematical modeling can be a vehicle to accomplish multiple pedagogical and mathematical goals. Modeling can be used to introduce new material, solidify student understanding of previously learned concepts, connect the world to the classroom, make concrete the usefulness (maybe even the advantages) of being mathematically proficient, and provide a rich context to promote awareness of issues of equity, socio-political injustices, and cultural relevance in mathematics.
    A critical issue in math education is that although mathematical modeling is part of the K-12 curriculum, the great majority of teachers have little experience with mathematical modeling as learners of mathematics or in their teacher preparation.  In some cases, mathematics teacher educators have limited experience with mathematical modeling while being largely responsible for preparing future teachers.
    Currently, the knowledge in teaching and learning MM is underdeveloped and underexplored.  Very few MM resources seem to reach the K-16 classrooms.  Collective efforts to build a cohesive curriculum in MM and exploration of effective teaching practices based on research are necessary to make mathematical modeling accessible to teacher educators, teachers and students.
    At the undergraduate level, mathematical modeling has traditionally been reserved for university courses for students in STEM majors beyond their sophomore year.  Many of these courses introduce models but limit the students’ experience to using models that were developed by others rather than giving students the opportunity to generate their own models as is common in everyday life, in modeling competitions and in industry.
    The CIME workshop on MM will bring together mathematicians, teacher educators, K-12 teachers, faculty and people in STEM disciplines.  As partners we can address ways to realize mathematical modeling in the K-12 classrooms, teacher preparation, and lower and upper division coursework at universities.  The content and pedagogy associated with teaching mathematical modeling needs special attention due to the nature of modeling as a process and as a body of content knowledge.

    Updated on Jul 19, 2018 09:48 AM PDT
  6. Derived algebraic geometry and its applications

    Organizers: Dennis Gaitsgory (Harvard University), David Nadler (University of California, Berkeley), LEAD Nikita Rozenblyum (University of Chicago), Peter Scholze (Universität Bonn), Brooke Shipley (University of Illinois at Chicago)

    This workshop will bring together researchers at various frontiers, including arithmetic geometry, representation theory, mathematical physics, and homotopy theory, where derived algebraic geometry has had recent impact. The aim will be to explain the ideas and tools behind recent progress and to advertise appealing questions. A focus will be on moduli spaces, for example of principal bundles with decorations as arise in many settings, and their natural structures.    

    Updated on Sep 06, 2018 04:01 PM PDT
  7. Hot Topics: Recent progress in Langlands Program

    Organizers: Mark Kisin (Harvard University), Elena Mantovan (California Institute of Technology), LEAD Xinwen Zhu (California Institute of Technology)

    The purpose of the workshop is to explain Vincent Lafforgue's ground breaking work, constructing the automorphic to Galois direction of the Langlands correspondence for function fields. There will also be a number of talks on more recent developments and related results.

    Updated on Sep 06, 2018 04:11 PM PDT
  8. Recent Progress in Moduli Theory

    Organizers: Lucia Caporaso (University of Rome, Roma 3), LEAD Sándor Kovács (University of Washington), Martin Olsson (University of California, Berkeley)
    Moduli b

    This workshop will be focused on presenting the latest developments in moduli theory, including (but not restricted to) recent advances in compactifications of moduli spaces of higher dimensional varieties, the birational geometry of moduli spaces, abstract methods including stacks, stability criteria, and applications in other disciplines. 

    Updated on Sep 06, 2018 04:06 PM PDT
  9. Commutative Algebra and its Interaction with Algebraic Geometry

    Organizers: Craig Huneke (University of Virginia), Sonja Mapes (University of Notre Dame), Juan Migliore (University of Notre Dame), LEAD Claudia Polini (University of Notre Dame), Claudiu Raicu (University of Notre Dame)
    Image
    The figure represents a blow-up. The so called blow-up algebras or Rees rings are the algebraic realizations of such blow-ups.

    Linkage is a method for classifying ideals in local rings. Residual intersections is a generalization of linkage to the case where the two `linked' ideals  need not have the same codimension. Residual intersections are ubiquitous: they play an important role in the study of blowups, branch and multiple point loci, secant varieties, and Gauss images; they appear naturally in intersection theory; and they have close connections with integral closures of ideals. 

    Commutative algebraists have long used the Frobenius or p-th power map to study commutative rings containing a finite fi eld. The theory of tight closure and test ideals has widespread applications to the study of symbolic powers and to Briancon-Skoda type theorems for equi-characteristic rings.

    Numerical conditions for the integral dependence of ideals and modules have a wealth of applications, not the least of which is in equisingularity theory. There is a long history of generalized criteria for integral dependence of ideals and modules based on variants of the Hilbert-Samuel and the Buchsbaum-Rim multiplicity that still require some remnants of finite length assumptions.

    The Rees ring and the special fiber ring of an ideal arise in the process of blowing up a variety along a subvariety. Rees rings and special fiber rings also describe, respectively, the graphs and the images of rational maps between projective spaces. A difficult open problem in commutative algebra, algebraic geometry, elimination theory, and geometric modeling is to determine explicitly the equations defining graphs and images of rational maps.

    The school will consist of the following four courses with exercise sessions plus a Macaulay2 workshop

    • Linkage and residual intersections
    • Characteristic p methods and applications
    • Blowup algebras
    • Multiplicity theory

    Updated on Aug 09, 2018 12:27 PM PDT
  10. Random and arithmetic structures in topology

    Organizers: LEAD Alex Furman (University of Illinois at Chicago), Tsachik Gelander (Weizmann Institute of Science)
    Blurred 016

    The study of locally symmetric manifolds, such as closed hyperbolic manifolds, involves geometry of the corresponding symmetric space, topology of towers of its finite covers, and number-theoretic aspects that are relevant to possible constructions.
    The workshop will provide an introduction to these and closely related topics such as lattices, invariant random subgroups, and homological methods.

