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Noncommutativity \

Definition:

Two elements, or operations, f and g are
commutative (resp. noncommutative) if

fog=gof (resp. fog#gof).

Example: of nhoncommutativity

(walk 4 ms) o (turn 90° degs) # (turn 90° degs) o (walk 4 ms)

Noncommutativity natural

interesting
mysterious
hard to imagine

Ll

challenging



Our goal and general setup \

Our Goal is to talk about open questions in

noncommutative algebra that are closely re-
lated to noncommutative algebraic geometry.

General setup:

k be a base field, and everything is over k.
Star system for today's questions:

* could be easy

** not easy

**x difficult, but we want to give a try
*r*k* too difficult

¥**** not a good idea to work on it



Dimension |

Q1.1: (3*) What is the meaning/definition of
the " dimension” of a noncommutative algebra
Oor a nhoncommutative space?

Q1.2: (1*) Are there many different " dimen-
sion’’s for an object in the noncomm world?

One possibility is Gelfand-Kirillov dimension.

To simplify my presentation, I will consider
connected graded locally finite algebras.

AZICEBAl@AQEBAg@--- with dimkA<OO.

n
GKdim A := lim_ Iogn(.zjo dim; A;).
1=
The Hilbert series of A is defined to be

H () = i (dimy, Az)tz
i=0



GKdim |

Lemma: If H4(t) is a rational function of the

f()
form CENTAOL for some d, where f(1)g(1) #

1, and if the roots of ¢g(t) are root of unity,
then GKdim A = d.

Example: Let A(1) = k[z1, - ,zn] (Or let g be
a scalar in k and A(q) = kg¢lz1, - ,zn] with
rjr; = qr;x; for all i < j).

= H(t) = aon t)n where A = A(1) or A(q).
= By Lemma, GKdim A = n.

= In the commutative case (when ¢ = 1), n is
the (Krull) dimension of A(1).

= S0 n should also be the dimension of the
noncommutative algebra A(q).



Examples of NA \

1. Let g € k* := k\ {0}. The g-skew polyno-
mial ring A(q) := kq¢lx1, - ,zn] iS generated by
x1, - ,Tn Subject to the relations

for all + < 5. If ¢ #= 1, X ;%5 = T of ¢+ = j.
We have seen that GKdim A(g) = n and A(q) is
generated by n elements.

2. Down-up algebra (a special case):
Let D be the algebra generated by d :=| and
u =T and subject to the relations

d%u = ud2; uld = du?.
This is a special down-up algebra in the work

of [Benkart, Roby] and an AS regular algebra
of type (S1) in the work of [Artin, Schelter].

Note that du ;& ud. By an (easy) computation,
Hp(t) = = t% (iFy- SO GKdimD = 3. But, D
IS generated y 2

elements.



Questions about GKdim \

Q1.3: (3*%) If GKdim A < oo, and assume that A
is noetherian, is then GKdim A an integer?

[Bergman, Smoktunowicz] True if GKdim A < 3.
Noetherian: left/right ideals of A satisfy acc.
Q1.4: (3*) If A is noetherian, is GKdim A finite?

Q1.5: (2*) If A is noetherian, is H4(t) a ratio-
nal function?

(Above true for commutative or PI algebras.)

Q1.6: (1*) How to define GKdimension for a
noncommutative space?



Symmetry \

Q2.1: (2*) What is an "automorphism” of a
noncomm algebra or a noncomm space?

Automorphisms of a commutative algebra or
a variety should be the usual automorphisms.
But automorphisms of a nhoncommutative al-
gebra or a noncommutative variety (or a quan-
tum space) could be quantum automorphisms.
What are the "quantum automorphisms’” 7

Example:

Only Hopf algebra actions on k[x1, z>] are group
actions (acting as usual automorphisms) [Chan-
Walton, Etingof-Walton].

There are many " quantum automorphisms” (e.g.,
non-group Hopf algebra actions) on k_q1[z1, x5]
[Chan-Kirkman-Walton, others]



Questions about Aut(A) \

Let Aut(A) denote the group of algebra auto-
morphisms of A.

Q2.2: (5%) Describe Aut(k[z1, zo, z3]) = Aut(A3).
Aut(k[z1]) = {linear auts: =1 — ax1 + b}
[Jung, Van der Kulk] Aut(k[x1,xo]) is tame.

(namely, it is generated by linear auts and tri-
angular auts (5131 — x1,T> — T + f(a:l)))

Lem: [Alev, Dumas, Jordan, Goodearl, others]
If g is not a root of 1, then Aut(A(q)) = (EX)".

