
Chapter 4

Divergence-constrained
problems and transport
density

4.1 Eulerian and Lagrangian points of view

4.1.1 Statical and Dynamical models

This section presents a very informal introduction to the physical interpre-
tation of dynamical models in optimal transport.

In fluid mechanics - and in many other topics with similar modelizations
- it is classical to consider two complementary ways of describing motions,
which are called Lagrangian and Eulerian.

When we describe a motion via Lagrangian formalism we give “names”
to particles (using either a specific label, or the initial position they had, for
instance) and then describe, for every time t and every label, what happens
to that particle. “What happens” means providing its position and/or its
speed. Hence we could for instance give some functions yx(t) standing for
the position at time t of particle originally located at x. Other possibility,
instead of giving names we could consider bundles of particles with the same
behavior and indicate how many are they. This amounts to giving a measure
on possible behaviors.

The description may be more or less refined. For instance if one only
considers two different times t = 0 and t = 1, the behavior of a particle is
only given by its initial and final positions. A measure on those pairs (x, y) is
exactly a transport plan. This explains how the Kantorovitch problem is ex-
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104 CHAPTER 4. PRESCRIBED DIVERGENCE MINIMIZATION

pressed in Lagrangian coordinates. The Monge problem is also Lagrangian,
where particles are labelled by their initial position.

More refined models can be easily conceived, since it quite evident that
reducing a movement to the initial and final positions is embarrassingly
poor. Measures on the set of paths (curves ω : [0, 1] → Ω, with possible
assumptions on their regularity) have been used in many modelizations,
and in particolar in traffic issues, branched transport (see the Discussion
Section for both these subjects), or in Brenier’s variational formulation of the
incompressible Euler equations for fluids (see Section 1.7.4 and [36, 37, 25]).

On the other hand, in the Eulerian formalism we describe, for every time
t and every point x, what happens at such a point at such a time. “What
happens” usually means what are the velocity, the density and/or the flow
rate (both in intensity and in direction) of particles located at time t at
point x.

Eulerian models may be distinguished into statical and dynamical ones.
In a dynamical model we usually use two variables, i.e. the density ρ(t, x)
and the velocity v(t, x). It is possible to write the equation satisfied by the
density of a family of particles moving according to the velocity field v. This
means that we prescribe the initial density ρ0, and that the position of the
particle originally located at x will be given by the solution of the ODE{

y′x(t) = v(t, yx(t))

yx(0) = x
, (1.1)

we define the map Tt through Tt(x) = yx(t), and we look for the measure
ρt := (Tt)#ρ0. It is well known that ρt and vt solve together the so-called
continuity equation

∂tρt +∇ · (ρtvt) = 0

that is briefly addressed here below.
The statical framework is a bit harder to understand, since it is maybe

not clear what “statical” means when we want to describe movement. One
has to think to a permanent, cyclical movement, where some mass is con-
stantly injected into the motion at some points and constantly withdrawn
somewhere else. We can also think at a time average of some dynamical
model: suppose that you observe the traffic in a city and you wonder what
happens at each point, but you do not want an answer depending on time.
You could for instance consider as a traffic intensity at every point the aver-
age traffic intensity at such a point on the whole day. In this case we usually
use a unique variable v standing for the mass flow rate (which equals density
times speed), and the divergence ∇ · v stands for the excess of mass which
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is injected into the motion at every point. More precisely, if particles are
injected into the motion according to a density µ and then exit with density
ν, the vector fields v standing for flows connecting these two measures must
satisfy

∇ · v = µ− ν.

4.1.2 The continuity equation

This section is devoted to the equation

∂tρt +∇ · (ρtvt) = 0,

its meaning, formulations, and uniqueness results. Even if most of the Chap-
ter will be devoted to the statical divergence equation, we will see later that
the dynamical case can be useful to produce transport plans given a vector
field, and we need to develop some tools.

First, let us spend some time on the notion of solution for this equation.

Definition 11. We say that a family of pairs measures/vector fields (ρt, vt)
with vt ∈ L1(ρt;Rd) and

´ 1
0 ||vt||L1(ρt)dt =

´ 1
0

´
Ω |vt|dρt dt < +∞ solves

the continuity equation in the distributional sense if for any test function
φ ∈ C1

c (]0, 1[×Ω), compactly supported in time but not necessarily in space,
we have ˆ 1

0

ˆ
Ω
∂tφdρt dt+

ˆ 1

0

ˆ
Ω
∇φ · vt dρt dt = 0. (1.2)

Obviously this formulation includes Neumann boundary conditions on ∂Ω
for vt. If we want to impose the initial and final measures we can say that
(ρt, vt) solves the same equation, in the sense of distribution, with initial and
final data ρ0 and ρ1, respectively, if for any test function φ ∈ C1([0, 1]× Ω)
(no compact support assumptions), we haveˆ 1

0

ˆ
Ω
∂tφdρt dt+

ˆ 1

0

ˆ
Ω
∇φ·vt dρt dt =

ˆ
Ω
φ(1, x) dρ1(x)−

ˆ
Ω
φ(0, x) dρ0(x).

(1.3)
On the other hand we can define a weak solution of the continuity equa-

tion through the following condition: we say that (ρt, vt) solves the conti-
nuity equation in the weak sense if for any test function ψ ∈ C1([0, 1]×Ω),
the function t 7→

´
ψ dρt is absolutely continuous and, for a.e. t, we have

d

dt

ˆ
Ω
ψ dρt =

ˆ
Ω
∇ψ · vt dρt.

Notice that in this case t 7→ ρt is automatically continuous for the weak
convergence, and imposing the values of ρ0 and ρ1 may be done pointwisely.
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Proposition 4.1.1. The two notions of solutions are actually equivalent:
every weak solution is actually a distributional solution and every distribu-
tional solution admits a representative (another family µ̃t = µt for a.e. t)
which is weakly continuous and is a weak solution.

Proof. To prove the equivalence, take a distributional solution, and test it
against functions φ of the form φ(t, x) = a(t)ψ(x). We get

ˆ 1

0
a′(t)

ˆ
Ω
ψ(x) dρt dt+

ˆ 1

0
a(t)

ˆ
Ω
∇ψ · vt dρt dt = 0.

The arbitrariness of a shows that the distributional derivative (in time)
of

´
Ω ψ(x) dρt is

´
Ω∇ψ · vt dρt. This last function is L1 in time since´ 1

0

∣∣´
Ω∇ψ · vt dρt

∣∣ dt ≤ Lipψ
´ 1

0 ||vt||L1(ρt)dt < +∞. This implies that (ρ, v)
is a weak solution.

Conversely, the same computations shows that weak solution satisfy (1.2)
for any φ of the form φ(t, x) = a(t)ψ(x). It is then enough to prove that
finite linear combination of these functions are dense in C1([0, 1]×Rn) (this
is true, but is a non-trivial exercise!).

It is also evident that smooth functions satisfy the equation in the clas-
sical sense if and only if they are weak (or distributional) solutions.

The main way to produce solutions to the continuity equation is to use
the flow of the vector field vt. Let us check the validity of the equation
when ρt is obtained from such a flow through (1.1). Let us suppose that
spt(ρt) ⊂ Ω (which is satisfied if ρ0 is concentrated on Ω and v satisfies
suitable Neumann boundary conditions). We will check that we have a
weak solution. Fix a test function φ : Ω→ R and compute

d

dt

ˆ
φdρt =

d

dt

ˆ
φ(yx(t)) dρ0(x) =

ˆ
∇φ(yx(t)) · y′x(t) dρ0(x)

=

ˆ
∇φ(yx(t)) · v(t, yx(t)) dρ0(x) =

ˆ
∇φ(y) · v(t, y) dρt(y),

which proves that we have ∂tρt = −∇ · (ρtvt), in the weak sense.

Then, we would like to give at least a uniqueness result on ρ if v is
Lipschitz continuous. This is true in a very general framework (see [5],
Proposition 8.2.7) for a proof of the fact that the solution in the space of
measures is unique for given v), but we prefer to give an easier proof which
requires to consider smooth solutions.
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Theorem 4.1.2. Suppose that Ω is a compact domain and v : [0, T ]×Ω→
Rd is Lipschitz continuous in x uniformly in t, and consider two smooth
solutions ρ(1) and ρ(2) of ∂tρt + ∇ · (ρtvt) = 0, with ρ(1)(0, x) = ρ(2)(0, x).
Then ρ(1) = ρ(2).

Proof. The equation being linear, we only need to consider a solution ρ =
ρ(1)−ρ(2) with ρ(0, x) = 0 and prove that it vanishes for every time. Consider
E(t) = 1

2

´
Ω ρ(t, x)2dx. We have

E′(t) =

ˆ
ρt(∂tρt) =

ˆ
∇ρt ·vtρt =

ˆ
∇
(1

2
ρ2
t

)
·vt = −

ˆ
1

2
ρ2
t∇·vt ≤ CE(t),

where we used −∇ · vt ≤ C as a consequence of the Lipschitz continu-
ity assumption. A simple application fo Gronwall’s lemma allows to prove
E(t) = 0 for every t, since E(0) = 0, and gives the thesis.

Later (Chapter 5) we will give a variant of this theorem to adapt to the
case of unbounded domains.

We finish this section by proving that this result may be applied to the
solution produced by the flow, which is actually smooth thanks to change-of
variable formula allowing to reconstruct its density.

Proposition 4.1.3. If ρ0 is smooth and v is smooth, then ρt is smooth in
t and x.

Proof. If vt is Lipschitz, the flow map is injective (as a well-known con-
sequence of the uniqueness of the solution of the ODE). Hence, the den-
sity of the image measure is obtained from the initial density through a
simple change-of-variable involving the Jacobian factor. This means that
the regularity of ρ(t, x) only depends on the regularity of the Jacobian
a(t, x) = det(A(t, x)) and A(t, x) = Dxy(t, x) where y(t, x) = yx(t) is defined
through (1.1).

Notice that we have A(0, x) = Id, a(0, x) = 1 and

A′(t, x) = ∂tDxy(t, x)) = Dx

(
∂ty(t, x)

)
= Dx

(
vt(y(t, x))

)
= Dvt(y(t, x))·A(t, x),

which implies, thanks to usual matrix calculus

a′(t, x) = a(t, x)trace(A(t, x)−1A′(t, x))

= a(t, x)trace(A(t, x)−1Dvt(y(t, x))A(t, x))

= a(t, x)trace(Dvt(y(t, x)))) = a(t, x)∇ · vt(y(t, x)).

This means that if ∇·vt is bounded from below, then a(t, x) never vanishes,
and if ∇ · vt is smooth in x, so is a(t, x). The considerations below allow to
deduce the regularity of ρ(t, x).
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Memo – Change-of-variable and image measures

Proposition. Suppose that ρ ∈ L1(Ω) is a positive density on Ω ⊂ Rd and
T : Ω → Rd is a Lipschitz injective map, which is thus differentiable a.e.. We
suppose that det(DT ) 6= 0a.e. on {ρ > 0}. Then the image measure T#ρ is
absolutely continuous and its density u is given by

u(y) =
ρ(T−1(y))

det(DT (T−1(y)))
.

If T is non-injective, the formula becomes T#ρ = u · Ld with u given by

u(y) =
∑

x:T (x)=y

ρ(x)

det(DT (x))
.

The same formulae stay true id T is only countably Lipschitz, with the differential

DT which is actually the differential of the restriction of T to each set where it is

Lipschitz continuous (and coincides thus with the approximate differential of T ).

4.2 Beckmann’s problem

4.2.1 Introduction, formal equivalences and variants

The problem that has been proposed by Beckmann as a model for optimal
transport in the ’50s, without knowing Kantorovitch’s works and the possible
links between the two theories, is the following.

Beckmann’s minimal flow problem Consider the minimization

(PB) min

{ˆ
|v(x)| dx

∣∣∣∣ v : Ω→ Rn, ∇ · v = µ− ν
}
, (2.1)

where the divergence condition is to be read in the weak sense, with Neu-
mann boundary conditions, i.e. −

´
∇φ·dλ =

´
φd(µ−ν) for any φ ∈ C1(Ω).

This proposition links the Monge-Kantorovich problem to the minimal
flow problem first proposed by Beckmann in [11], under the name of con-
tinuous transportation model. He did not know this link, as Kantorovich’s
theory was being developed independently almost in the same years.

We will see now that an equivalence between (PB) and (PK) holds true.
To do that, we can look at the following considerations and formal compu-
tations.
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We take the problem (PB) and re-write the constraint on v by means of
the quantity

sup
φ

ˆ
−∇φ · v dx+

ˆ
φd(µ− ν) =

{
0 if ∇ · v = µ− ν
+∞ otherwise

.