    Updated on Apr 20, 2018 03:02 PM PDT
  11. MSRI-UP 2019: Combinatorics and Discrete Mathematics

    Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), LEAD Rebecca Garcia (Sam Houston State University), Pamela Harris (Williams College), Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.

    In 2019, MSRI-Up will focus on the application of combinatorial arguments and techniques to enumerate, examine, and investigate the existence of discrete mathematical structures with certain properties. The areas of interest for these applications encompass a wide range of mathematical fields and will include algebra, number theory, and graph theory, through weight multiplicity computations, the study of vector partition functions, and graph domination problems, respectively. The research program will be led by Dr. Pamela E. Harris, Assistant Professor of Mathematics at Williams College.

    Updated on Oct 10, 2018 02:03 PM PDT
  12. Representation stability

    Organizers: Thomas Church (Stanford University), LEAD Andrew Snowden (University of Michigan), Jenny Wilson (Stanford University)
    Image
    An illustration of an adaptation of Quillen's classical homological stability spectral sequence argument

    This summer school will give an introduction to representation stability, the study of algebraic structural properties and stability phenomena exhibited by sequences of representations of finite or classical groups -- including sequences arising in connection to hyperplane arrangements, configuration spaces, mapping class groups, arithmetic groups, classical representation theory, Deligne categories, and twisted commutative algebras.  Representation stability incorporates tools from commutative algebra, category theory, representation theory, algebraic combinatorics, algebraic geometry, and algebraic topology. This workshop will assume minimal prerequisites, and students in varied disciplines are encouraged to apply. 

    Updated on Aug 03, 2018 11:17 AM PDT
  13. Séminaire de Mathématiques Supérieures 2019: Current trends in Symplectic Topology

    Organizers: Octav Cornea (Université de Montréal), Yakov Eliashberg (Stanford University), Michael Hutchings (University of California, Berkeley), Egor Shelukhin (Université de Montréal)
    Image
    A Holomorphic Curve

    Symplectic topology is a fast developing branch of geometry that has seen phenomenal growth in the last twenty years. This two weeks long summer school, organized in the setting of the Séminaire de Mathématiques Supérieures, intends to survey some of the key directions of development in the subject today thus covering: advances in homological mirror symmetry; applications to hamiltonian dynamics; persistent homology phenomena; implications of flexibility and the dichotomy flexibility/rigidity; legendrian contact homology; embedded contact homology and four-dimensional holomorphic techniques and others. With the collaboration of many of the top researchers in the field today, the school intends to serve as an introduction and guideline to students and young researchers who are interested in accessing this diverse subject. 

    Updated on Sep 10, 2018 12:18 PM PDT
  14. Geometric Group Theory

    Organizers: LEAD Rita Jiménez Rolland (Instituto de Matematicás, UNAM-Oaxaca), LEAD Pierre Py (Instituto de Matematicás, UNAM-Ciudad Universitaria)
    Image
    Rips's δ-thin triangle condition for Gromov hyperbolicity of metric spaces (Stomatapoll)

    Geometric group theory studies discrete groups by understanding the connections between algebraic properties of these groups and topological and geometric properties of the spaces on which they act. The aim of this summer school is to  introduce graduate students to specific central topics and recent developments in geometric group theory. The school will also include students presentations to give the participants an opportunity to practice their speaking skills in mathematics.  Finally, we hope that this meeting will help connect Latin American students with their American and Canadian counterparts in an environment that encourages discussion and collaboration. 

    Updated on Aug 06, 2018 11:13 AM PDT
  15. Polynomial Method

    Organizers: Adam Sheffer (Bernard M. Baruch College, CUNY), LEAD Joshua Zahl (University of British Columbia)
    Twolines3d
    from distinct distances in the plane to line incidences in R^3

    In the past eight years, a number of longstanding open problems in combinatorics were resolved using a new set of algebraic techniques. In this summer school, we will discuss these new techniques as well as some exciting recent developments

    Updated on Jun 19, 2018 04:57 PM PDT
  16. Recent topics on well-posedness and stability of incompressible fluid and related topics

    Organizers: LEAD Yoshikazu Giga (University of Tokyo), Maria Schonbek (University of California, Santa Cruz), Tsuyoshi Yoneda (University of Tokyo)
    Image
    Fluid-flow stream function color-coded by vorticity in 3D flat torus calculated by K. Nakai (The University of Tokyo)

    The purpose of the workshop is to introduce graduate students to fundamental results on the Navier-Stokes and the Euler equations, with special emphasis on the solvability of its initial value problem with rough initial data as well as the large time behavior of a solution. These topics have long research history. However, recent studies clarify the problems from a broad point of view, not only from analysis but also from detailed studies of orbit of the flow.

    Updated on Jul 31, 2018 11:48 AM PDT
  17. Toric Varieties

    Organizers: David Cox (University of Massachusetts, Amherst), Henry Schenck (Iowa State University)
    Firstchoice cropped
    This simplicial fan in 3-dimensional space

    Toric varieties are algebraic varieties defined by combinatorial data, and there is a wonderful interplay between algebra, combinatorics and geometry involved in their study. Many of the key concepts of abstract algebraic geometry (for example, constructing a variety by gluing affine pieces) have very concrete interpretations in the toric case, making toric varieties an ideal tool for introducing students to abstruse concepts.

    Updated on Sep 21, 2018 04:02 PM PDT
  18. Mathematics of Machine Learning

    Organizers: Sebastien Bubeck (Microsoft Research), Anna Karlin (University of Washington), Yuval Peres (University of California, Berkeley), Adith Swaminathan (Microsoft Research)
    Image
    Popular visualization of the MNIST dataset

    Learning theory is a rich field at the intersection of statistics, probability, computer science, and optimization. Over the last decades the statistical learning approach has been successfully applied to many problems of great interest, such as bioinformatics, computer vision, speech processing, robotics, and information retrieval. These impressive successes relied crucially on the mathematical foundation of statistical learning.