Q2.3: (1*) What is Aut(kq[z1, - ,xn]) when
g is a root of unity and ¢ #= +1 (for all n)?
(Known for small n)



Quantum symmetry \

Q2.4: (1*) What is Aut(k_q1[z1, -+ ,zn]) when
n > 3 is odd? (Known for even n)

Noncommutative objects are more rigid, there-
fore less symmetric (group-symm). But non-
commutative objects have quantum symmetry.

Lemma: [Chan-Walton] If ¢ is not a root of
1, the only (degree preserving) Hopf algebra
actions on kq[z1,--- ,zn] is the group action.

Q2.5: (2*¥) Assume q is a root of 1. Classify
all Hopf algebra actions on kg[xz1,---,zn] (for
all n > 3).

Q2.6: (3*) Is there any new "symmetry” be-
yond quantum symmetry (i.e. Hopf algebra
actions)?

Remark: We may replace ky[z1,---,xz,] by any AS regular algebra

of dimension at least 3.



Ramras’ conjecture \

An algebra A is called local if the Jacobson
radical of A is a maximal left ideal of A.

We say A is regular or has finite global dimen-
sion < d, if projdim M < d for all modules.

Theorem: [Auslander, Buchsbaum, Nagata, etc]
If A is noetherian commutative regular local,
then A is a (UF) domain.

Ramras showed that noetherian local with global
dimension < 3 is a domain, and he conjectured

C3.1: (Ramras’ conjecture 4*) Every noethe-
rian noncommutative local regular algebra is a
domain.

Theorem: [Brown-+others, Stafford] C3.1 holds
if A is PI.

10



Algebra = Geometry

Examples:

Commutative Algebra = Algebraic Geometry

category of affine comm. algs is dual to category of affine schemes

Operator Algebra = Differential Geometry

category of comm. (C*-algs is dual to category of cp. top. spaces

Noncomm. Algebra = Noncomm. Alg. Geo.

category of noncomm. algs is dual to category of noncomm. spaces

Conclusion:

Algebra and Geometry support each other.

Noncomm algebras serve as affine/local models for noncomm spaces.
So you might translate Q in noncomm alg. to Q in noncomm geo.

11



Construction of algs \

Free algebras: commutative free algebras
are polynomial rings, denoted by k[V] where
V is a vector space; noncommutative free
algebras are denoted by k(V).

Every commutative algebra is a factor of a
polynomial ring and every noncommutative al-
gebra is a factor of a noncommutative free
algebra.

One could take subalgebra of a given algebra.
More constructions:

Matrix algebra over A is B .= M,(A). If n >
1, B is noncommutative even if A is.

Path algebra of a quiver.

Smash product (or tensor product) A#H if a
Hopf algebra H acts on A.

12



More constructions

Consider connected graded rings.

IOE: Iterated Ore extension is defined by
A =k, A = k[z1], and
A" = A"z, 0n,6,] wWhere deg X, = 1, o, is a graded algebra

automorphism of A® 1 and §, is a o,-derivation of A"~ 1,

HUL: Homogenization of universal enveloping
algebra over a finite dimensional Lie algebra L is denoted by H(L),
which is generated by L and a central variable ¢t subject to the
relations

ab — ba = [a, b]t
where a,b € L and [—, —] is the Lie product in L.

THC: [Artin, Van den Bergh] Twisted homo-
geneous coordinate ring is denoted by B(X, o, L)
where X is a projective scheme, o is an automorphism of X, and L

is a oc-ample line bundle over X.

IOE, HUL, THC are noetherian connected graded
algebra with finite GKdim.

13



Qs about constructions \

Q4.1: (2*) Find new and natural constructions
for noncommutative algebras/spaces.

Q4.2: (5*%) How can we " construct” all noethe-
rian connected graded algebras of finite GKdi-
mension?

Q4.2": (5*) Can we classify all noetherian con-
nected graded algebras of finite GKdimension?

Q4.3: (1*) Looking for invariants that help

us to understand the structure of connected
graded algebras.

14



AS regular algebras \

Definition: A connected graded algebra A is

called Artin-Schelter regular (or AS regular) if
(i) Ais regular (i.e. gl.dimA = d < o0),

(ii) GKdim A < oo,

: 0 i #~=d
i) Ext%(k,A) = :
(i) Extyy (k, 4) {k(l) i =d

AS regular algebras play an important role in
noncommutative projective geometry. If A is
noetherian and AS reqgular, Proj A has most
homological properties that QCoh(P") has. (For
example, Proj A has Serre functor, etc)

Theorem: [Rogalski, Sierra] Not every noethe-
rian regular algebra of f. GKdim is AS regular.

IOE and HUL are AS regular.