Hence one can write (PB) as

min
v

ˆ
|v(x)| dx+ sup

φ

ˆ
−∇φ · v dx+

ˆ
φd(µ− ν)

= sup
φ

ˆ
φd(µ− ν) + inf

v

ˆ
|v(x)| dx−

ˆ
∇φ · v dx, (2.2)

where inf and sup have been exchanged formally as in the previous compu-
tations. After that one notices that

inf
v

ˆ
|v(x)| dx−

ˆ
∇φ · v dx =

{
0 if |∇φ| ≤ 1

−∞ otherwise

and this leads to the dual formulation for (PB) which gives

sup
φ : |∇φ|≤1

ˆ
Ω
φ d(µ− ν).

Since this problem is exactly the same as (PD) (a consequence of the fact
that Lip1 functions are exactly those functions whose gradient is smaller than
1), this a formal equivalence between (PB) and (PK). The reason for saying
that it is only formal lies in the fact that we did not prove the equality in
(2.2). Notice that we need to suppose that Ω is convex, otherwise functions
with gradient smaller than 1 are only Lip1 according to the geodesic distance
in Ω.

Most of the considerations above, especially those on the problem (PB)
do not hold for costs other than the distance |x−y|. The only possible gener-
alizations which are known concern a cost c which comes from a Riemannian
distance k(x).

The simplest possible generalization of Problem (PB) is the following:

min

ˆ
k(x)|v(x)|dx : ∇ · v = µ− ν

that corresponds, by duality with the functions u such that |∇u| ≤ k, to

min

ˆ
dk(x, y)dγ : γ ∈ Π(µ, ν),
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where dk(x, y) = infω(0)=x, ω(1)=y Lk(ω) :=
´ 1

0 k(ω(t))|ω′(t)|dt is the distance
associated to the Riemannian metric k.

This generalization above comes from the modelization of a non-uniform
cost for the movement (due to geographical obstacles or configurations). It
can be applied to several situation but in some other t is not satisfying, for
instance in urban transport, where we want to consider the fact that the
metric k is usually not a priori known, but it depends on the traffic distribu-
tion itself. We will develop this aspect in the discussion section at the end of
this chapter, together with a completely different problem which is somehow
“opposite”: instead of looking at transport problems where concentration
of the mass is penalized because it stands for traffic congestion, looking at
problemns where it is encouraged because of the so-called “economy of scale”
(i.e. the biggest the mass you transport, the cheapest the individual cost).

4.2.2 Producing a minimizer for PB

The first remark on Problem (PB) is that it is probably not well-posed, in
the sense that there could not exist an L1 vector field minimizing the L1

norm under divergence constraints. This is easy to understand if we think
at using the direct method in Calculus of Variations to prove existence : we
take a minimizing sequence vn and we would like to extract a converging
subsequence. If we could, and we had vn ⇀ v, then it would be easy to
prove that v still satisfies ∇ · v = µ− ν, since the relation

−
ˆ
∇φ · vn dx =

ˆ
φd(µ− ν)

would pass to the limit as n→∞. Yet, the information that
´
|v(x)|dx ≤ C

is not enough to extract a converging sequence, even weakly. Indeed, the
space L1 being non-reflexive, bounded sequences are not guaranteed to have
weakly converging subsequences. This is on the contrary the case for dual
spaces (and for reflexive spaces, which are roughly speaking the dual of their
dual).

Notice that the strictly convex version that is proposed for traffic pur-
poses in the discussion section is much better to handle: if for instance we
minimize

´
|v|2 dx then we can use compactness in L2, which is a Hilbert

space, and hence reflexive.
To avoid this difficulty, one needs to set (PB) in the framework of vector

measures.

Memo – Vector measures
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Definition: A finite vector measure λ on a set Ω is a map associating to every
Borel subset A ⊂ Ω a value λ(A) ∈ Rd such that, for every disjoint union A =

⋃
iAi

with Ai ∩Aj = ∅ for i 6= j, we have∑
i

|λ(Ai)| < +∞ and λ(A) =
∑
i

λ(Ai).

Here the norm that we use on Rd to evaluate the series above is arbitrary, the
finiteness of the result does not depend on this choice, since all norms on Rd are
equivalent.

We denote byMd(Ω) the set of finite vector measures on Ω. To such measures
we can associate a positive scalar measure λ ∈M+(Ω) through

||λ||(A) := sup

{∑
i

||λ(Ai)|| : A =
⋃
i

Ai with Ai ∩Aj = ∅ for i 6= j

}
.

This measure depends on the choice of the norm || · || on Rd. Let us suppose for
simplicity that it is the Euclidean norm (in such a case, we will often write |λ|.

The integral of a Borel function f : Ω → Rd w.r.t. λ is well-defined if |f | ∈
L1(Ω, ||λ||) (again, this does not depend on the choice of the norm), is denoted´
f · dλ and can be computed as

∑d
i=1

´
fi dλi, thus reducing to integrals of scalar

functions according to scalar measures. It could also be defined as a limit of integral
of piecewise constant functions.

Functional analysis facts The quantity ||λ||(Ω) is a norm on Md(Ω), and this
normed space is the dual of C0(Ω;Rd), the space of continuous function on Ω
vanishing at infinity,through the duality (f, λ) 7→

´
f · dλ. This gives a notion of

∗
⇀ convergence for which bounded sets in Md(Ω) are compact.

A last clarifying fact is the following.
Proposition : For every λ ∈ Md(Ω) and every norm || · || there exists a Borel

function ξ : Ω→ Rd such that λ = ξ · ||λ|| and ||ξ|| = 1 a.e. (for the measure ||λ||).
Sketch of proof: The existence of a function ξ is a consequence, via Radon-

Nikodym Theorem, of λ � ||λ|| (every A set such that ||λ(A)|| = 0 obviously

satisfies λ(A) = 0), possibly applied componentwise. The condition ||ξ|| = 1 may

be proven by considering the sets {||ξ|| < 1−ε} and {ξ ·e > a+ε} for all hyperplane

such that the unit ball B1 := {x ∈ Rd : ||x|| ≤ 1} is contained in {x ∈ Rd : x · e ≤
a} (and, actually, we have B1 =

⋂
e,a{x ∈ Rd : x · e ≤ a}, the intersection

being possibly reduced to a countable intersection). These sets must be negligible

otherwise we have a contradiction on the definition of ||λ||.

Theorem 4.2.1. Suppose that Ω is a compact convex domain in Rd. Then,
the problem

(PB) min {|v|(Ω) : v ∈Mn(Ω) , ∇ · v = µ− ν}
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(with divergence imposed in the weak sense, i.e. for every φ ∈ C1(Ω) we
impose −

´
∇φ · dv =

´
φd(µ− ν), which also includes Neumann boundary

conditions) admits a solution. Moreover, its minimal value equals the min-
imal value of (PK) and a solution of (PB) can be built from a solution of
(PK). The two problems are hence equivalent.

Proof. The first point that we want to prove is the equality of the minimal
values (PB) = (PK) and we start from (PB) ≥ (PK). In order to do so,
take an arbitrary function φ ∈ Lip1 ∩C1 and consider that for any v with
∇ · v = µ− ν, we have

|v|(Ω) =

ˆ
1 d|v| ≥

ˆ
(−∇φ) · dv =

ˆ
φd(µ− ν)

(where we used the fact that φ ∈ Lip1 ⇒ |∇φ| ≤ 1). If one takes a sequence
of Lip1 ∩C1 functions converging to the Kantorovitch potential u such that´
u d(µ − ν) = max(PD) = min(PK) (for instance take convolutions φk =

ρk ∗ u) then he gets ˆ
d|v| ≥ (PK)

for any admissible v, i.e. (PB) ≥ (PK).

We will show at the same time the reverse inequality and how to con-
struct an optimal v from an optimal γ for (PK).

Actually, one way to produce a solution to this divergence-constrained
problem, is the following: take an optimal transport plan γ and build a
vector measure vγ defined through

< vγ , φ >:=

ˆ
Ω×Ω

ˆ 1

0
ω′x,y(t) · φ(ωx,y(t))dt dγ,

for every φ ∈ C0(Ω;Rd), ωx,y being a parametrization of the segment [x, y].
Even if for this proof it would not be important, we will fix the constant
speed parametrization, i.e. ωx,y(t) = (1− t)x+ ty. It is clear that this is the
point where convexity of Ω is needed.

It is not difficult to check that this measure satisfies the divergence con-
straint, since if one takes φ = ∇ψ then

ˆ 1

0
ω′x,y(t) · φ(ωx,y(t)) =

ˆ 1

0

d

dt
(ψ(ωx,y(t)) dt = ψ(y)− ψ(x)

and hence < vγ ,∇ψ >=
´
ψ d(ν − µ).
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To estimate its mass we can see that |vγ | ≤ σγ , where the scalar measure
σγ is defined through

< σγ , φ >:=

ˆ
Ω×Ω

ˆ 1

0
|ω′x,y(t)|φ(ωx,y(t))dt dγ, ∀φ ∈ C0(Ω;R)

and it is called transport density. Actually, we can even say more, since we
can use

ω′x,y(t) = −|x− y| x− y
|x− y|

= −|x− y|∇u(ωx,y(t)),

which is valid for every t ∈]0, 1[ and every x, y ∈ spt(γ) (so that ωx,y(t) is
in the interior of the transport ray [x, y], if x 6= y ; anyway for x = y, both
expression vanish).

This allow to write, for every φ ∈ C0(Ω;Rd)

< vγ , φ >=

ˆ
Ω×Ω

ˆ 1

0
−|x− y|∇u(ωx,y(t)) · φ(ωx,y(t))dt dγ

= −
ˆ 1

0
dt

ˆ
∇u(ωx,y(t)) · φ(ωx,y(t))|x− y|dγ

If we introduce the function πt : Ω× Ω→ Ω given by πt(x, y) = ωx,y(t), we
get

< vγ , φ >= −
ˆ 1

0
dt

ˆ
∇u(z) · φ(z)d

(
(πt)#(c · γ)

)
,

where c · γ is the measure on Ω× Ω with density c(x, y) = |x− y| w.r.t. γ.
Since on the other hand the same kind of computations give

< σγ , ψ >=

ˆ 1

0
dt

ˆ
ψ(z)d

(
(πt)#(c · γ)

)
,

we get < vγ , φ >=< σγ ,−φ · ∇u >, which shows

vγ = −∇u · σγ .

This gives the density of vγ with respect to σγ and proves |vγ | ≤ σγ .
The mass of σγ is obviously

ˆ
dσγ =

ˆ ˆ 1

0
|ω′x,y(t)|dt dγ =

ˆ
|x− y|dγ = min(PK),

which proves the optimality of vγ since no other v may do better than this,
and also proves min(PB) = min(PK).
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It is interesting to investigate whether σγ � Ld, since this would imply
that Problem (B) is well-posed in L1 instead of the space of vector measure.
For the sake of the variants that we will see later on, it would be interesting
to give conditions so that σγ ∈ Lp as well. All these subjects have been
widely studied by De Pascale, Pratelli (see [58, 59, 60]) but there is a more
recent (and shorter) proof of the same estimates in [93]. It is in particular
true that µ, ν ∈ Lp implies that σγ ∈ Lp and that it is sufficient that one of
the two measures is absolutely continuous in order to get the same on σγ .

Notice that it would be possible to prove, at least under some absolute
continuity assumptions on µ or ν, (see Theorem 7.3 in [2]) that

• any minimizer of (PB) is given by vγ for a suitable optimal transport
plan ;

• all the optimal transport plans γ provide the same vγ .

This induces in particular a uniqueness results for (PB) which is not obvious,
since it a convex but not strictly convex problem.

4.2.3 Traffic intensity and traffic flows for measures on curves

We introduce in this section some objects that generalize both vγ and σγ
and hat will be useful both for proving the characterization of the optimal
v as coming from an optimal plan γ and for the modelization issues of the
Discussion Section.

Let us introduce some notations.

Given an absolutely curve ω ; [0, 1] 7→ Ω and a continuous function ϕ,
let us set

Lϕ(σ) :=

ˆ 1

0
ϕ(ω(t))|ω̇(t)|dt. (2.3)

This quantity is the length of the curve weighted with the weight ϕ. When
we take ϕ = 1 we get the usual length of ω and we denote it by L(ω) instead
of L1(ω).

We consider probability measures Q on C := Lip([0, 1],Ω). The con-
vergence that we use on C is the uniform convergence with bounds on the
Lipschitz constants, i.e. we say that ωn → ω if Lip(ωn) is bounded and
ωn → ω uniformly. This is the same as the weak convergence in the space of
Lipschitz curves. Notice that Ascoli-Arzelà’s theorem guarantees that the
sets {ω ∈ C : Lip(ω) ≤ c} are compact for this convergence for every c.
We will associate two measures on Ω to such a Q. The first is a scalar one,
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called traffic intensity and denoted by iQ ∈M(Ω); it is defined by

ˆ
ϕdiQ :=

ˆ
C

( ˆ 1

0
ϕ(ω(t))|ω̇(t)|dt

)
dQ(ω) =

ˆ
C
Lϕ(ω)dQ(ω).

for all ϕ ∈ C(Ω,R+). This definition is a generalization of the notion of
transport density and the interpretation is the following: for a subregion A,
iQ(A) represents the total cumulated traffic in A induced by Q, it is indeed
the average over all paths of the length of this path intersected with A.