    Recently, deep neural networks have demonstrated stunning empirical results across many applications like vision, natural language processing, and reinforcement learning. The field is now booming with new mathematical problems, and in particular, the challenge of providing theoretical foundations for deep learning techniques is still largely open. On the other hand, learning theory already has a rich history, with many beautiful connections to various areas of mathematics (e.g., probability theory, high dimensional geometry, game theory). The purpose of the summer school is to introduce graduate students (and advanced undergraduates) to these foundational results, as well as to expose them to the new and exciting modern challenges that arise in deep learning and reinforcement learning.

    Updated on Sep 21, 2018 04:01 PM PDT
  19. H-Principle

    Organizers: LEAD Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)
    072 04 small
    The image of a large sphere isometrically embedded into a small space through a C^1 embedding. (Attributions: E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert)

    This two week summer school will introduce graduate students to the theory of h-principles.  After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, fluid dynamics, and foliation theory.

    Updated on Sep 21, 2018 04:02 PM PDT
  20. Connections for Women: Holomorphic Differentials in Mathematics and Physics

    Organizers: Laura Fredrickson (Stanford University), Lotte Hollands (Heriot-Watt University, Riccarton Campus), LEAD Qiongling Li (California Institute of Technology; Aarhus University), Anna Wienhard (Ruprecht-Karls-Universität Heidelberg), Grace Work (University of Illinois at Urbana-Champaign)
    Quadmesh2
    Some holomorphic differentials on a genus 2 surface, with close up views of singular points, image courtesy Jian Jiang.

    This two-day workshop will consist of various talks given by prominent female mathematicians on topics of new developments in the role of holomorphic differentials on Riemann surfaces. These will be appropriate for graduate students, post-docs, and researchers in areas related to the program.  

    This workshop is open to all mathematicians.

    Updated on May 10, 2018 09:01 AM PDT
  21. Introductory Workshop: Holomorphic Differentials in Mathematics and Physics

    Organizers: LEAD Jayadev Athreya (University of Washington), Sergei Gukov (California Institute of Technology), Andrew Neitzke (University of Texas, Austin), Anna Wienhard (Ruprecht-Karls-Universität Heidelberg)
    Quadmesh2
    Some holomorphic differentials on a genus 2 surface, with close up views of singular points, image courtesy Jian Jiang.

    Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In this introductory workshop, we will bring junior and senior researchers from this diverse range of subjects together in order to explore common themes and unexpected connections.

    Updated on Nov 21, 2017 04:24 PM PST
  22. Connections for Women: Microlocal Analysis

    Organizers: Tanya Christiansen (University of Missouri), LEAD Raluca Felea (Rochester Institute of Technology)
    315 image1

    This workshop will provide a gentle introduction to a selection of applications of microlocal analysis.  These may be drawn from among geometric microlocal analysis, inverse problems, scattering theory, hyperbolic dynamical systems,  quantum chaos and relativity.  The workshop will also provide  a panel discussion, a poster session and an introduction/research session. 

    This workshop is open to all mathematicians.

    Updated on Jan 11, 2018 12:35 PM PST
  23. Introductory Workshop: Microlocal Analysis

    Organizers: Pierre Albin (University of Illinois at Urbana-Champaign), LEAD Raluca Felea (Rochester Institute of Technology), Andras Vasy (Stanford University)
    315 image1

    Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory… This workshop will provide a comprehensive introduction to the field for postdocs and graduate students as well as specialists outside the field, building up from standard facts about the Fourier transform, distributions and basic functional analysis.

    Updated on Sep 24, 2018 01:43 PM PDT
  24. Recent developments in microlocal analysis

    Organizers: LEAD Pierre Albin (University of Illinois at Urbana-Champaign), Colin Guillarmou (Université de Paris XI (Paris-Sud)), Andras Vasy (Stanford University)
    315 image1

    Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory, hyperbolic dynamical systems, probability… As this description shows microlocal analysis has become a very broad area. Due to its breadth, it is a challenge for researchers to be aware of what is happening in other parts of the field, and the impact this may have in their own research area. The purpose of this workshop is thus to bring together researchers from different parts of microlocal analysis and its applications to facilitate the transfer of new ideas. 

    Updated on May 08, 2018 03:21 PM PDT
  25. Holomorphic Differentials in Mathematics and Physics

    Organizers: LEAD Jayadev Athreya (University of Washington), Steven Bradlow (University of Illinois at Urbana-Champaign), Sergei Gukov (California Institute of Technology), Andrew Neitzke (University of Texas, Austin), Anton Zorich (Institut de Mathematiques de Jussieu)
    Sn image
    An example of a spectral network associated to the group SL(4).

    Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In some cases the areas themselves (such as stability conditions on Fukaya-type categories, links to quantum integrable systems, or the physically derived construction of so-called spectral networks) are new, while in others the novelty lies more in the role of the holomorphic differentials (for example in the study of billiards in polygons, special - Hitchin or higher Teichmuller - components of representation varieties, asymptotic properties of Higgs bundle moduli spaces, or in new interactions with algebraic geometry).

    It is remarkable how widely scattered are the motivating questions in these areas, and how diverse are the backgrounds of the researchers pursuing them. Bringing together experts in this wide variety of fields to explore common interests and discover unexpected connections is the main goal of our program. Our workshop will be of interest to those working in many different fields, including low-dimensional dynamical systems (via the connection to billiards); differential geometry (Higgs bundles and related moduli spaces); and different types of theoretical physics (electron transport and supersymmetric quantum field theory).

