Logo

Mathematical Sciences Research Institute

Home > Scientific > Workshops > Summer Graduate Schools > Upcoming

Upcoming Summer Graduate Schools

  1. From Symplectic Geometry to Chaos

    Organizers: Marcel Guardia (Universitat Politecnica de Catalunya), Vadim Kaloshin (University of Maryland), Leonid Polterovich (Tel Aviv University)

    The purpose of the summer school is to introduce graduate students to state-of-the-art methods and results in Hamiltonian systems and symplectic geometry. We focus on recent developments on the study of chaotic motion in Hamiltonian systems and its applications to models in Celestial Mechanics.

    Updated on Jun 20, 2018 12:17 PM PDT
  2. Commutative Algebra and its Interaction with Algebraic Geometry

    Organizers: Craig Huneke (University of Virginia), Sonja Mapes (University of Notre Dame), Juan Migliore (University of Notre Dame), LEAD Claudia Polini (University of Notre Dame), Claudiu Raicu (University of Notre Dame)

    The school will consist of the following four courses with exercise sessions plus a Macaulay2 workshop

    • Linkage and residual intersections
    • Characteristic p methods and applications
    • Blowup algebras
    • Multiplicity theory

    Updated on Jun 20, 2018 08:47 AM PDT
  3. Random and arithmetic structures in topology

    Organizers: LEAD Alex Furman (University of Illinois at Chicago), Tsachik Gelander (Weizmann Institute of Science)
    Blurred 016

    The study of locally symmetric manifolds, such as closed hyperbolic manifolds, involves geometry of the corresponding symmetric space, topology of towers of its finite covers, and number-theoretic aspects that are relevant to possible constructions.
    The workshop will provide an introduction to these and closely related topics such as lattices, invariant random subgroups, and homological methods.

    Updated on Apr 20, 2018 03:02 PM PDT
  4. Representation stability

    Organizers: Thomas Church (Stanford University), LEAD Andrew Snowden (University of Michigan), Jenny Wilson (Stanford University)
    Image
    An illustration of an adaptation of Quillen's classical homological stability spectral sequence argument

    This summer school will give an introduction to representation stability, the study of algebraic structural properties and stability phenomena exhibited by sequences of representations of finite or classical groups -- including sequences arising in connection to hyperplane arrangements, configuration spaces, mapping class groups, arithmetic groups, classical representation theory, Deligne categories, and twisted commutative algebras.  Representation stability incorporates tools from commutative algebra, category theory, representation theory, algebraic combinatorics, algebraic geometry, and algebraic topology. This workshop will assume minimal prerequisites, and students in varied disciplines are encouraged to apply. 

    Updated on Jun 22, 2018 01:16 PM PDT
  5. Séminaire de Mathématiques Supérieures 2019: Current trends in Symplectic Topology

    Organizers: Octav Cornea (Université de Montréal), Yakov Eliashberg (Stanford University), Michael Hutchings (University of California, Berkeley), Egor Shelukhin (Université de Montréal)

    Symplectic topology is a fast developing branch of geometry that has seen phenomenal growth in the last twenty years. This two weeks long summer school, organized in the setting of the Séminaire de Mathématiques Supérieures, intends to survey some of the key directions of development in the subject today thus covering: advances in homological mirror symmetry; applications to hamiltonian dynamics; persistent homology phenomena; implications of flexibility and the dichotomy flexibility/rigidity; legendrian contact homology; embedded contact homology and four-dimensional holomorphic techniques and others. With the collaboration of many of the top researchers in the field today, the school intends to serve as an introduction and guideline to students and young researchers who are interested in accessing this diverse subject. 

    Updated on Feb 21, 2018 11:27 AM PST
  6. Polynomial Method

    Organizers: Adam Sheffer (California Institute of Technology), LEAD Joshua Zahl (University of British Columbia)
    Twolines3d
    from distinct distances in the plane to line incidences in R^3

    In the past eight years, a number of longstanding open problems in combinatorics were resolved using a new set of algebraic techniques. In this summer school, we will discuss these new techniques as well as some exciting recent developments

    Updated on Jun 19, 2018 04:57 PM PDT
  7. Recent topics on well-posedness and stability of incompressible fluid and related topics

    Organizers: LEAD Yoshikazu Giga (University of Tokyo), Maria Schonbek (University of California, Santa Cruz), Tsuyoshi Yoneda (University of Tokyo)
    Image
    Fluid-flow stream function color-coded by vorticity in 3D flat torus calculated by K. Nakai (The University of Tokyo)

    The purpose of the workshop is to introduce graduate students to fundamental results on the Navier-Stokes and the Euler equations, with special emphasis on the solvability of its initial value problem with rough initial data as well as the large time behavior of a solution. These topics have long research history. However, recent studies clarify the problems from a broad point of view, not only from analysis but also from detailed studies of orbit of the flow.

    Updated on Jun 19, 2018 05:00 PM PDT
  8. Toric Varieties in Taipei

    Organizers: David Cox (University of Massachusetts, Amherst), Henry Schenck (Iowa State University)
    Firstchoice cropped
    This simplicial fan in 3-dimensional space

    Toric varieties are algebraic varieties defined by combinatorial data, and there is a wonderful interplay between algebra, combinatorics and geometry involved in their study. Many of the key concepts of abstract algebraic geometry (for example, constructing a variety by gluing affine pieces) have very concrete interpretations in the toric case, making toric varieties an ideal tool for introducing students to abstruse concepts.

    Updated on Jun 20, 2018 09:01 AM PDT
  9. H-Principle (INdAM)

    Organizers: LEAD Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)
    072 04 small
    The image of a large sphere isometrically embedded into a small space through a C^1 embedding. (Attributions: E. Bartzos, V. Borrelli, R. Denis, F. Lazarus, D. Rohmer, B. Thibert)

    This two week summer school will introduce graduate students to the theory of h-principles.  After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, fluid dynamics, and foliation theory.

    Updated on Jun 26, 2018 09:00 AM PDT