We also associate a vector measure to this probability Q, in the same
spirit as what we did in order to define vγ . Let us consider the vector-field
θQ defined through

∀X ∈ C(Ω,Rd)
ˆ

Ω
X · dθQ :=

ˆ
C

(ˆ 1

0
X(ω(t)) · ω̇(t)dt

)
dQ(ω).

Since this is a kind of vectorial traffic intensity, we will call it traffic flow.
Taking a gradient field X = ∇ψ in the previous definition yields

ˆ
Ω
∇ψ · dθQ =

ˆ
C([0,1],Ω)

[ψ(θ(1))− ψ(θ(0))]dQ(γ) =

ˆ
Ω
ψ(µ1 − µ0)

where µi := (ei)#Q for i = 0, 1. This means that

∇ · θQ = µ0 − µ1.

Moreover it is easy to check that

|θQ| ≤ iQ.

This last inequality is not in general an equality, since the curves of Q
could produce some cancellations (imagine a non-negligible amount of curves
passing through the same point with opposite directions, so that θQ = 0 and
iQ > 0).

It is straightforward that the constructions of vγ and σγ given in the
previous section are just a particular case of this one, more precisely they
are obtained in the case where Q is the image through the map associating
to every pair (x, y) the segment ωx,y of the measure γ ∈ P(Ω×Ω), optimal
transport plan for the Euclidean cost.

We need some properties of the traffic intensity and traffic flow.

Proposition 4.2.2. Both θQ and iQ are invariant under reparametrization
(i.e., if T : C → C is a map such that for every ω the curve T (ω) is just a
reparametrization in time of ω, then θT#Q = θQ and iT#Q = iQ).
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For every Q, the total mass iQ(Ω) equals the average length of the curves
according to Q, i.e.

´
C L(ω) dQ(ω) = iQ(Ω).

If Qn ⇀ Q and iQn ⇀ i, then i ≥ iQ.

If Qn ⇀ Q and iQn ⇀ iQ (i.e. if there is equality above), then θQn ⇀ θQ.

Proof. The invariance by reparametrization comes from the fact that both
Lϕ(ω) and

´ 1
0 X(ω(t)) · ω′(t)dt do not change under reparametrization.

The formula
´
C L(ω) dQ(ω) = iQ(Ω) is obtained from the definition of

iQ by testing with the function 1.

To check the inequality i ≥ iQ, fix a positive test function φ ∈ C(Ω) and
write ˆ

φdiQn =

ˆ
C

(ˆ 1

0
φ(ω(t))|ω̇(t)|dt

)
dQn(ω). (2.4)

Notice that the function C 3 ω 7→
´ 1

0 φ(ω(t))|ω̇(t)|dt is positive and lower-
semi-continuous w.r.t. ω. Indeed, if ωn → ω, then ω′n ⇀ ω weakly-* in L∞,
which implies, up to subsequences, the existence of an L∞ function ξ ≥ |ω′|
such that |ω′n| ⇀ ξ; moreover, φ(ωn(t)) → φ(ω(t)) uniformly, which gives´
φ(ωn(t))|ω′n(t)|dt→

´
φ(ω(t))ξ(t)dt ≥

´
φ(ω(t))|ω′(t)|dt.

This allows to pass to the limit in (2.4), thus obtaining

ˆ
φdi = lim

n

ˆ
φdiQn = lim inf

n

ˆ
C

(ˆ 1

0
φ(ω(t))|ω̇(t)|dt

)
dQn(ω)

≥
ˆ
C

(ˆ 1

0
φ(ω(t))|ω̇(t)|dt

)
dQ(ω) =

ˆ
φdiQ,

which proves the claim.

To check the last property, fix a bounded vector test function X and
look at

ˆ
X · dθQn =

ˆ
C

(ˆ 1

0
X(ω(t)) · ω̇(t)dt

)
dQn(ω)

=

ˆ
C

(ˆ 1

0
X(ω(t)) · ω̇(t)dt+ ||X||∞L(ω)

)
dQn(ω)− ||X||∞iQn(Ω), (2.5)

where we just added and subtracted the total mass of iQn , which is equal to
the average length of ω according to Qn.

Now notice that C 3 ω 7→
´ 1

0 X(ω(t)) · ω̇(t)dt+ ||X||∞L(ω) is a positive
quantity and it is l.s.c. in ω (it is a consequence of what we proved above,
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by taking φ = 1). This means that if we pass to the limit in (2.5) we get

lim inf
n

ˆ
X · dθQn

≥
ˆ
C

(ˆ 1

0
X(ω(t)) · ω̇(t)dt+ ||X||∞L(ω)

)
dQ(ω)− ||X||∞iQ(Ω)

=

ˆ
C

(ˆ 1

0
X(ω(t)) · ω̇(t)dt

)
dQ(ω) =

ˆ
X · dθQ.

By replacing X with −X we also get the opposite inequality and we have
proven θQn ⇀ θQ.

Good to know! – Dacorogna-Moser transport

A particular case of the construction in [54] (first used in optimal transport by
[63]):

Construction : Suppose that w : Ω → Rd is a Lipschitz vector field parallel to
the boundary (i.e.w · nΩ = 0 on ∂Ω) with ∇ ·w = f0 − f1, where f0, f1 are positive
probability densities which are Lipschitz continuous and bounded from below. Then
we can define the non-autonomous vector field w̃(t, x) via

w̃(t, x) =
w(x)

ft(x)
where ft = (1− t)f0 + tf1

and consider the Cauchy problem{
y′x(t) = w̃(t, yx(t))

yx(0) = x
,

We define the map Y : Ω→ C through Y (x) = yx(·), and we look for the measure
Q = Y#f0 and ρt := (et)#Q. Thanks to the consideration in Section 4.1.2, ρt solves
the continuity equation ∂tρt +∇ · (ρtw̃t) = 0. Yet, it is easy to check that ft also
solves the same equation since ∂tft = f1 − f0 and ∇ · (w̃ft) = ∇ · w = f0 − f1. By
the uniqueness result of Section 4.1.2, from ρ0 = f0 we infer ρt = ft.

In particular, x 7→ yx(1) is a transport map from f0 to f1.

It it interesting to check what are the traffic intensity and the traffic flow
associated to the measure Q in Dacorogna-Moser construction. Fix a scalar
test function ϕ:

ˆ
Ω
ϕdiQ =

ˆ
Ω

ˆ 1

0
ϕ(yx(t))|w̃(t, yx(t))|dtf0(x)dx

=

ˆ 1

0

ˆ
Ω
ϕ(y)|w̃(t, y)|ft(y)dydt =

ˆ
Ω
ϕ(y)|w(y)|dy
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so that iQ = |v|. Analogously, fix a vector test function X

ˆ
Ω
X · dθQ =

ˆ
Ω

ˆ 1

0
X(yx(t)) · w̃(t, yx(t))dtf0(x)dx

=

ˆ 1

0

ˆ
Ω
X(y) · w̃(t, y)ft(y)dydt =

ˆ
Ω
X(y) · w(y)dy,

which shows θQ = w (indeed, in this case we have |θQ| = iQ and this is due
to the fact that no cancellation is possible, since all the curves share the
same direction at every given point).

With these tools it is possible to prove that every admissible vector field
v in Beckmann problem is of the form v = θQ.

Lemma 4.2.3. Consider two probabilities µ, ν ∈ P(Ω) and a vector measure
v satisfying ∇ · v = µ − ν in distributional sense (with Neumann boundary
conditions). Then, for every domain Ω′ containing Ω is its interios, there
exist a family of vector fields wε ∈ C∞(Ω′) with wε·nΩ′ = 0, and two families
of densities µε, νε ∈ C∞(Ω′), with ∇ ·wε = µε − νε and

´
Ω′ µ

ε =
´

Ω′ ν
ε = 1,

weakly converging to w, µ and ν as measures, respectively and satisfying
|wε|⇀ |v|.

Proof. First, take convolutions (in the whole space Rd) with a gaussian
kernel ηε, so that we get v̂ε := v ∗ ηε and µ̂ε := µ ∗ ηε ν̂ε := ν ∗ ηε, still
satisfying ∇· v̂ε = µε−νε. Since the Gaussian Kernel is strictly positive, we
also have strictly positive densities for µ̂ε and ν̂ε. These convolved densities
and vector field would do the job required by the theorem, but we have to
take care of the support (which is not Ω′) and of the boundary behavior.

Let us set
´

Ω′ µ̂
ε = 1− aε and

´
Ω′ ν̂

ε = 1− bε. It is clear that aε, bε → 0
as ε → 0. Consider also v̂ε · nΩ′ : due to d(Ω, ∂Ω′) > 0 and to the fact that
ηε goes uniformly to 0 locally outside the origin, we also have |v̂ε ·nΩ′ | ≤ cε,
with cε → 0.

Consider uε the solution to
∆uε = aε−bε

|Ω′| inside Ω′

∂uε

∂n = −v̂ε · nΩ′ on ∂Ω′,´
Ω′ u = 0

and the vector field δε = ∇uε. Notice that a solution exists thanks to´
∂Ω′ v̂

ε · nΩ′ = aε − bε. Notice also that an integration by parts shows

ˆ
Ω′
|∇uε|2 = −

ˆ
∂Ω′

uε(v̂ε ·nΩ′)−
ˆ

Ω′
uε
(
aε − bε
|Ω′|

)
≤ C||∇uε||L2(cε+aε+bε),
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and provides an estimate on
´

Ω′ |∇u
ε|2 → 0 (since we have a dependence

of order two at the left hand side and of order one at the right hand side).
This shows ||δε||L2 → 0.

Now take

µε = µ̂ε +
aε
|Ω′|

; νε = ν̂ε +
bε
|Ω′|

; wε = v̂ε + δε,

and check that all the requirements are satisfied. In particular, the last one
is satisfied since ||δε||L1 → 0 and |v̂ε| ⇀ |v| by general properties of the
convolutions.

Remark 10. Notice that considering explicitly the dependence on Ω′ it is
also possible to obtain the same statement with a sequence of domains Ω′ε
converging to Ω (for instance in the Hausdorff topology). It is just necessary
to choose them so that, setting tε := d(Ω, ∂Ω′ε), we have ||ηε||L∞(B(0,tε)c) →
0.

With these tools we can now prove

Proposition 4.2.4. For every finite vector measure v ∈Md(Ω) and µ, ν ∈
P(Ω) with ∇ · v = µ − ν there exist a measure Q ∈ P(C) with (e0)#Q = µ
and (e1)#Q = ν such that |θQ| ≤ iQ ≤ |v|, with |θQ| 6= |v| unless θQ = v.

Proof. By means of Lemma 4.2.3 and Remark 10 we can produce an ap-
proximating sequence (wε, µε, νε) ⇀ (w, µ, ν) of C∞ functions supported on
domains Ωε converging to Ω. We apply Dacorogna-Moser’s construction to
this sequence of vector fields, thus obtaining a sequence of measures Qε. We
can consider these measures as probability measures on Lip([0, 1]; Ω′), where
Ω ⊂ Ωε ⊂ Ω′ which are, each, concentrated on curves valued in Ωε. They
satisfy iQε = |wε| and θQε = wε. We can reparametrize (without changing
their names) by constant speed the curves on which Qε is supported, with-
out changing traffic intensities and traffic flows. This means using curves ω
such that L(ω) = Lip(ω). The equalities

ˆ
C

Lip(ω) dQε(ω) =

ˆ
C
L(ω) dQε(ω) =

ˆ
Ω′
iQε =

ˆ
ω′
|wε| → |v|(Ω′) = |v|(Ω)

show that
´
C Lip(ω) dQε(ω) is bounded and hence Qε is tight. Hence, up

to subsequences, we can assume Qε → Q. The measure Q is obviously
concentrated on curves valued in Ω. The measures Qε were constructed so
that (e0)#Qε = µε and (e1)#Qε = νε, which implies, at the limit, (e0)#Q =
µ and (e1)#Q = ν. Moreover, thanks to Proposition 4.2.2, since iQε =
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|wε| ⇀ |v|, we get |v| ≥ iQ ≥ |θQ|. The same Proposition 4.2.2 also states
that, if |v| = iQ, then θQε ⇀ θQ. Yet, we also know θQε = wε ⇀ v and we
deduce v = θQ.

CYCLES

4.2.4 Beckman problem in one dimension

The one-dimensional case is very easy in what concerns Beckmann’s for-
mulation of the optimal transport problem, but it is interesting to analyze
it both for checking the consistency with the Monge’s formulaltion and for
using the results throughout next sections. We will take Ω = [a, b] ⊂ R.