    Updated on May 14, 2018 02:00 PM PDT
  26. Connections for Women: Quantum Symmetries

    Organizers: Emily Peters (Loyola University), LEAD Chelsea Walton (University of Illinois at Urbana-Champaign)
    Cfw image
    Photo by drmakete lab on Unsplash

    This workshop will feature several talks by experts, along with numerous 5-minute presentations by junior mathematicians, on topics related to Quantum Symmetry. Such topics will include tensor categories, subfactors, Hopf algebras, topological quantum field theory and more. There will also be a panel discussion on professional development. The majority of the speakers and panelists for this event will be women and gender minorities, and members of these groups and of other underrepresented groups are especially encouraged to attend. This workshop is open to all mathematicians.

    Updated on Mar 26, 2018 12:18 PM PDT
  27. Introductory Workshop: Quantum Symmetries

    Organizers: Vaughan Jones (Vanderbilt University), Victor Ostrik (University of Oregon), Emily Peters (Loyola University), LEAD Noah Snyder (Indiana University)
    Jellyfish
    Jellyfish floating to the surface, as in the evaluation algorithm for certain planar algebras.

    This workshop will consist of introductory minicourses on key topics in Quantum Symmetry: fusion categories, modular tensor categories, Hopf algebras, subfactors and planar algebras, topological field theories, conformal nets, and topological phases of matter.  These minicourses will be introductory and are aimed at giving semester participants exposure to the main ideas of subfields other than their own.

    Updated on Apr 09, 2018 02:20 PM PDT
  28. Connections for Women: Higher Categories and Categorification

    Organizers: Emily Riehl (Johns Hopkins University), LEAD Marcy Robertson (University of Melbourne)
    Picture of graph%281%29
    Picture of a Feynman graph.

    This two-day workshop will survey notable developments in the foundations and applications of higher category theory. It will consist of two mini-courses given by emerging female leaders in the subject: Claudia Scheimbauer and Nathalie Wahl.  This will be paired with a problem sessions lead by selected "TA's", themselves experts in higher structures.  Each lecture series will be tailored to a diverse audience, accessible to graduate students and non-expert researchers with some background in homological algebra.  

    The majority of the speakers and panelists for this event will be women and gender minorities, and members of these groups and of other underrepresented groups are especially encouraged to attend. This workshop is open to all mathematicians.

    Updated on Sep 14, 2018 02:07 PM PDT
  29. Introductory Workshop: Higher Categories and Categorification

    Organizers: LEAD David Ayala (Montana State University), Emily Riehl (Johns Hopkins University), Christopher Schommer-Pries (University of Notre Dame), Peter Teichner (Max-Planck-Institut für Mathematik)
    Image
    relations among 2-morphisms in the 2-dimensional unoriented bordism bicategory

    This workshop will survey notable developments and applications of higher category theory; it will be a venue for end-users to share their vision of how to apply the theory, as well as developers to share technical advancements.  It will consist of 6 series of 3 lectures, each given by instrumental end-users & developers of higher category theory, together with a few question-answer sessions.  Each lecture series will be tailored to a diverse audience, accessible to graduate students and non-expert researchers with some background in homological also algebra.  The content of these lecture series will concern the following topics.

    • K-theory: categorification, non-commutative motives, trace methods; 
    • TQFT: functorial field theories, factorization homology.
    • Parametrized higher category theory: stratifications, equivariant homotopy theory, operads, deformation theory and Koszul duality. 
    • Synthetic higher category theory: model-independent characterizations, cosmoi.  

    Updated on Sep 14, 2018 02:08 PM PDT
  30. Tensor categories and topological quantum field theories

    Organizers: Scott Morrison (Australian National University), Eric Rowell (Texas A & M University), LEAD Claudia Scheimbauer (University of Oxford), Christopher Schommer-Pries (University of Notre Dame)
    Image
    Topological field theory studies the interplay of algebraic and topological structure (image credit Kevin Walker)

    The workshop will concern the latest developments in the mathematical study of quantum field theories. The focus will be on the interplay among topics such as higher category theory, as illustrated by the cobordism hypothesis, conformal field theory, tensor categories describing the quantum symmetries, and the relation to topological phases of matter.

    Updated on Jul 03, 2018 04:02 PM PDT
  31. (∞, n)-categories,factorization homology, and algebraic K-theory

    Organizers: LEAD Clark Barwick (Massachusetts Institute of Technology), David Gepner (Purdue University), David Nadler (University of California, Berkeley), Marcy Robertson (University of Melbourne)
    Image

    This workshop will focus on recent developments in factorization homology, parametrized homotopy theory, and algebraic K-theory.  These seemingly disparate topics are unified by a common methodology, which leverages universal properties and unforeseen descent by way of higher category theory. Furthermore, they enjoy powerful and complementary roles in application to the cyclotomic trace.  This workshop will be a venue for experts in these areas to present new results, make substantive connections across fields, and suggest and contextualize outstanding questions and problems.  It will consist of 9 speakers, each delivering a 1-hour morning talk and a 1-hour afternoon talk, in addition to a session reserved for drawing attention to an assortment of outstanding problems.

    Updated on Jun 25, 2018 10:56 AM PDT
  32. Connections for Women: Random and Arithmetic Structures in Topology

    Organizers: LEAD Ursula Hamenstädt (Rheinische Friedrich-Wilhelms-Universität Bonn), LEAD Fanny Kassel (Institut des Hautes Études Scientifiques (IHES))
    Msri image

    This two-day workshop will consist of various talks given by prominent female mathematicians in the field.  These will be appropriate for graduate students, post-docs, and researchers in areas related to the program.  The workshop will also include a professional development session.

    This workshop is open to all mathematicians.

