Mathematical Sciences Research Institute

Home > Scientific > Workshops > Summer Graduate School > Upcoming

Upcoming Summer Graduate Schools

  1. Dispersive Partial Differential Equations

    Organizers: Natasa Pavlovic (University of Texas), Nikolaos Tzirakis (University of Illinois at Urbana-Champaign)

    The purpose of the workshop is to introduce graduate students to the recent developments in the area of dispersive partial di erential equations (PDE).

    Dispersive equations have received a great deal of attention from mathematicians because of their applications to nonlinear optics, water wave theory and plasma physics. We will outline the basic tools of the theory that were developed with the help of multi-linear Harmonic Analysis techniques. The exposition will be as self-contained as possible.

    Updated on Oct 17, 2013 03:37 PM PDT
  2. IAS/PCMI 2014: Mathematics and Materials

    Organizers: Mark Bowick (Syracuse University), David Kinderlehrer (Carnegie-Mellon University), Govind Menon (Brown University), Charles Radin (University of Texas)

    The program in 2014 will bring together a diverse group of mathematicians and scientists with interests in fundamental questions in mathematics and the behavior of materials. The meeting addresses several themes including computational investigations of material properties, the emergence of long- range order in materials and self-assembly, the geometry of soft condensed matter and the calculus of variations, phase transitions and statistical mechanics. The program will cover several topics in discrete and differential geometry that are motivated by questions in materials science. Many central topics, such as the geometry of packings, problems in the calculus of variations and phase transitions, will be discussed from the complementary points of view of mathematicians and physicists.

    Updated on Mar 06, 2014 12:12 PM PST
  3. Algebraic Topology

    Organizers: LEAD Jose Cantarero-Lopez, LEAD Michael Hill (University of Virginia)

    Modern algebraic topology is a broad and vibrant field which has seen recent progress on classical problems as well as exciting new interactions with applied mathematics. This summer school will consist of a series of lecture by experts on major research directions, including several lectures on applied algebraic topology. Participants will also have the opportunity to have guided interaction with the seminal texts in the field, reading and speaking about the foundational papers.

    Updated on Apr 16, 2014 04:24 PM PDT
  4. Stochastic Partial Differential Equations

    Organizers: Yuri Bakhtin (New York University, Courant Institute), LEAD Ivan Corwin (Columbia University), James Nolen (Duke University)

    Stochastic Partial Differential Equations (SPDEs) serve as fundamental models of physical systems subject to random inputs, interactions or environments. It is a particular challenge to develop tools to construct solutions, prove robustness of approximation schemes, and study properties like ergodicity and fluctuation statistics for a wide variety of SPDEs. 

    The purpose of this two week workshop is to educate graduate students on the state-of-the-art methods and results in SPDEs. The three courses which will be run simultaneously will highlight different (though related) aspects of this area including (1) Fluctuation theory of PDEs with random coefficients (2) Ergodic theory of SPDEs and (3) Exact solvability of SPDEs

    Updated on Nov 19, 2013 07:03 PM PST
  5. Geometry and Analysis

    Organizers: Hans-Joachim Hein (Imperial College, London), LEAD Aaron Naber (Massachusetts Institute of Technology)

    Geometric and complex analysis is the application of tools from analysis to study questions from geometry and topology. This two week summer course will provide graduate students with the necessary background to begin studies in the area. The first week will consist of introductory courses on geometric analysis, complex analysis, and Riemann surfaces. The second week will consist of more advanced courses on the regularity theory of Einstein manifolds, Kahler-Einstein manifolds, and the analysis of Riemann surfaces.

    Updated on Oct 18, 2013 08:32 AM PDT