First of all, notice that the condition ∇ · v = µ − ν is much stronger in
dimension one than in higher dimension. Indeed, the divergence is the trace
of the Jacobian matrix, and hence prescribing it only gives one constraint
on a matrix which has a priori d × d degrees of freedom. On the contrary,
in dimension one there is only one partial derivative for the vector field v
(which is actually a scalar), and this completely prescribes the behavior of
v. Indeed, the condition ∇ · v = µ− ν with Neumann boundary conditions
implies that v must be the primitive of µ− ν with v(a) = 0 (the fact that µ
and ν have the same mass also implies v(b) = 0). Notice that the fact that
its derivative is a measure gives v ∈ BV ([a, b]).

Memo – Bounded variation functions in one variable

BV functions are generally defined as L1 functions whose distributional deriva-
tives are measures. In dimension one this has a lot of consequences. In particular
these functions coincide a.e. with functions which have bounded total variation in
a pointwise sense: for each f : [a, b]→ R define

TV (f ; [a, b]) := sup{
N−1∑
i=0

|f(ti+1 − fi| : a = t0 < t1 < t2 < · · · < tN = b}.

Functions of bounded total variation are defined as those f such that TV (f ; [a, b]) <
∞. It is easy to check that BV functions are a vector space, and that monotone func-
tions are BV (indeed, if f is monotone we have TV (f ; [a, b]) = |f(b)−f(a)|.Lipschitz
functions are also BV and TV (f ; [a, b]) ≤ Lip(f)(b − a). On the other hand, con-
tinuous functions are not necessarily BV, neither it is the case for differentiable
functions (obviously, C1 functions, which are Lipschitz on bounded intervals, are
BV). As an example one can consider

f(x) =

{
x

log x sin
(

1
x

)
if 0 < x ≤ 1

2

0 for x = 0,
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which is differentiable everywhere but not BV (consider a partition using points of
the form x = 2/(kπ) and use

∑
k

1
k log k = +∞).

On the other hand, BV functions have several properties:
Properties of BV functions in R If TV (f ; [a, b]) < ∞ then f is the differ-

ence of two monotone functions (in particular we can write f(x) = TV (f ; [a, x])−
(TV (f ; [a, x])− f(x)), both terms being non-decreasing functions); it is a bounded
function and sup f − inf f ≤ TV (f ; [a, b]); it has the same continuity and differen-
tiability properties of monotone functions (it admits left and right limits at every
point, it is continuous up to a countable set of points and differentiable a.e.).

In particular in dimension one we have BV ⊂ L∞ which is not the case in
higher dimension (in general, we have BV ⊂ Ld/(d−1)).

We finish by stressing the connections with measures: for every positive measure

µ on [a, b] we can build a monotone function by taking its cumulative distribution

function, i.e. F (x) = µ([a, x]) and the distributional derivative of this function is

exactly the measure µ. Conversely, every monotone increasing function on a com-

pact interval is the cumulative distribution function of a (uique) positive measure,

and every BV function is the cumulative distribution function of a (unique) signed

measure.

As a consequence, we have the following facts:

• In dimension one, there is only one competitor v which is given by
v(x) = F (x)−G(x) with F (x) = µ([a, x]) and G(x) = ν([a, x]).

• This field v belongs to BV ([a, b]) and hence to every Lp space, includ-
ing L∞.

• The minimal cost in Beckmann’s problem is given by ||F−G||L1 , which
is consistent with Proposition 2.2.2.

• The transport density σ, characterized by v = −u′·σ is given by σ = |v|
and shares the same summability properties of v; it also belongs to BV
as a composition of a BV function with the absolute value function.

4.2.5 Characterization and uniqueness of the optimal v

In this section we will show two facts: first we prove that the optimal v in
the Beckmann’s problem always comes from an optimal transport plan γ
and then we prove that all the optimal γs give the same vγ and the same
σγ , provided one of the two measures is absolutely continuous.

Theorem 4.2.5. Let v be optimal in (PB): then there is an optimal trans-
port plan γ such that v = vγ.
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Proof. Thanks to Proposition 4.2.4, we can find a measure Q ∈ P(C) with
(e0)#Q = µ and (e1)#Q = ν such that |v| ≥ |θQ| Yet, the optimality of v
implies the equality |v| = |θQ| and the same Proposition 4.2.4 gives in such
a case v = θQ, as well as |v| = iQ. We assume Q to be concentrated on
curves parametrized by constant speed. Define S : Ω × Ω → C the map
associating to every pair (x, y) the segment ωx,y parametrized with constant
speed: ωx,y(t) = (1− t)x+ ty. The statement is proven if we can prove that
Q = S#γ wit γ an optimal transport plan.

Indeed, using again the optimality of v and Proposition 4.2.4, we get

min(PB) = |v|(Ω) = iQ(Ω) =

ˆ
C
L(ω) dQ(ω ≥

ˆ
C
|ω(0)− ω(1)|dQ(ω)

=

ˆ
Ω×Ω
|x− y| d((e0, e1)#Q)(x, y) ≥ min(PK).

The equality min(PB) = min(PK) implies that all these inequalities are
equalities. In particular Q must be concentrated on curves such that L(ω) =
|ω(0)−ω(1)|, i.e. segments. Also, the measure (e0, e1)#Q, which belongs to
Π(µ, ν), must be optimal in (PK). This concludes the proof.

The proof of the following result is essentially taken from [2].

Theorem 4.2.6. If µ� Ld, then the vector field vγ does not depend on the
choice of the optimal plan γ.

Proof. Let us fix a Kantorovich potential u for the transport between µ
and ν. This potential does not depend on the choice of γ. It determines
a partition into transport rays: Corollary 3.1.4 reminds us that the only
points of Ω which belong to several transport rays are non-differentiability
points for u, and are hence Lebesgue-negligible. Let us call S the set of
points which belong to several transport rays: we have µ(S) = 0 but we
do not suppose ν(S) = 0 (ν is not supposed to be absolutely continuous).
However, γ is concentrated on (πx)−1(Sc). We can then disintegrate (see
Section 2.3) γ according to the transport ray containing the point x. More
precisely, we define a map R : Ω×Ω→ R, valued in the setR of all transport
rays, sending each pair (x, y) into the ray containing x. This is well-defined
γ−a.e. and we can write γ = γr ⊗ λ, where λ = R#γ and we denote by r
the variable related to transport rays. Notice that, for a.e. r ∈ R, the plan
γr is optimal between its own marginals (otherwise we could replace it with
an optimal plan, do it in a measurable way, and improve the cost of γ).

The measure vγ may also be obtained through this disintegration, and
we have vγ = vγr ⊗ λ. This means that, in order to prove that vγ does not
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depend on γ, we just need to prove that each vγr and the measure λ do not
depend on it. For the measure λ this is easy: it has been obtained as an
image measure through a map only depending on x, and hence only depends
on µ. Concerning vγr , notice that it is obtained in the standard Beckmann
way from an optimal plan, γr. Hence, thanks to the considerations in Section
4.2.4, it uniquely depends on the marginal measures of this plan.

This means that we only need to prove that (πx)#γ
r and (πy)#γ

r do
not depend on γ. Again, this is easy for (πx)#γ

r, since it must coincide
with the disintegration of µ according to the map R (by uniqueness of the
disintegration). It is more delicate for the second marginal.

The second marginal νr := (πy)#γ
r will be decomposed in two parts:

(πy)#(γr|Ω×S) and (πy)#(γr|Ω×Sc). This second part coincides with the dis-

integration of ν|Sc , which obviously does not depend on γ (since it only
depends on the set S, which is built upon u).

We need now to prove that νr|S = (πy)#(γr|Ω×S) does not depend on
γ. Yet, this measure can only be concentrated on the two endpoints of
the transport ray r, since these are the only points where different transport
rays can meet. This means that this measure is purely atomic and composed
by at most two Dirac masses. Not only, the endpoint where u is maximal
cannot contain some mass of ν: indeed the transport must follow a precise
direction on each transport ray (as a consequence of u(x)−u(y) = |x−y| on
spt(γ)), and the only way to have some mass of the target measure at the
“beginning” of the transport ray would be to have an atom for the source
measure as well. Yet, µ is absolutely continuous and Property N holds (see
Section 3.1.4 and Theorem 3.1.7, which means that the set of rays r where
µr has an atom is negligible. Hence νr|S is a single Dirac mass. The mass
equilibrium condition between µr and νr implies that the value of this mass
must be equal to the difference 1 − νr|Sc(r), and this last quantity does not
depend on γ but only on µ and ν.

Finally, this proves that each vγr does not depend on the choice of γ.

Corollary 4.2.7. If µ� Ld, then the optimal solution of (PB) is unique.

Proof. We have seen in Theorem 4.2.5 that any optimal v is of the form vγ
and in Theorem 4.2.6 that all the fields vγ coincide.

4.3 Summability of the transport density

The analysis of Beckmann problem performed in the previous sections was
mainly made in a measure setting, and the optimal v, as well as the transport
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density σ, where just measures on Ω. We investigate here the question
whether they have extra regularity properties supposing extra assumptions
on µ and/or ν.

We will give summability results, proving that σ is in some cases abso-
lutely continuous and proving Lp estimates. The proofs are essentially taken
from [93]: previous results, through very different techniques, were first pre-
sented in [58, 59, 60]. In these papers, different estimates on the “dimension”
of σ are aslo presented, thus giving interesting information should σ fail to
be absolutely continuous.

Notice that higher order questions, such as whether σ is continuous or
Lipschitz or more regular provided µ and ν have smooth densities are com-
pletely open up to now (with the exception of a partial result in dimension 2,
see [?], where a continuity result is given if µ and ν have Lipschitz densities
on disjoint convex domains).

In all that follows Ω is a compact and convex domain in Rd, and two
probability measures are given on it. Since we will need to interpolate
between them, we will rather call them µ0 and µ1 (and the interpolation
will be called µt). At least one of them will be absolutely continuous, which
implies uniqueness for σ (see Theorem 4.2.6).

Theorem 4.3.1. Suppose µ0 � Ld and let σ be the transport density asso-
ciated to the transport of µ0 onto µ1. Then σ � Ld.

Proof. Let γ be an optimal transport from µ0 to µ1 and take σ = σγ ; call µt
the standard interpolation between the two measures: µt = (πt)#γ where
πt(x, y) = (1− t)x+ ty.

We have already seen that the transport density σ may be written as

σ =

ˆ 1

0
(πt)](c · γ)dt,

where c : Ω × Ω → R is the cost function c(x, y) = |x − y| (hence c · γ is a
positive measure on Ω× Ω).

Since Ω is bounded it is evident that we have

σ ≤ C
ˆ 1

0
µt dt. (3.1)

To prove that σ is absolutely continuous, it is sufficient to prove that almost
every measure µt is absolutely continuous, so that, whenever |A| = 0, we
have σ(A) ≤ C

´ 1
0 µt(A)dt = 0.

We will prove µt � Ld for t < 1. First, we will suppose that µ1 is finitely
atomic (the point (xi)i=1,...,N being its atoms). In this case we will choose
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γ to be any optimal transport plan induced by a transport map T (which
exists, since µ0 � Ld). Notice that the absolute continuity of σ is an easy
consequence of the behavior of the optimal transport from µ0 to µ1 (which
is composed by N homothecies), but we also want to quantify this absolute
continuity, in order to go on with an approximation procedure.

Remember that µ0 is absolutely continuous and hence there exists a
correspondence ε 7→ δ = δ(ε) such that

|A| < δ(ε)⇒ µ0(A) < ε. (3.2)

Take now a Borel set A and look at µt(A). The domain Ω is the disjoint
union of a finite number of sets Ωi = T−1({xi}). We call Ωi(t) the images of
Ωi through the map x 7→ (1−t)x+tT (x). These sets are essentially disjoint.
Why? because if a point z belongs to Ωi(t) and Ωj(t), then two transport
rays cross at z, the one going from x′i ∈ Ωi to xi and the one from x′j ∈ Ωj

to xj . The only possibility is that these two rays are actually the same,
i.e. that the five points x′i, x

′
j , z, xi, xj are aligned. But this implies that z

belongs to one of the lines connecting two atoms xi and xj . Since we have
finitely many of these lines this set is negligible. Notice that this argument
only works for d > 1 (we will not waste time on the case d = 1, since the
transport density is always a BV and hence bounded function). Moreover,
if we sticked to the optimal transport which is monotone on transport rays,
we could have actually proved that these sets are truly disjoint, with no
negligible intersection.

Hence we have

µt(A) =
∑
i

µt(A∩Ωi(t)) =
∑
i

µ0

(
A ∩ Ωi(t)− txi

1− t

)
= µ0

(⋃
i

A ∩ Ωi(t)− txi
1− t

)
.

Since for every i we have∣∣∣∣A ∩ Ωi(t)− txi
1− t

∣∣∣∣ =
1

(1− t)d
|A ∩ Ωi(t)|

we have ∣∣∣∣∣⋃
i

A ∩ Ωi(t)− txi
1− t

∣∣∣∣∣ ≤ 1

(1− t)d
|A|.