    Updated on Jun 12, 2018 09:17 AM PDT

Past all workshops

  1. Workshop 2018 Modern Math Workshop

    Organizers: Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), LEAD Elvan Ceyhan (SAMSI - Statistical and Applied Mathematical Sciences Institute), Leslie McClure (SAMSI - Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))

    The Mathematical Sciences Diversity Initiative holds a Modern Math Workshop (MMW) prior to the SACNAS National Conference each year. The 2018 MMW will be hosted by SAMSI at the Henry B. Gonzalez Convention Center, San Antonio, Texas on October 10th and 11th, 2018. This workshop is intended to encourage undergraduates, graduate students and recent PhDs from underrepresented minority groups to pursue careers in the mathematical sciences and build research and mentoring networks. The Modern Math Workshop is a pre-conference event at the SACNAS National Conference. The MMW includes a keynote lecture, mini-courses, research talks, a question and answer session and a reception.

    Updated on Mar 15, 2018 12:33 PM PDT
  2. Workshop Hamiltonian systems, from topology to applications through analysis I

    Organizers: Alessandra Celletti (University of Rome Tor Vergata), Rafael de la Llave (Georgia Institute of Technology), Diego del-Castillo-Negrete (Oak Ridge National Laboratory), Lawrence Evans (University of California, Berkeley), LEAD Philip Morrison (University of Texas at Austin), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)
    Web image
    Depiction of the standard nontwist map (courtesy of G.Miloshevich).

    This is a main workshop of the program “Hamiltonian systems, from topology to applications through analysis” and is a companion to the workshop next month (November 26-30).  Both workshops will feature current developments pertaining to finite and infinite-dimensional Hamiltonian systems, with a mix of rigorous theory and applications.  A broad range of topics will be included, e.g., existence of and transport about invariant sets (Arnold diffusion, KAM, etc.),  techniques for projection/reduction of infinite to finite systems, and the role of topological invariants in applications.

    Updated on Oct 15, 2018 12:28 PM PDT
  3. Workshop Hot Topics: Shape and Structure of Materials

    Organizers: Myfanwy Evans (TU Berlin), LEAD Frank Lutz (TU Berlin), Dmitriy Morozov (Lawrence Berkeley National Laboratory), James Sethian (University of California, Berkeley), Ileana Streinu (Smith College)
    Msri lbnl pic 3
    Tangled honeycomb networks | and the Advanced Light Source at LBNL

    The fascinating and complicated microstructures of materials that are now visible through advanced imaging techniques challenge the frontiers of characterisation and understanding. At the same time, developments in modern geometric and topological techniques are beginning to illuminate important features of material structures, while the microstructures themselves and the analysis and prediction of their macroscopic properties are inspiring new directions in pure and applied mathematics. In a collaboration with the Lawrence Berkeley National Laboratory (LBNL), this workshop aims at intensifying the interaction of mathematicians with material scientists, physicists and chemists on the structural description and design of materials.

    Updated on Oct 05, 2018 03:08 PM PDT
  4. Workshop Introductory Workshop: Hamiltonian systems, from topology to applications through analysis

    Organizers: Marie-Claude Arnaud (Université d'Avignon), Wilfrid Gangbo (University of California, Los Angeles), LEAD Vadim Kaloshin (University of Maryland), Robert Littlejohn (University of California, Berkeley), Philip Morrison (University of Texas at Austin)

    The introductory workshop will cover the large variety of topics of the semester: weak KAM theory, Mather theory, Hamilton-Jacobi equations, integrable systems and integrable planar billiards, instability formation for nearly integrable systems, celestial mechanics, billiards, spectral rigidity, Astrodynamics, motion of satellites, Plasma Physics, Accelerator Physics, Theoretical Chemistry, and Atomic Physics.

    The workshop will consist of approximately 18 lectures to introduce the main topics relevant to the semester. That will leave time for discussions and exchange between the participants.

    Updated on Oct 05, 2018 02:51 PM PDT
  5. Workshop Connections for Women: Hamiltonian Systems, from topology to applications through analysis

    Organizers: Marie-Claude Arnaud (Université d'Avignon), LEAD Basak Gurel (University of Central Florida), Tere Seara (Universitat Politècnica de Catalunya)
    330px std map 0.971635
    Representing the orbits of the standard map for K = 1.2

    This workshop will feature lectures on a variety of topics in Hamiltonian dynamics given by leading researchers in the area. The talks will focus on recent developments in subjects closely related to the program such as Arnold diffusion, celestial mechanics, Hamilton-Jacobi equations, KAM methods, Aubry-Mather theory and symplectic topological techniques, and on applications. The workshop is open to all mathematicians in areas related to the program.

    Updated on Aug 21, 2018 09:28 AM PDT
  6. Summer Graduate School From Symplectic Geometry to Chaos

    Organizers: Marcel Guardia (Universitat Politecnica de Catalunya), Vadim Kaloshin (University of Maryland), Leonid Polterovich (Tel Aviv University)

    The purpose of the summer school is to introduce graduate students to state-of-the-art methods and results in Hamiltonian systems and symplectic geometry. We focus on recent developments on the study of chaotic motion in Hamiltonian systems and its applications to models in Celestial Mechanics.

    Updated on Jul 31, 2018 12:12 PM PDT
  7. Summer Graduate School Representations of High Dimensional Data

    Organizers: Blake Hunter (Microsoft), Deanna Needell (University of California, Los Angeles)
    Image

    In today's world, data is exploding at a faster rate than computer architectures can handle. This summer school will introduce students to modern and innovative mathematical techniques that address this phenomenon. Hands-on topics will include data mining, compression, classification, topic modeling, large-scale stochastic optimization, and more.

    Updated on Jul 19, 2018 11:45 AM PDT
  8. Summer Graduate School IAS/PCMI 2018: Harmonic Analysis

    Organizers: Carlos Kenig (University of Chicago), Fanghua Lin (New York University, Courant Institute), Svitlana Mayboroda (University of Minnesota, Twin Cities), Tatiana Toro (University of Washington)

    Harmonic analysis is a central field of mathematics with a number of applications to geometry, partial differential equations, probability, and number theory, as well as physics, biology, and engineering. The Graduate Summer School will feature mini-courses in geometric measure theory, homogenization, localization, free boundary problems, and partial differential equations as they apply to questions in or draw techniques from harmonic analysis. The goal of the program is to bring together students and researchers at all levels interested in these areas to share exciting recent developments in these subjects, stimulate further interactions, and inspire the new generation to pursue research in harmonic analysis and its applications.