Theorem: [Artin, Tate, Van den Bergh] Ram-
ras conjecture holds for AS regular algebras of
global dimension 4. (Still open for 5 or higher).

15




AS regular algebras of

dimension < 3

dim = 0: k. dim = 1: k[z].

dim = 2: Suppose k = k, then kq[x1,z5] and
kjlz1, o] = k{z1,22)/(zoz1 = z122+27). Both
of these are IOE.

dim = 3: Artin, Schelter, Tate, Van den Bergh
classified all AS regular algebras of dimension
(=global dimension) 3. (14 families)

Not all AS regular algebra of dimension 3 is
IOE. (Sklyanin algebra of dimenison 3 is not
IOE).

If A is AS regular of dimension 3, then Proj A
IS @ quantum plane.

(The dimension of a projective space is 1 less
than the dimension of corresponding affine space.)

16



Qs about AS reg algs \

P5.1: (4*) Classify all AS regular algebras of
global dimension 4.

Many people have made contributions: Stafford,
Smith, Van den Bergh, Tate, Vancliff, Shelton,
Wu, Palmieri, Lu, Rogalski, more...

Q5.2: (2*) Is every AS regular algebra noethe-
rian?

ASTV proved this is true for dimension 3.

Q5.3: (2*) If A is a noetherian AS regular over
a finite field, is then A finitely generated over
its center? (True for IOE and HUL)

Q5.4: (3*) [Kirkman, Kuzmanovich] Let A be
a noetherian AS regular algebra. Under what
conditions, is the fixed subring A® AS regular?
(We are asking for a noncommutative version
of Shephard-Todd-Chevalley Theorem.)

17



Nakayama automorphism I.

Classical case

[Nakayam] A finite dimensional algebra A is
Frobenius, if injdimA = 0, or there there is
a nondegenerate associative bilinear form

(—,—)  AX A—k.
This is equivalent to the existence of an iso-
morphism A-bimodule A* = #Al where TS

an algebra automorphism of A. The automor-
phism p can also be described by equation

(a,b) = (u(b),a)
for all a,b € A.

Example: Let A = k(xz,y)/(22,y2, yz—qzy). Then
A=kDkx D ky®kxy. The bilinear form is de-
fined by (a,b) = pr(kxy)(ab). Using this bilinear
form, it is easy to check that

piwes gy gty

18



Nakayama automorphism II \

Definition: An algebra A is called skew Calabi-
Yau (or skew CY, for short) if (i) A is homolog-
ically smooth, that is, A has a projective res-
olution in the category A®-Mod that has finite
length and each term in the projective resolu-
tion is finitely generated, and (ii) there is an
integer d and an algebra automorphism u of A
such that

0 i % d
lap s =4d’

as A-bimodules, where 1 denotes Idy. &

Extle(A, A®) = { (E1.1)

If (E1.1) holds (even without (i)), then u is
called the Nakayama automorphism of A.
Note that u (if exists) is unique up to inner

automorphisms of A. Also write uy for pu.
A is called CY if ug = Id.

If A is finite dimensional, then this agrees with the Nakamaya au-
tomorphism given in the previous page.

19



EXistence |

Let H denote a Hopf algebra. Then we have
maps (m,u, A, e, S) associated to H. Here S is
the antipode of H.

Theorem: [Brown] Let H be a noetherian Hopf
algebra satisfying AS condition. Then

Ly = S%Elfl. (HI1)

where fl is the left integral of H.

Theorem: [Yekutieli, Rogalski, Reyes, others]
If A is AS regular, uy exists uniquely.

Examples:

pup - d— —d,u — —u.

BA(q) - %i — g2 lg fori=1,2,--- ,n.

20



Homological identities \

Theorem: [Chan-Walton] Let A be a Koszul
AS regular algebra. Let H be a Hopf alge-
bra coacting on A inner-faithfully such that
hcodet € H is the homologial codeterminant
of the H-coaction. Then

a7, = 5% © Mheodet (HI2)
where 0y, odet 1S the automorphism of H defined
by conjugating hcodet and M, is the automor-
phism of H given by conjugating by the trans-
pose of the corresponding matrix of uy4.

Q6.1: (2*) Can we unify Brown's identity (HI1)
with Chan-Walton’s identity (HI2)?

Q6.2: (2*) If A is noetherian and AS Goren-
stein, is hdet u =17 «— Another HI.

Theorem: [Rogalski, Reyes] Yes to Q7.2, if A
is AS regular and Koszul.

21



Artin’s conjecture \

P7.1. Artin’s conjecture on division algebras of
transcendence degree 2 and noncommutative
projective surfaces (come to Sierra’s talk).

22



Thank you very much
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