Hence it is sufficient to suppose |A| < (1 − t)dδ(ε) to get µt(A) < ε. This
confirms µt � Ld and gives an estimate that may pass to the limit.

Take a sequence (µn1 )n of atomic measures converging to µ1. The corre-
sponding optimal transport plans γn converge to an optimal transport plan γ
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and µnt converge to the corresponding µt (see Theorem 1.6.10 in Chapter 1).
Hence, to prove absolute continuity for the transport density σ associated
to such a γ it is sufficient to prove that these µt are absolutely continuous.

Take a set A such that |A| < (1 − t)dδ(ε). Since the Lebesgue measure
is regular, A is included in an open set B such that |B| < (1 − t)dδ(ε).
Hence µnt (B) < ε. Passing to the limit, thanks to weak convergence and
semicontinuity on open sets, we have

µt(A) ≤ µt(B) ≤ lim inf
n

µnt (B) ≤ ε.

This proves µt � Ld and hence σ � Ld.

Remark 11. Where did we use the optimality of γ? we did it when we
said that the Ωi(t) are disjoint. For a discrete measure µ1, it is always true
that the measures µt corresponding to any transport plan γ are absolutely
continuous for t < 1, but their absolute continuity may degenerate at the
limit if we allow the sets Ωi(t) to superpose (since in this case densities sum
up and the estimates may depend on the number of atoms).

Remark 12. Notice that we strongly used the equivalence between the two
different definitions of absolute continuity, i.e. the ε ↔ δ correspondence
on the one hand and the condition on negligible sets on the other. Indeed,
to prove that the condition µt � Ld passes to the limit we need the first
one, while to deduce σ � Ld we need the second one, since if we deal with
non-negligible sets we have some (1− t)d factor to deal with. . .

Remark 13. As a byproduct of the proof we can see that any optimal
transport pla from µ0 to µ1 which is approximable through optimal transport
plans from µ0 to atomic measures must be such that all the interpolating
measures µt are absolutely continuous. This property is not satisfied by
any optimal transport plan, since for instance the plan γ which sends µ0 =
L2
|[−2,−1]×[0,1] onto µ1 = L2

|[1,2]×[0,1] moving (x, y) to (−x, y) is optimal but

is such that µ1/2 = H1
|{0}×[0,1]. Hence, this plan cannot be approximated

by optimal plans sending µ0 onto atomic measures. On the other hand, we
proved in Lemma 3.1.12 that the monotone optimal transport can indeed
be approximated in a similar way.

In the previous theorem we did not treat the one dimensional case, which
is highly detailed in Section 4.2.4.

From now on we will often confuse absolutely continuous measures with
their densities and write ||µ||p for ||f ||Lp(Ω) when µ = f · L.
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Theorem 4.3.2. Suppose µ0 = f · Ld, with f ∈ Lp(Ω). The, if p < d′ :=
d/(d − 1), the unique transport density σ associated to the transport of µ0

onto µ1 belongs to Lp(Ω) as well, and if p ≥ d′ it belongs to any space Lq(Ω)
for q < d′.

Proof. Start from the case p < d′: following the same strategy (and the
same notations) as before, it is sufficient to prove that each measure µt (for
t ∈ [0, 1[) is in Lp and to estimate their Lp norm. Then we will use

||σ||p ≤ C
ˆ 1

0
||µt||pdt,

(which is a consequence of (3.1) and of Minkowski inequality), the conditions
on p being chosen exactly so that this integral converges.

Consider first the discrete case: we know that µt is absolutely continu-
ous and that its density coincides on each set Ωi(t) with the density of an
homothetic image of µ0 on Ωi, the homothecy ratio being (1− t). Hence, if
ft is the density of µt, we have
ˆ

Ω
ft(x)pdx =

∑
i

ˆ
Ωi(t)

ft(x)pdx =
∑
i

ˆ
Ωi

(
f(x)

(1− t)d

)p
(1− t)ddx

= (1− t)d(1−p)
∑
i

ˆ
Ωi

f(x)pdx = (1− t)d(1−p)
ˆ

Ω
f(x)pdx.

We get ||µt||p = (1 − t)−d/p′ ||µ0||p, where p′ = p/(p − 1) is the conjugate
exponent of p.

This inequality, which is true in the discrete case, stays true at the limit
as well. If µ1 is not atomic, approximate it through a sequence µn1 and
take optimal plans γn and interpolating measures µnt . Up to subsequences
we have γn ⇀ γ (for an optimal transport plan γ) and µnt ⇀ µt (for the
corresponding interpolation); by semicontinuity we have

||µt||p ≤ lim inf
n
||µnt ||p ≤ (1− t)−d/p′ ||µ0||p

and we deduce

||σ||p ≤ C
ˆ 1

0
||µt||pdt ≤ C||µ0||p

ˆ 1

0
(1− t)−d/p′dt.

The last integral is finite whenever p′ > d, i.e. p < d′ = d/(d− 1).
The second part of the statement (the case p ≥ d′) is straightforward

once one considers that any density in Lp also belongs to any Lq space for
q < p.
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EXAMPLE
What we just saw in the previous theorems is that the measures µt inherit

some regularity (absolute continuity or Lp summability) from µ0 exactly as
it happens for homotheties of ratio 1 − t. This regularity degenerates as
t → 1, but we saw two cases where this degeneracy produced no problem:
for proving absolute continuity, where the separate absolute continuous be-
havior of almost all the µt was sufficient, and for Lp estimates, provided the
degeneracy stays integrable.

It is natural to try to exploit another strategy: suppose both µ0 and µ1

share some regularity assumption (e.g., they belong to Lp). Then we can
give estimate on µt for t ≤ 1/2 starting from µ0 and for t ≥ 1/2 starting
from µ1. In this way we have no degeneracy!

This strategy works quite well, but it has an extra difficulty: in our pre-
vious estimates we didn’t know a priori that µt shared the same behavior
of piecewise homotheties of µ0, we got it as a limit from discrete approxi-
mations. And, when we pass to the limit, we do not know which optimal
transport γ will be selected as a limit of the optimal plans γn. This was
not important in the previous section, since any optimal γ induces the same
transport density σ. Yet, here we would like to glue together estimates on µt
for t ≤ 1/2 which have been obtained by approximating µ1, and estimates
on µt for t ≥ 1/2 which come from the approximation of µ0. Should the two
approximations converge to two different transport plans, we could not put
together the two estimates and deduce anything on σ.

Hence, the main technical issue which we need to consider is proving
that one particular optimal transport plan, i.e. the one which is monotone
on transport rays, will be approximable in both directions. Lemma 3.1.12
exactly does the job (and, indeed, it was proven in [93] exactly for this
purpose). Yet, the transport plans γε we build in the approximation are not
optimal for the cost

´
|x−y|dγ but for some costs

´
(|x−y|+ε|x−y|2)dγ. We

need to do this in order to force the selected limit optimal transport to be
the monotone one (through a secondary variational problem, say). Anyway,
this will not be an issue since these approximating optimal transport will
share the same geometric properties that will imply disjointness for the sets
Ωi(t) will allow for density estimates.

The first tool we need is a uniform Lp estimates of the measures µt in
terms of the norm of µ0, when µt is an interpolation from µ0 to µ1 corre-
sponding to a transport plan γ which is optimal for another cost, different
from |x − y|. In this case we do not have any transport ray argument, but
the result is somehow even stronger under strict convexity assumptions.

Even if not precisely stated, the reader will be easily be able to check
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that all the results of this section stay true for p = +∞ as well.

Lemma 4.3.3. Let γ be an optimal transport plan between µ0 and an atomic
measure µ1 for a transport cost c(x, y) = φ(y − x) where φ : Rd → R
is a strictly convex function. Set as usual µt = (πt)#γ. Then we have
||µt||p ≤ (1− t)−d/p′ ||µ0||p.

Proof. The result is exactly the same as in Theorem 4.3.2, where the key
tool is the fact that µt coincides on every set Ωi(t) with an homothety of
µ0. The only fact that must be checked again is the disjointness of the sets
Ωi(t).

To do so, take a point x ∈ Ωi(t)∩Ωj(t). Hence there exist xi, xj belonging
to Ωi and Ωj , respectively, so that x = (1− t)xi+ tyi = (1− t)xj + tyj , being
yi and yj atoms of µ1. Set a = yi − xi and b = yj − xj .

The c−cyclical monotonicity of the support of the optimal γ implies

φ(a) + φ(b) ≤ φ(yj − xi) + φ(yi − xj) = φ(tb+ (1− t)a) + φ(ta+ (1− t)b).

Yet, if yj 6= yi we have a 6= b, and strict convexity implies

φ(tb+(1−t)a)+φ(ta+(1−t)b) < tφ(b)+(1−t)φ(a)+tφ(a)+(1−t)φ(b) = φ(a)+φ(b),

which is a contradiction. Hence the sets Ωi(t) are disjoint and this implies
the bound on µt.

Remark 14. Disjointness of the sets Ωi(t) is easier in this strictly convex
setting. If the cost is |x − y| this is no more true, but it is anyway true
that the two vector a and b should be parallel, i.e. all the points should
be aligned, as we pointed out in Theorem 4.3.1. If µ does not give mass
to lines, than the sets are essentially disjoint. Otherwise one can say that
they are truly disjoint if one only looks at the optimal transport which is
monotone on transport rays.

Theorem 4.3.4. Suppose that µ0 and µ1 are probability measures on Ω,
both belonging to Lp(Ω), and σ the unique transport density associated to
the transport of µ0 onto µ1. Then σ belongs to Lp(Ω) as well.

Proof. Let us consider the optimal transport plan γ̄ from µ0 to µ1 defined
by (1.2). We know that this transport plan may be approximated by plans
γε which are optimal for the cost |x− y|+ ε|x− y|2 from µ0 to some discrete
atomic measures νε. The corresponding interpolation measures µt(ε) satisfy
the Lp estimate from Lemma 4.3.3 and, at the limit, we have

||µt||p ≤ lim inf
ε→0

||µt(ε)||p ≤ (1− t)−d/p′ ||µ0||p.
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The same estimate may be performed from the other direction, since the
same transport plan γ̄ may be approximated by optimal plans for the cost
|x − y| + ε|x − y|2 from atomic measures to µ1. Putting together the two
estimates we have

||µt||p ≤ min
{

(1− t)−d/p′ ||µ0||p, t−d/p
′ ||µ1||p

}
≤ 2d/p

′
max {||µ0||p, ||µ1||p} .

Integrating these Lp norms we get the bound on ||σ||p.

EXAMPLE

Theorem 4.3.5. Suppose µ0 ∈ Lp(Ω) and µ1 ∈ Lq(Ω). For notational
simplicity take p > q. Then, if p < d/(d − 1), the transport density σ
belongs to Lp and, if p ≥ d/(d− 1), it belongs to Lr(Ω) for all the exponents
r satisfying

r < r(p, q, d) :=
dq(p− 1)

d(p− 1)− (p− q)
.

Proof. The first part of the statement (the case p < d/(d−1) is a consequence
of Theorem 4.3.2. For the second one, using exactly the same argument as
before (Theorem 4.3.4) we get

||µt||p ≤ (1− t)−d/p′ ||µ0||p; ||µt||q ≤ t−d/q
′ ||µ1||q.

We then apply standard Hölder inequality to derive the usual interpolation
estimate for any exponent q < r < p:

||f ||r ≤ ||f ||αp ||f ||1−αq with α =
p(r − q)
r(p− q)

, and 1− α =
q(p− r)
r(p− q)

.

This implies

||µt||r ≤ C||µt||p ≤ C||µ0||p for t <
1

2
; ||µt||r ≤ C(1−t)−αd/p′ ||µ0||αp ||µ1||1−αp for t >

1

2
.

Then, take r < r(p, q, d), so that αd/p′ < 1 is ensured and hence the Lr

norm is integrable, thus giving a bound on ||σ||r.

Remark 15. We do not know whether this exponent r(p, q, d) is sharp or
not and whether σ belongs or not to Lr(p,q,d).

On the contrary, Example 4.15 in [58] shows the sharpness of the bound
on p that we set in Theorem 4.3.2.
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4.4 Discussion

4.4.1 Congested transport

As we saw in Section 4.2, Beckmann’s problem can admit an easy variant
if we prescribe a positive function k : Ω → R+, where k(x) stands for the
local cost at x per unit length of a path passing through x. This models the
possibility that the metric is non-homogeneous, due to geographical obsta-
cles given a priori. Yet, it happens in many situation, in particular in urban
traffic as everybody knows, that this metric k is indeed non-homogeneous,
but is not given a priori: it depends on the traffic, i.e. it depends on the
choice of all the commuters. In Beckmann’s language, we must look for a
vector field v optimizing a transport cost depending on v itself!