    Updated on Jun 20, 2018 12:17 PM PDT
  9. Summer Graduate School Derived Categories

    Organizers: Nicolas Addington (University of Oregon), LEAD Alexander Polishchuk (University of Oregon)

    The goal of the school is to give an introduction to basic techniques for working with derived categories, with an emphasis on the derived categories of coherent sheaves on algebraic varieties. A particular goal will be to understand Orlov’s equivalence relating the derived category of a projective hypersurface with matrix factorizations of the corresponding polynomial.

    Updated on Jul 05, 2018 09:05 AM PDT
  10. Summer Graduate School H-principle

    Organizers: Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)
    072 04 small
    The image of a large sphere isometrically embedded into a small space through a C^1 embedding. (Attributions: E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert)

    This two week summer school will introduce graduate students to the theory of h-principles.  After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, and foliation theory.

    Updated on Jun 20, 2018 12:17 PM PDT
  11. Summer Graduate School Mathematical Analysis of Behavior

    Organizers: Ann Hermundstad (Janelia Research Campus, HHMI), Vivek Jayaraman (Janelia Research Campus, HHMI), Eva Kanso (University of Southern California), L. Mahadevan (Harvard University)
    Image

    Explore Outstanding Phenomena in Animal Behavior

    Jointly hosted by Janelia and the Mathematical Sciences Research Institute (MSRI), this program will bring together 15-20 advanced PhD students with complementary expertise who are interested in working at the interface of mathematics and biology. Emphasis will be placed on linking behavior to neural dynamics and exploring the coupling between these processes and the natural sensory environment of the organism. The aim is to educate a new type of global scientist that will work collaboratively in tackling complex problems in cellular, circuit and behavioral biology by combining experimental and computational techniques with rigorous mathematics and physics.

    Updated on Jun 20, 2018 12:16 PM PDT
  12. MSRI-UP MSRI-UP 2018: The Mathematics of Data Science

    Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), LEAD Maria Franco (Queensborough Community College (CUNY); MSRI - Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), David Uminsky (University of San Francisco), Suzanne Weekes (Worcester Polytechnic Institute)

    The MSRI-UP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.

    In 2018, MSRI-UP will focus on the core role of (linear) algebra in current research and application areas of Data Science ranging from unsupervised learning, clustering and networks, to algebraic signal processing and feature extraction, to the central role linear algebra plays in deep machine learning.  The research program will be led by Dr. David Uminsky, Associate Professor of Mathematics and Statistics at the University of San Francisco.

    Updated on Aug 02, 2018 09:47 AM PDT
  13. Summer Graduate School The ∂-Problem in the Twenty-First Century

    Organizers: Debraj Chakrabarti (Central Michigan University), Jeffery McNeal (Ohio State University)

    This Summer Graduate School will introduce students to the modern theory of the  inhomogeneous Cauchy-Riemann equation, the fundamental partial differential equation of Complex Analysis. This theory uses powerful tools of partial differential equations, differential geometry and functional analysis to obtain a refined understanding of holomorphic functions on complex manifolds. Besides students planning to work in complex analysis, this course will be valuable to those planning to study partial differential equations, complex differential and algebraic geometry, and operator theory. The exposition will be self-contained and the prerequisites will be kept at a minimum

    Updated on Jun 21, 2018 01:13 PM PDT
  14. Summer Graduate School Séminaire de Mathématiques Supérieures 2018: Derived Geometry and Higher Categorical Structures in Geometry and Physics

    Organizers: Anton Alekseev (Université de Genève), Ruxandra Moraru (University of Waterloo), Chenchang Zhu (Universität Göttingen)

    Higher categorical structures and homotopy methods have made significant influence on geometry in recent years. This summer school is aimed at transferring these ideas and fundamental technical tools to the next generation of mathematicians.

    The summer school will focus on the following four topics:  higher categorical structures in geometry, derived geometry, factorization algebras, and their application in physics.  There will be eight to ten mini courses on these topics, including mini courses led by Chirs Brav, Kevin Costello, Jacob Lurie, and Ezra Getzler. The prerequisites will be kept at a minimum, however, a introductory courses in differential geometry, algebraic topology and abstract algebra are recommended.

    Updated on Jun 20, 2018 12:16 PM PDT
  15. Workshop The 2018 Infinite Possibilities Conference

    Organizers: Alejandra Alvarado (U.S. Navy), Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), Katharine Gurski (Howard University), LEAD Lily Khadjavi (Loyola Marymount University), Candice Price (University of San Diego), Kimberly Sellers (Georgetown University), Talitha Washington (Howard University), Kimberly Weems (North Carolina Central University), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))
    Ipc logo alt

    The Infinite Possibilities Conference (IPC) is a national conference that is designed to promote, educate, encourage and support women of color interested in mathematics and statistics, as a step towards addressing the underrepresentation of African-Americans, Latinas, Native Americans, and Pacific Islanders in these fields. 

    IPC aims to:

    • fulfill a need for role models and community-building
    • provide greater access to information and resources for success in graduate school and beyond
    • raise awareness of factors that can support or impede underrepresented women in the mathematical sciences

    A unique gathering, the conference brings together participants from across the country, at all stages of education and career, for mentoring and mathematics.