The easiest modelization, chosen by Beckmann [11] and later in [46] is
to consider the same framework as (PB) but supposing that k(x) = g(|v(x|)
is a function of the modulus of the vector field v. This is quite formal for
the moment (for instance it is not meaningful if v is a measure, but we will
not set this problem in the class of measures, indeed). In this case we would
like to solve

min

ˆ
H(v(x))dx : ∇ · v = µ− ν, (4.1)

where H(v) = H(|v|) and H(t) = g(t)t. Notice that if H is superlinear (if
g(t) → ∞ as t/to∞, i.e. if the congestion effect becomes bigger and bigger
when the traffic increases) this problem is well posed in the class of vector
fields v ∈ L1 (or of absolutely continuous vector measures). For instance, if
g(t) = t, which is the easiest case one can imagine, we must minimize the
L2 norm under divergence constraints:

min

ˆ
|v(x)|2dx : v ∈ L2(Ω;Rd), ∇ · v = µ− ν.

This problem is easily solvable since one can see that the optimal v must be
a gradient (we will develop this computation in a more general framework
below), and setting v = ∇u one gets ∆u = µ − ν. This is complemented
with Neumann boundary conditions and allow to find u, and then v.

We want now to discuss the meaning and pertinence of this model, keep-
ing into account the following natural questions:

• is this the good modelization, or the coefficient k should rather depend
on other traffic quantities, in particular a traffic intensity like iQ?
(notice that v can have cancellations);
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• what is the connection with equilibrium issues? in traffic congestion,
typically every agent decides alone which path to choose, and the
final traffic intensity is rather the output of a collection of individual
choices, rather than the result of a global optimization made by a
single planner;

• is the example g(t) = t a good choice in the modelization ? this implies
g(0) = 0, i.e. no cost where there is not traffic, but we know that we
cannot move at infinite speed even if there is no traffic.

To start our analysis we would like to present first an equilibrium model
developed by Wardrop, [101], on a discrete network.

Traffic equilibria on a finite network The main data of the model are a
finite oriented connected graph G = (N,E) modeling the network, and edge
travel times functions ge : w ∈ R+ 7→ ge(w) giving, for each edge e ∈ E, the
travel time on arc e when the flow on this edge is w. The functions ge are
all nonnegative, continuous, nondecreasing and they are meant to capture
the congestion effects (which may be different on the different edges, since
some roads may be longer or wider and may have different responses to
congestion). The last ingredient of the problem is a transport plan on pairs
of nodes (x, y) ∈ N2 interpreted as pairs of sources/destinations. We denote
by (γx,y)(x,y)∈N2 this transport plan: γx,y represents the “mass” to be sent
from x to y. We denote by Cx,y the set of simple paths connecting x to y,
so that C := ∪(x,y)∈N2Cx,y is the set of all simple paths. A generic path will
be denoted by ω and we will use the notation e ∈ ω to indicate that the
path ω uses the edge e.

The unknown of the problem is the flow configuration. The edge flows
are denoted by i = (ie)e∈E and the path flows are denoted by q = (qω)ω∈C :
this means that ie is the total flow on edge e and qω is the mass traveling
on the path ω. Of course the ie’s and qω’s are nonnegative and constrained
by the mass conservation conditions:

γx,y =
∑

ω∈Cx,y

qω, ∀(x, y) ∈ N2 (4.2)

and

ie =
∑

ω∈C : e∈ω
qω, ∀e ∈ E, (4.3)

which means that i is a function of q. Given the edge flows i = (ie)e∈E , the
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total travel-time of the path ω ∈ C is

Ti(ω) =
∑
e∈ω

ge(ie). (4.4)

In [101], Wardrop defined a notion of noncooperative equilibrium that
has been very popular since among engineers working in the field of con-
gested transport and that may be described as follows. Roughly speaking,
a Wardrop equilibrium is a flow configuration such that every actually used
path should be a shortest path taking into account the congestion effect i.e.
formula (4.4). This leads to

Definition 12. A Wardrop equlibrium is a flow configuration i = (ie)e∈E ,
q = (qω)ω∈C (all nonnegative of course), satisfying the mass conservation
constraints (4.2) and (4.3), such that, in addition, for every (x, y) ∈ N2 and
every ω ∈ Cx,y, if qω > 0 then

Ti(ω) = min
ω′∈Cx,y

Ti(ω
′).

A few years after Wardrop introduced his equilibrium concept, Beck-
mann, McGuire and Winsten [12] realized that Wardrop equilibria can be
characterized by the following variational principle:

Theorem 4.4.1. The flow configuration i = (ie)e∈E, q = (qω)ω∈C is a
Wardrop equilibrium if and only if it solves the convex minimization problem

inf
(i,q)

∑
e∈E

He(ie) s.t. nonnegativity and (4.2) (4.3) (4.5)

where, for each e, we take He to be the primitive of ge.

Proof. Assume that q = (qω)ω∈C (with associated edge flows (ie)e∈E) is
optimal for (4.5) then for every admissible η = (ηω)ω∈C with associated
(through (4.3)) edge-flows (ue)e∈E , one has

0 ≤
∑
e∈E

H ′e(ie)(ue − ie) =
∑
e∈E

ge(ie)
∑

ω∈C : e∈ω
(ηω − qω)

=
∑
ω∈C

(ηω − qω)
∑
e∈ω

ge(ie)

so that ∑
ω∈C

qωTi(ω) ≤
∑
ω∈C

ηωTi(ω)
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minimizing the right-hand side thus yields∑
(x,y)∈N2

∑
ω∈Cx,y

qωTi(ω) =
∑

(x,y)∈N2

γx,y min
ω′∈Cx,y

Ti(ω
′)

which exactly says that (q, i) is a Wardrop equilibrium. To prove the con-
verse, it is enough to see that problem (4.5) is convex so that the inequality
above is indeed sufficient for a global minimum.

The previous characterization actually is the reason why Wardrop equi-
libria became so popular. Not only, one deduces for free existence results,
but also uniqueness for w (not for q) as soon as the functions ge are increas-
ing (so that He is strictly convex).

Remark 16. It would be very tempting to deduce from theorem 4.4.1 that
equilibria are efficient since they are minimizers of (4.5). One has to be
cautious with this quick interpretation since the quantity

∑
e∈E He(ie) does

not represent the natural total social cost measured by the total time lost
in commuting which reads as ∑

e∈E
iege(ie). (4.6)

The efficient transport patterns are minimizers of (4.6) and thus are different
from equilibria in general. Efficient and equilibria configurations coincide in
the special case of power functions where ge(w) = aew

α, but this case is not
realistic since it implies that traveling times vanish if there is no traffic...
Moreover, a famous counter-example due to Braess shows that it may be
the case that adding an extra road on which the travelling time is aways
zero leads to an equilibrium where the total commuting time is increased!
This illustrates the striking difference between efficiency and equilibrium,
a topic which is very well-documented in the finite-dimensional network
setting where it is frequently associated to the literature on the so-called
price of anarchy (see [?]).

Remark 17. In the problem presented in this paragraph, the transport
plan γ is fixed, this may be interpreted as a short-term problem. Instead, we
could consider the long-term problem where only the distribution of sources
µ0 and the distribution of destinations µ1 are fixed. In this case, one requires
in addition, in the definition of an equilibrium that γ is efficient in the sense
that it minimizes among transport plans between µ0 and µ1 the total cost∑

γx,ydi(x, y) with di(x, y) := min
ω∈Cx,y

Ti(ω).
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In the long-term problem where one is allowed to change the assignment
as well, equilibria still are characterized by a convex minimization problem
where one also optimizes over γ.

Optimization and equlibrium in a continuous framework We want
now to generalize the previous analysis to a continuous framework. In the
continuous setting, there will be no network, all paths in a certain given
region will therefore be admissible. The first idea is to formulate the whole
path-dependent transport pattern in terms of a probability measure Q on
the set of paths (this is the continuous analogue of the path flows (qσ)σ of
the previous paragraph). The second one is to measure the intensity traffic
generated by Q in a similar way as one defines transport density in the
Monge’s problem (this is the continuous analogue of the arc flows (ie)e of
the previous paragraph). The last and main idea will be in modelling the
congestion effect through a metric that is monotone increasing in the traffic
intensity (the analogue of ge(ie)).

We will deliberately avoid to enter into technicalities so the following
description will be pretty informal (see [45] for details). From now on, Ω
denotes an open bounded connected subset of R2 (a city, say), and we are
also given :

• either two probability measures µ and ν (distribution of sources and
destinations) on Ω in the case of the long-term problem,

• or a transport plan γ (joint distribution of sources and destinations)
that is a joint probability on Ω× Ω) in the short-term case,

• or more generally a convex and closed subset Γ ⊂ Π(µ, ν) and we
accept any γ ∈ Γ (this is just a common mathematical framework for
the two previous cases, where we can take Γ = {γ} or Γ = Π(µ, ν).

We will use the notations of Section 4.2.3, and use probability measures
Q on C := Lip([0, 1],Ω), compatible with mass conservation, i.e. such that

(e0, e1)#Q ∈ Γ, with et(σ) := σ(t), ∀t ∈ [0, 1].

We shall denote by Q(Γ) the set of admissible transport patterns. We are
interested in finding an equilibrium i.e. a Q ∈ Q(Γ) that is supported on
geodesics for a metric ξQ depending on Q itself (congestion).

The intensity of traffic associated to Q ∈ Q(Γ) is by definition the mea-
sure iQ defined in Section 4.2.3.
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The congestion effect is then captured by the metric associated to Q:
suppose iQ � L2 and set

ξQ(x) := g(x, iQ(x))

for a given increasing function g(x, .) : R+ → R+. The fact that there exists
at least one Q ∈ Q(Γ) such that iQ � L2 is not always true and depends on
Γ but, for instance, it is true when Γ = Π(µ, ν) and µ and ν are such that the
transport density is absolutely continuous. Notice also that, for Γ = {γ}
(which is the most restrictive case) and µ, ν ∈ L∞, considerations from
incompressible fluid mechanics in [36] allow to build a Q such that iQ ∈ L∞.
Let us now describe what a reasonable definition of an equilibrium should
look like. If the overall transport pattern is Q, an agent commuting from x
to y choosing a path ω ∈ Cx,y (i.e. an absolutely continuous curve ω such
that ω(0) = x and ω(1) = y) spends time

LξQ(ω) =

ˆ 1

0
g(ω(t), iQ(ω(t))|ω̇(t)|dt.

She will then try to minimize this time i.e. to achieve the corresponding
geodesic distance

cξQ(x, y) := inf
ω∈Cx,y

LξQ(ω).

Paths in Cx,y such that cξQ(x, y) = LξQ(ω) are called geodesics (for the
metric induced by the congestion effect generated by Q).

We can define

Definition 13. A Wardrop equilbrium is a Q ∈ Q(Γ) such that

Q({ω : LξQ(ω) = cξQ(ω(0), ω(1)) = 1. (4.7)

Existence, and even well-posedness (what does it mean Lξ(ω) if ξ is
only measurable and ω is a Lipschitz curve?) of these equilibria are not
straightforward. Again, we will characterize equilibria as solutions of a given
minimal traffic problem.

Let us consider the (convex) variational problem

inf
Q∈Q(Γ)

ˆ
Ω
H(x, iQ(x))dx (4.8)

where H ′(x, .) = g(x, .), H(x, 0) = 0. We shall refer to (4.8) as the congested
optimal mass transportation problem for reasons that will be clarified later.
Under some technical assumptions that we do not reproduce here, the main
results of [45] can be summarized by:
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Theorem 4.4.2. Problem (4.8) admits at least one minimizer. Moreover
Q ∈ Q(Γ) solves (4.8) if and only if it is a Wardrop equilibrium and γQ :=
(e0, e1)#Q solves the optimization problem

min

ˆ
Ω×Ω

cξQ(x, y) dγ(x, y) : γ ∈ Γ.

In particular, if Γ = {γ} this last condition does not play any role (there is
only one competitor) and we show existence of a Wardrop equilibrium cor-
responding to any given transport plan γ. If, on the contrary, Γ = Π(µ, ν),
then the second condition means that γ solves a Monge-Kantorovich prob-
lem for a distance cost depending on Q itself, which is a new equilibrium
condition.

The full proof is quite involved since it requires to take care of some
regularity issues in details. In particular, the use of the weighted length
functional Lξ and thus also the geodesic distance cξ require some attention

since defining these quantities actually makes sense only if ξ is continuous or
at least l.s.c.. In [45] a possible construction when ξ is just an Lq function is
given. Let us also mention that recent regularity results (see below) actually
prove that ξ is in fact a continuous function, under reasonable assumptions
on the data.

We have proved that, as in the finite-dimensional network case, Wardrop
equilibria have a variational characterization which is in principle easier to
deal with than the definition. Unfortunately, the convex problems (4.8)
and (??) may be difficult to solve since they involve measures on sets of
curves that is two layers of infinite dimensions! We will not deal here with
the numerical strategies, bases on convex optimization duality, and on the
so-called Fast Marching Method to compute cξ for given ξ (and later to
compute variations of cξ when ξ varies), and we refer to [17, 18]. These
numerical methods are quite efficient and generalize what already done on
finite networks, and are better suited for the short-term case.

On the contrary, in the next paragraph we develop an interesting feature
of the long-term problem.

Beckmann-like reformulation of the long-term problem In the long-
term problem (4.8), we have one more degree of freedom since the transport
plan is not fixed. This will enable us to reformulate the problem as a vari-
ational divergence constrained problem à la Beckmann and ultimately to
reduce the equilibrium problem to solving some nonlinear PDE.
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As we already did in Section 4.2.3, for any Q ∈ Q(Γ) we can take the
vector-field θQ.

If we consider the scalar problem (4.8), it is easy to see that its value is
larger than that of the minimal flow problem à la Beckmann:

min
σ : ∇·σ=µ−ν

ˆ
Ω
H(σ(x))dx (4.9)

where H(σ) = H(|σ|) and H is taken independent of x only for simplicity.
The inequality is justified by two facts: minimizing over all vector fields v
with prescribed divergence gives a smaller result than minimizing over the
vector fields θQ, and then we use |θQ| ≤ iQ and the fact that H is increasing.

We would like to understand if the two problems are equivalent.
Proposition 4.2.4 does the job: if we take a minimizer v for this minimal

flow problem, then we are able to build a measure Q and, as we did in
Theorem 4.2.5, the optimality of v gives v = θQ and |θQ| = iQ, thus proving
that the minimal values are the same and that we can build a minimizer v
from a minimizer Q (just take v = θQ) and conversely a minimizer Q from
v (use Proposition 4.2.4).

The connection between the two problems would be stronger should the
Q that we build from v be somehow canonical and unique, instead of being
obtained through an approximation and compactness argument. This means
that we would like to have regularity results on the minimizer v, so that we
can directly apply to it the construction by Dacorogna and Moser, without
approximating and extracting a subsequence. Notice that, if H is strictly
convex, the minimizer v is unique.

To be able to solve the Cauchy problem{
y′x(t) = ṽ(t, yx(t))

yx(0) = x
,

with

ṽ(t, x) =
v(x)

ft(x)
where ft = (1− t)µ+ tν

one would need ṽ to be regular enough (say, Lipschitz continuous). Obvi-
ously, we can decide to add some assumptions on µ and ν, which will be
supposed to be absolutely continuous with regular densities (at least Lips-
chitz continuous and bounded from below).

However, one needs to prove regularity for the optimal v, and for this
one needs to look at the optimality conditions satisfied by v as a minimizer
of (4.9). PROOF OPTIMALITY By duality, the solution of (4.9) is



4.4. DISCUSSION 139

v = ∇H∗(∇u) where H∗ is the Legendre transform of H and u solves the
PDE: {

∇ · (∇H∗(∇u)) = µ0 − µ1, in Ω,
∇H∗(∇u) · nΩ = 0, on ∂Ω,

(4.10)

This equation turns out to be a standard Laplace equation if H is quadratic,
or it becomes a p−Laplace equation for other power functions. In these cases,
regularity results are well-known, under regularity assumptions on µ0 and
µ1. Yet, let us recall that H ′ = g where g is the congestion function, so it is
natural to have g(0) > 0 : the metric is positive even if there is no traffic!
This means that the radial function H is not differentiable at 0 and then its
subdifferential at 0 contains a ball. By duality, this implies ∇H∗ = 0 on this
ball which makes (4.10) very degenerate, even worse than the p−Laplacian.
For instance, a reasonable model of congestion is g(t) = 1 + tp−1 for t ≥ 0,
with p > 1, so that

H(σ) =
1

p
|σ|p + |σ|, H∗(z) =

1

q
(|z| − 1)q+, with q =

p

p− 1
(4.11)

so that the optimal σ is

σ =
(
|∇u| − 1

)q−1

+

∇u
|∇u|

,

where u solves the very degenerate PDE:

∇ ·
((
|∇u| − 1

)q−1

+

∇u
|∇u|

)
= µ0 − µ1, (4.12)

with Neumann boundary condition(
|∇u| − 1

)q−1

+

∇u
|∇u|

· nΩ = 0.

Note that there is no uniqueness for u but there is for v.
For this degenerate equation (more degenerate than the p-laplacian since

the diffusion coefficient identically vanishes in the zone where |∇u| ≤ 1), get-
ting Lipschitz continuity on v is not reasonable. Yet, Sobolev regularity of
v and Lipschitz regularity results for solutions of this PDE can be found in
[32]. This enables one to build a flow à la DiPerna-Lions [62] and then to
justify rigorously the construction above, even without a Cauchy-Lipschitz
flow. Interestingly, recent continuity results are also available (see [97] in di-
mension 2, and then [53], with a different technique in arbitrary dimension),
obtained as a consequence of a fine analysis of this degenerate elliptic PDE.
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Besides the interest for this regularity result in itself, we also stress that
continuity for v implies continuity for the optimal iQ, and this exactly gives
the regularity which is required in the proof of Theorem 4.4.2 (the main
difficulty being defining cξ̄ for a non-continuous ξ̄, and this is the reason
why our proof in Section 3 is only formal).

4.4.2 Branched transport

Opposite from what we saw in the previous section about congested trans-
port, in many other practical issues we would like to look for a way of
transporting the mass so that it moves as much jointly as possible, favoring
particles to share the same displacement instead of spreading all around the
domain and using as many different paths as possible. This comes from a
very different modelization, which is more suitable for other purposes than
studying traffic congestion: supose for instance that you have to build the
network system to transport the mass; in this case you do not want to build
infinitely many small roads, each one meant to transport a unique parti-
cle from its starting point to its destination, but you prefer to build one
unique bigger road. This is usually due to “economy of scale” principles,
something that we can experience everyday (exactly as it happens for traffic
congestion, but on different phenomena): the idea is that buy, or building,
something bigger will cost more, but proportionally less. In particular costs
are supposed to be sub-additive (the cost of the sum of two objects must be
less than the sum of the two costs), and in many cases in economy they have
“decreasing marginal costs” (i.e. the cost for adding a unit to a given back-
ground quantity is a decreasing function of the background, which means
that the cost is actually concave).

Notice that modeling this kind of effects require, either in Lagrangian or
Eulerian language, to look at the paths actually followed by each particles,
and it could not be done with the only use of a transport plan γ ∈ Π(µ, ν).
But, once we choose the good formulation via the tools developed in this
chapter, we ca guess the shape of the optimal solution for this kind of prob-
lem: particles are collected at some points, move together as much as pos-
sible, and then branch towards their different destinations. This is why this
class of problems is nowadays known as “branched transport”.

As we did for congested transport, we start from the discrete framework
to give a presentation of the problem and then move to the continuous
models. Notice that also in this case the discrete framework is somehow
classical in optimization and operational research, and the continuous one
is much more recent. Anyway, it has been investigated by different schools
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during the years 2000 and it precedes the study of congested transport.
The first model taking into account subadditive capacities for routes

was proposed by Gilbert [71] (and then [72]), where it is presented as an
extension of Steiner’s minimal length problems. The main applications that
Gilbert referred to were in the field of communication networks. Given two
atomic probability measures µ =

∑m
i=1 aiδxi and ν =

∑n
j=1 bjδyj , consider

(PG) min E(G) :=
∑
h

wαhH1(eh), (4.13)

where the infimum is among all weighted oriented graphs G = (eh, êh, wh)h
(where eh are the edges, êh represent their orientations and wh the weights)
satisfying Kirchhoff’s Law: in each segment vertex which is not one of the
xi’s or yj ’s the total incoming mass equals the outcoming, while in each xi
we have

ai + incoming mass = outcoming mass

and, conversely, in each yj we have

incoming mass = outcoming mass + bj .

These conditions correspond exactly to the well known Kirchhoff Law for
electric circuits. The orientations êh do not appear in the energy E but
appear in fact in Kirchhoff constraints. The exponent α is a fixed parameter
0 < α < 1 so that the function t 7→ tα is concave and subadditive. In this
way larger links bringing the mass from µ to ν are preferred to several smaller
links transporting the same total mass. It is not difficult to check that the
energy of any finite graph may be improved if we remove cycles from the
graph. In this way we can minimize among finite graphs which are actually
trees. This implies a bound on the number of edges and hence ensure a
suitable compactness which is enough to prove existence of a minimizer.

4.5 Eulerian models by Gilbert and Xia

Lots of branching structures transporting different kind of fluids, such as
road systems, communication networks, river basins, blood vessels, leaves
and trees and so on, may be easily thought of as coming from a variational
principle. They appear when transport costs encourage joint transportation.
Recently these problems received a lot of attention by mathematicians, but
in fact a mathematical formalization for them is very classical and has been
performed first for atomic measures and then generalized. We briefly present
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here the problem introduced by Gilbert in [71] and [72], where it is presented
as an extension of Steiner’s minimal length problems. The main applications
that Gilbert referred to were in the field of communication networks and the
energy to be minimized represents the costs for building the network.

Given two finitely atomic probability measures µ =
∑m

i=1 aiδxi and ν =∑n
j=1 bjδyj , consider

(PG) min E(G) :=
∑
h

wαhH1(eh), (5.1)

where the infimum is among all weighted oriented graphs G = (eh, êh, wh)h
(where eh are the edges, êh represent their orientations and wh the weights)
satisfying Kirchhoff’s Law: in each segment vertex which is not one of the
xi’s or yj ’s the total incoming mass equals the outcoming, while in each xi
we have

ai + incoming mass = outcoming mass

and, conversely, in each yj we have

incoming mass = outcoming mass + bj .

These conditions correspond exactly to the well known Kirchhoff Law for
electric circuits. The orientations êh do not appear in the energy E but
appear in fact in Kirchhoff constraints. The exponent α is a fixed parameter
0 < α < 1 so that the function t 7→ tα is concave and subadditive. In this
way larger links bringing the mass from µ to ν are preferred to several smaller
links transporting the same total mass. It is not difficult to check that the
energy of any finite graph may be improved if we remove cycles from the
graph. In this way we can minimize among finite graphs which are actually
trees. This implies a bound on the number of edges and hence ensures a
suitable compactness which is enough to prove existence of a minimizer.

More recently Xia, in [102], has proposed a new formalization leading
to generalizations of this problem to arbitrary probability measures µ and
ν. In this case the interest of the author of [102] is to view this problem
as an extension of Monge-Kantorovich optimal transport theory. Actually
Steiner and Monge’s problems represent the limit cases α = 0 and α = 1,
respectively.

Let us briefly see how Xia extended to the continuous case the discrete
irrigation model proposed by Gilbert. The key point is formalizing the prob-
lem by using measures (or currents), since the constraint on the incoming
and outcoming masses in each vertex (Kirchoff Law) may be easily written
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as ∇ · λG = µ − ν, where λG =
∑

hwh[[eh]] is a vector measure ([[e]] be-
ing the integration measure measure on the segment e: [[e]] = ê · H1 e).
This consideration lead Xia in [102] to extend the problem by relaxation to
generic probabilities µ and ν. The problems becomes

(PX) min Ē(λ) : ∇ · λ = µ− ν

where

Ē(λ) := inf
{

lim inf
n

E(λGn) : Gn are finite graphs and λGn ⇀ λ
}
.

It is also possible to prove a representation formula for the relaxed energy
Ē: we have

Ē(λ) =

{´
M θα dH1, if λ = (M, θ, ξ),

+∞ otherwise,
(5.2)

where the equality λ = (M, θ, ξ) means that M is a 1−rectifiable set, θ a
real multiplicity, ξ a measurable unit vector field on M tangent to M itself
and λ is the vector measure θξ · H1 M .

Notice that (PX) means minimizing an energy Ē under a divergence
constraint, exactly as in the minimal flow problem (Proposition ??). The
difference is that, instead of minimizing the total mass of the vector measure
whose divergence is prescribed, we minimize what is sometimes called its
α−mass Mα (see [?] and [?]).

It should be proven that, when µ and ν are both actually atomic mea-
sures, we retrieve the problem by Gilbert. This is not trivial, as we admitted
lots of new competitors. Moreover, as our relaxation process did not keep
fixed the marginal measures µ and ν, it is not even a priori clear that the
infimum value has not changed. To deal with this problem we need some
necessary optimality conditions: we would like to state that, once we mini-
mize over vector measures Xia’s functional, if µ and ν are themselves finitely
atomic, then any minimizer must actually be a finite graph. The problem of
regularity is addressed to in [?] and [?], but here we will not be concerned
with it.

Another non trivial issue is understanding when the minimum value,
which is always finite in the discrete case, is finite in the general case. This
leads to some conditions on α and the measures µ and ν. We will resume
them in next section.



144 CHAPTER 4. PRESCRIBED DIVERGENCE MINIMIZATION

4.6 Lagrangian models: traffic plans and patterns

This section is an informal summary of the models in [?] and [23] and their
properties. Languages and approaches have been sometimes simplified to
present them in a more concise way.