    Updated on May 18, 2018 12:18 PM PDT
  16. Workshop Representations of Finite and Algebraic Groups

    Organizers: Robert Guralnick (University of Southern California), Alexander Kleshchev (University of Oregon), Gunter Malle (Universität Kaiserslautern), Gabriel Navarro (University of Valencia), LEAD Pham Tiep (Rutgers University)

    The workshop will bring together key researchers working in various areas of Group Representation Theory to strengthen the interaction and collaboration between them and to make further progress on a number of basic problems and conjectures in the field. Topics of the workshop include
    -- Global-local conjectures in the representation theory of finite groups
    -- Representations and cohomology of simple, algebraic and finite groups
    -- Connections to Lie theory and categorification, and
    -- Applications to group theory, number theory, algebraic geometry, and combinatorics.

    Updated on May 25, 2018 11:23 AM PDT
  17. Workshop Structures in Enumerative Geometry

    Organizers: Mina Aganagic (University of California, Berkeley), Jim Bryan (University of British Columbia), LEAD Davesh Maulik (Massachusetts Institute of Technology), Balazs Szendroi (University of Oxford), Richard Thomas (Imperial College, London)

    The purpose of the workshop is to bring together specialists to work on understanding the many-faceted mathematical structures underlying problems in enumerative geometry. Topics represented at the workshop will include: geometric representation theory, supersymmetric gauge theory, string theory, knot theory, and derived geometry, all of which have had a profound effect on the development of modern enumerative geometry.

    Updated on Jun 29, 2018 10:50 AM PDT
  18. Workshop Hot Topics: The Homological Conjectures

    Organizers: Bhargav Bhatt (University of Michigan), Srikanth Iyengar (University of Utah), Wieslawa Niziol (CNRS, Ecole Normale Superieure de Lyon), LEAD Anurag Singh (University of Utah)

    The homological conjectures in commutative algebra are a network of conjectures that have generated a tremendous amount of activity in the last 50 years. They had largely been resolved for commutative rings that contain a field, but, with the exception of some low dimensional cases, several remained open in mixed characteristic --- until recently, when Yves André announced a proof of Hochster's Direct Summand Conjecture. The progress comes from systematically applying Scholze's theory of perfectoid spaces, which had already shown its value by solving formidable problems in number theory and representation theory. One of the goals of the workshop is to cover the ingredients going into the proofs of the Direct Summand Conjecture.

    Updated on Mar 23, 2018 11:01 AM PDT
  19. Workshop Latinx in the Mathematical Sciences Conference 2018

    Organizers: Federico Ardila (San Francisco State University), Ricardo Cortez (Tulane University), Tatiana Toro (University of Washington), Mariel Vazquez (University of California, Davis)

    On March 8-10, 2018, IPAM will host a conference showcasing the achievements of Latinx in the mathematical sciences. The goal of the conference is to encourage Latinx to pursue careers in the mathematical sciences, to promote the advancement of Latinx currently in the discipline, to showcase research being conducted by Latinx at the forefront of their fields, and, finally, to build a community around shared academic interests. The conference will be held on the UCLA campus in Los Angeles, CA. It will begin at noon on Thursday, March 8.

    This conference is sponsored by the Mathematical Sciences Institutes Diversity Initiative, with funding from the National Science Foundation Division of Mathematical Sciences.

    Updated on Oct 23, 2017 04:53 PM PDT
  20. Workshop Critical Issues in Mathematics Education 2018: Access to mathematics by opening doors for students currently excluded from mathematics

    Organizers: Aditya Adiredja (University of Arizona), LEAD Julia Aguirre (University of Washington - Tacoma), Kate Belin (Fannie Lou Hamer Freedom High School), LEAD Ricardo Cortez (Tulane University), Michael Driskill (Math for America ), Nicole Joseph (Vanderbilt University), Katherine Stevenson (California State University, Northridge), Francis Su (Harvey Mudd College), Maria del Rosario Zavala (San Francisco State University)

    Our mathematics education system is inequitable. It operates in ways that leave a significant proportion of students with negative mathematics experiences and inadequate mathematical preparation. The problem is historical and systemic, and the students most disaffected by the current system are overwhelmingly Black and Latino, Indigenous, poor, women, immigrant or first generation college students. If our mathematics community is to sustainably grow and thrive, mathematics education at all levels must be transformed.

    This workshop focuses on students for whom we do not yet successfully ensure access to and advancement in mathematics. Sessions will share relevant programmatic efforts and innovative research that have been shown to maintain or increase students’ engagement and interests in mathematics across k-12, undergraduate and graduate education. The sessions will focus particularly on reproducible efforts that affirm those students’ identities and their diverse intellectual resources and lived experiences. These efforts at various levels of mathematics education will highlight ways in which meaningful experiences in mathematics can disrupt ongoing systemic oppression. Participants will leave with conceptual and practical ways to open up and elevate mathematics education where all students thrive.

    Group Photo

    Updated on Jul 03, 2018 09:03 AM PDT
  21. Workshop Introductory Workshop: Group Representation Theory and Applications

    Organizers: Robert Guralnick (University of Southern California), Gunter Malle (Universität Kaiserslautern)

    The workshop will survey various important and active areas of the representation theory of finite and algebraic groups, and introduce the audience to several basic open problems in the area. It will consist of 6 series of 3 lectures each given by top experts in the field. The lectures are designed for a diverse audience and will be accessible to non-specialists and graduate students with some background in representation theory. Topics covered include Representation theory of algebraic groups, Decomposition numbers of finite groups of Lie type, Deligne-Lusztig theory,  Block theory, Categorification, and Local-global-conjectures.

    Updated on Feb 16, 2018 09:33 AM PST
  22. Workshop Connections for Women: Group Representation Theory and Applications

    Organizers: Karin Erdmann (University of Oxford), Julia Pevtsova (University of Washington)

    This intensive two day workshop will introduce graduate students and recent PhD’s to some current topics of research in Representation Theory. It will consists of a mixture of survey talks on the hot topics in the area given by leading experts and research talks by junior mathematicians covering subjects such as new developments in character theory, group cohomology, representations of Lie algebras and algebraic groups, geometric representation theory, and categorification. 

    This workshop is open to all mathematicians.

    Updated on Apr 10, 2018 10:49 AM PDT
  23. Workshop Introductory Workshop: Enumerative Geometry Beyond Numbers

    Organizers: Denis Auroux (University of California, Berkeley), LEAD Chiu-Chu Melissa Liu (Columbia University), Andrei Okounkov (Columbia University)

    This workshop will consist of expository mini-courses and lectures introducing various aspects of modern enumerative geometry, among which: enumeration via intersection theory on moduli spaces of curves or sheaves, including Gromov-Witten and Donaldson-Thomas invariants; motivic and K-theoretic refinement of these invariants; and categorical invariants (derived categories of coherent sheaves, Fukaya categories).

    Updated on Apr 06, 2018 01:03 PM PDT
  24. Workshop Connections for Women: Enumerative Geometry Beyond Numbers

    Organizers: Barbara Fantechi (International School for Advanced Studies (SISSA/ISAS)), LEAD Chiu-Chu Melissa Liu (Columbia University)

    This two-day workshop will provide an overview of significant developments and open problems in modern enumerative geometry, from the perspectives of both algebraic geometry and symplectic topology. 

    This workshop is open to all mathematicians.

    Updated on Jan 26, 2018 09:37 AM PST
  25. Workshop Women in Topology

    Organizers: Maria Basterra (University of New Hampshire), Kristine Bauer (University of Calgary), LEAD Kathryn Hess (École Polytechnique Fédérale de Lausanne (EPFL)), Brenda Johnson (Union College--Union University)

    The Women in Topology (WIT) network is an international group of female mathematicians interested in homotopy theory whose main goal is to increase the retention of women in the field by providing both unique collaborative research opportunities and mentorship between colleagues.  The MSRI WIT meeting will be organized as an afternoon of short talks from participants, followed by two days of open problem seminars and working groups designed to stimulate new collaborations, as well as to strengthen those already ongoing among the participants.

     

    Updated on Dec 11, 2017 10:39 AM PST
  26. Workshop Geometric functional analysis and applications

    Organizers: Franck Barthe (Université de Toulouse III (Paul Sabatier)), Rafal Latala (University of Warsaw), Emanuel Milman (Technion---Israel Institute of Technology), Assaf Naor (Princeton University), LEAD Gideon Schechtman (Weizmann Institute of Science)

    This is the main workshop of the program "Geometric functional analysis and applications". It will focus on the main topics of the program. These include: Convex geometry, Asymptotic geometric analysis, Interaction with computer science, Signal processing, Random matrix theory and other aspects of Probability.

    Updated on Apr 30, 2018 01:55 PM PDT
  27. Workshop Bay Area Differential Geometry Seminar (BADGS) Fall 2017

    Organizers: David Bao (San Francisco State University), Joel Hass (University of California, Davis), David Hoffman (Stanford University), Rafe Mazzeo (Stanford University), Richard Montgomery (University of California, Santa Cruz)

    Description

    The Bay Area Differential Geometry Seminar meets 3 times each year and is a 1-day seminar on recent developments in differential geometry and geometric analysis, broadly interpreted. Typically, it runs from mid-morning until late afternoon, with 3-4 speakers. Lunch will be available and the final talk will be followed by dinner. Here is the seminar schedule with abstracts and other information: BADG October 2017-Berkeley, CA

    Updated on Oct 18, 2017 01:33 PM PDT
  28. Workshop Modern Math Workshop 2017

    Organizers: Hélène Barcelo (MSRI - Mathematical Sciences Research Institute), Leslie McClure (SAMSI - Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))

    As part of the Mathematical Sciences Collaborative Diversity Initiatives, nine mathematics institutes are pleased to offer their annual SACNAS pre-conference event, the 2017 Modern Math Workshop (MMW). The Modern Math Workshop is intended to encourage minority undergraduates to pursue careers in the mathematical sciences and to assist undergraduates, graduate students and recent PhDs in building their research networks. The Modern Math Workshop is part of the SACNAS National Conference; the workshop and the conference take place in the Salt Palace Convention Center in Salt Lake City, Utah. The MMW starts at 1:00 pm on Wednesday, October 18 with registration beginning at noon.

    Updated on Oct 12, 2017 02:36 PM PDT
  29. Workshop Geometric and topological combinatorics: Modern techniques and methods

    Organizers: Patricia Hersh (North Carolina State University), LEAD Victor Reiner (University of Minnesota Twin Cities), Bernd Sturmfels (University of California, Berkeley), Frank Vallentin (Universität zu Köln), Günter Ziegler (Freie Universität Berlin)

    This workshop will focus on the interaction between Combinatorics, Geometry and Topology, including recent developments and techniques in areas such as 

    -- polytopes and cell complexes,
    -- simplicial complexes and higher order graph theory,
    -- methods from equivariant topology and configuration spaces,
    -- geometric combinatorics in optimization and social choice theory,
    -- algebraic and algebro-geometric methods.

    Updated on May 25, 2018 01:29 PM PDT
  30. Workshop Introductory Workshop: Geometric and Topological Combinatorics

    Organizers: Imre Barany (Alfréd Rényi Institute of Mathematics), Anders Björner (Royal Institute of Technology (KTH)), LEAD Benjamin Braun (University of Kentucky), Isabella Novik (University of Washington), Francis Su (Harvey Mudd College), Rekha Thomas (University of Washington)

    The introductory workshop will present the main topics that will be the subject of much of the Geometric and Topological Combinatorics Program at MSRI.  Key areas of interest are point configurations and matroids, hyperplane and subspace arrangements, polytopes and polyhedra, lattices, convex bodies, and sphere packings. This workshop will consist of introductory talks on a variety of topics, intended for a broad audience. 

    Updated on May 01, 2018 10:00 AM PDT
There are more then 30 past workshops. Please go to Past workshops to see all past workshops.