Let Ω be a fixed domain in Rd. Let us denote by Γ the set of 1−Lipschitz
curves γ : [0,+∞[→ Ω that are eventually constant. It means that, if we
define the stopping time of a curve γ by

σ(γ) = inf {s : γ is constant on [s,+∞[} ,

these are curves with σ(γ) < +∞. Let us also denote by Γarc the set of
those curves in Γ which are parametrized by arc length and by Γinj the set
of curves in Γ which are injective on [0, σ(γ)[. In the sequel we will often
identify a curve with its image, in the sense that sometimes we will write γ
instead of γ([0, σ(γ)]) = γ([0,+∞[).

Given a probability measure η on the space Γ, for any point x ∈ Rd the
η−multiplicity of x is defined by

[x]η := η {γ ∈ Γ : x ∈ γ([0, σ(γ)])} . (6.1)

Then we can define

Zη(γ) =

ˆ σ(γ)

0
[γ(t)]α−1

η dt and J(η) =

ˆ
Γ
Zη dη. (6.2)

Notice that, for simplicity, here Zη is defined without the term |γ′|(t) which
appears in the original definition in [23]. As a consequence, it will be deduced
later that minimizers are actually parametrized by arc length.

Finally, we consider the maps π0, π∞ : Γ → Ω, given by π0(γ) = γ(0),
and π∞(γ) = γ(σ(γ)). The two image measures (π0)]η and (π∞)]η, which
belong to P(Ω), will be called the starting and the terminal measure of η,
respectively. Following the notation of [23] we may define a traffic plan as a
measure η ∈ P(Γ) such that

´
Γ σ(γ)η(dγ) < +∞. We will also call pattern

a traffic plan η such that (π0)]η = δ0. In the case of a pattern the terminal
measure will also be called the measure irrigated by η

The minimization problem proposed in [23] is

(P ) min J(η) : η is a traffic plan, (π∞)]η = µ, (π0)]η = ν,

where µ and ν are given measures in P(Ω). We also denote the set of
admissible traffic plans by TP (ν, µ). As [γ(t)]η ≤ 1, we have Zη(γ) ≥ σ(γ).
Hence it is straightforward that any η such that J(η) < +∞ is actually a
traffic plan.
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Definition 14. A traffic plan η which minimizes J among all the traffic
plans with the same starting and terminal measures, with J(η) < +∞, will
be called an optimal traffic plan. In the case ν = δ0 it will be called optimal
pattern.

A useful tool developed in [23] (see also [22]) is the following: if η is
concentrated on Γarc ∩ Γinj then the following remarkable formula holds:

J(η) =

ˆ
Rd

[x]αη H1(dx). (6.3)

This formula gives an evident link with Gilbert and Xia’s models.
In the next chapter we will mainly deal with the problem of optimal

patterns, i.e. with the case ν = δ0. This problem requires some extra tools
and concepts that we will present in a while. Before that, let us introduce
another concept which is very typical of the general traffic plan case.

Definition 15. A curve γ0 : [s0, t0]→ Ω is said to be an arc of η if

η ({γ ∈ Γ : γ0([s0, t0]) ⊂ γ}) > 0.

We move now to the concepts we need to specifically deal with the case
ν = δ0.

For any t ≥ 0 consider an equivalence relation on Γ given by “the two
curves γ1 and γ2 are in relation at time t if they agree on the interval [0, t]”,
and denote the equivalence classes by [·]t, so that

[γ]t = {γ̃ : γ̃(s) = γ(s) for any s ≤ t} .

For notational simplicity, let us set |γ|t,η := η([γ]t).

Definition 16. Given η ∈ P(Γ), a curve γ ∈ Γ is said to be η−good if

Z0
η(γ) :=

ˆ σ(γ)

0
|γ|α−1

t,η dt < +∞.

Remark 18. When ν = δ0, the problem of minimizing the functional J0

given by J0(η) =
´

Γ Z
0
ηdη, is exactly the problem adressed in [?]. Its equiv-

alence with the traffic plan model we are presenting here, proposed in [23],
is proven in [?] and in [80] and relies on optimality conditions.

Remark 19. Other intermediate models may be introduced, all differing in
the definition of the multiplicity of the curve γ at time t. See for instance
[?] or [80].
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Here are now the most important optimality results that can be found
in [?], [23], [22], [?] and [80] or easily deduced from them.

1. Problem (P ) admits a solution, provided the infimum is finite (i.e.
there is at least a solution with finite energy).

2. If η is an optimal traffic plan, then η is concentrated on Γarc ∩ Γinj .
In particular, we may apply formula (6.3) for J .

3. Suppose that η is an optimal traffic plan, that two curves γ0, γ1 ∈
Γarc∩Γinj meet twice (i.e. γ0(s0) = γ1(s1), γ0(t0) = γ1(t1) and si 6= ti)
and that γ0 on the interval [s0, t0] ia an arc of η. Then either both
curves coincide in the trajectory between the two common points or
we have

´ t0
s0

[γ0(t)]α−1
η dt <

´ t1
s1

[γ1(t)]α−1
η dt. In particular two different

arcs of η cannot part and then meet again.

4. If η is an optimal pattern (in particular ν = δ0), then for η−a.e. curve
γ and a.e. t < σ(γ) we have [γ(t)]η = |γ|t,η. Roughly speaking this
means that if all the mass starts from a common point then there is
no parting-and-meeting-again-later (this is the single path property
described in [?].

5. As a consequence, any optimal pattern η is concentrated on the set of
η−good curves, and any η−good curve γ belongs to Γarc ∩ Γinj and
satisfies [γ(t)]η = η([γ]t) for any t < σ(γ).

6. Last but not least min (P ) = min(PX), which means that the minima
of the Lagrangian and of the Eulerian model coincide.

For the whole set of equivalences between the different models, see [?].

Remark 20. Notice that an optimal traffic plan η is concentrated on the
set of η−good curves, but this does not mean that this set is linked to the
support of η. In fact any restriction of an η−good curve is itself an η−good
curve and hence, for instance, in the discrete case, we have plenty of η−good
curves but the support of η is finite. In particular the set of η−good curves
may be very different from the set of fibers of a traffic plan that we find in
[23] or [?] and does not depend on any parametrization χ, but it is more
intrinsic.

Remark 21. These Lagrangian models may be useful to understand differ-
ences and similarities with the concentration case of Chapter 4. In fact it
is easy to realize that, even in simple cases such as discrete ones, the way
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the two models combine length and masses are different. In fact, in the
case where some masses (mi)i are transported each one on a segment whose
length is li, in the Xia (or traffic plan or pattern) model the cost is

∑
im

α
i li

while in the concentration case of Chapter 4 is (
∑

im
α
i ) (
∑

imil
p
i )

1/p
. But

the situation changes if we take p =∞ and this is the reason why we insisted
on the case of the space W∞ in Section 0.2 and in Chapter 4. In fact, if
we take a Lipschitz curve µ in W∞ (and we can think a 1−Lipschitz curve
up to reparameterization on a different interval), in analogy to Theorem ??,
we may think that there is a velocity field v with ||v|| ≤ 1 and that there
is a measure η on Γ (concentrated on solutions of the ODE associated to
the vector field v, i.e. on 1−Lipschitz curves) such that µt = (πt)]η (this
is suggested by some results in [?], but it has to be proven). For simplicty
let us have a look at the pattern case, i.e. µ0 = δ0. In terms of η the two
models give a cost at time t which is

´
Γ |γ|

α−1
t,η It<σ(γ)η(dγ) =

∑
i∈I(t)m

α
i for

one and Gα(µt) =
∑

im
α
i for the other. Here mi = η([γi]t) and the curves γi

are representatives of the equivalence classes of time t, the set I(t) denoting
those indexes such that the corresponding classes have not yet stopped. Due
to the optimality condition 3 these masses correspond to the masses of the
atoms of µt (in the sense that two η−good curves arrive at time t at the
same point if and only if they have stayed together from time 0). This shows
that the only difference between the two models is the fact that in the model
concerning curves in W∞ we take into account in the cost also the masses
that have stopped. This is in fact the main difference, which is due to the
fact that the cost at time t is chosen to depend only on the configuration of
masses at time t. It is the price to be paid, having a less accurate and less
realistic model, in order to have it mathematically simpler (as a particular
case of an abstract geodesic problem).

4.7 Irrigation costs and their finiteness

The minimum value of (PX) (or of (P )), which obviously depends on µ and
ν, will be denoted by dα(µ, ν). About its finiteness, there are results on α
ensuring dα(µ, ν) < +∞ for any pair of probabilities (µ, ν) and results con-
cerning the two measures as well, and in particular sort of their dimension.

We know that in the case α = 1 any pair of compactly supported mea-
sures may be linked with finite energy, because we are actually facing the
Monge-Kantorovich problem. It is proven in [102] that, when α is suffi-
ciently close to 1, namely α > 1 − 1/d, the minimum stays finite for any
pair (µ, ν). This is obtained by means of a dyadic construction which is
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very similar to the one we did in Chapter 4 (actually, its our construction
which is very similar to the one performed by Xia). Moreover the following
uniform estimate (see [102]) holds

dα(µ, ν) ≤ Cα,d diam(Ω). (7.1)

It is not difficult to extend the whole model to the case of finite measures
instead of probabilities, thus getting, when µ and ν are two measures with
the same mass m,

dα(µ, ν) ≤ Cα,dmα diam(Ω). (7.2)

From (7.2) and the fact that the distance dα depends only on µ− ν we can
deduce a sharper estimate which refines (7.1), namely

dα(µ, ν) ≤ Cα,d δα diam(ω), (7.3)

whenever µ−ν = δ(µ′−ν ′) and µ′ and ν ′ are probability measures on ω ⊂ Ω
(i.e. we have taken into account the possibility that the two measures differ
only on a small set and the mass of the difference is small).

In dimension one this means that for α > 0 there is finiteness of the
minimum. For α = 0 the problem reduces to a length minimization and in
the particular case of d = 1 this has always a finite solution.

In larger dimensions, however, when α is below this threshold there are
pairs of measures which are not linkable by a finite energy configuration.
Since in order to link µ to ν and estimate dα(µ, ν), we can always decide to
link µ to δ0 and then δ0 to ν, we will give the following definition.

Definition 17. A measure µ is called α−irrigable if dα(µ, δ0) < +∞. The
quantity dα(µ, δ0) will also be denoted by Xα(µ).

In the case d > 1 and α < 1 − 1/d, for a measure µ being α−irrigable
is a fact somehow linked to its “dimension”. The proofs are in [?] and [?]
and give both irrigability and non-irrigability results. In view of the fact
that, for lots of applications, it is very interesting to deal with the case of
the Lebesgue measure on Ω, we will here presents only the results which are
relevant for such a case.

Proposition 4.7.1. If µ is α−irrigable, then µ is concentrated on a set
which is Hd(α)−negligible, where d(α) = 1/(1−α). In particular the Lebesgue
measure is not α−irrigable for α ≤ 1− 1/d.

We do not provide here the complete proof of this fact, but we want
to give a proof of the fact that a measure whose density with respect to
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the Lebesgue measure is bounded away from zero may not be irrigated for
α < 1 − 1/d. It is consequently a very weak result, as it requires the strict
inequality on α and very strong assumptions on the measure, but it has the
advantage of using only the formulation of the problem given by Xia. This
proof comes from some conversations with P. Tilli.

Theorem 4.7.2. Suppose α < 1 − 1/d and that µ ∈ P(Ω) is such that
µ(Q) ≥ c|Q| for a certain c > 0 and any cube Q ⊂ Ω. Then µ is not
α−irrigable.

Proof. Let us divide Ω into small cubes Qi of side ε, thus having approxi-
matively Cε−d cubes. Inside any cube we place a subcube Q′i, with side cε
(c < 1). We fix now two sequence of discrete probability measure µn and νn,
converging to µ and δ0 respectively, such that dα(µ, ν) = lim infn dα(µn, νn).
Once we fix the sequence and the cubes, we will eventually have µn(Q′i) ≥
C1ε

d and νn(Qi) ≤ C2ε
d, for C1 > C2 and any index i up to the one for

which we have 0 ∈ Qi. Hence we may deduce that, in the optimal discrete
graph linking µn to νn, for all the indexes i but one, there should be at least
a mass (C2 − C1)εd passing through the region Qi \Q′i. Since the distance
to be covered is at least (1 − c)ε, the energy of the part of the graph con-
tained in Qi \Q′i must be at least Cε1+dα. The total energy is hence at least
Cε1+d(α−1). We can deduce dα(µ, ν) ≥ Cε1+d(α−1) and, being ε arbitrary
and 1 + d(α− 1) < 0, we get dα(µ, ν) = +∞.

Remark 22. In the previous proof, in the case α = 1−1/d we could not get
the result. Anyway, notice that the energy has been hugely underestimated,
as a consequence of the fact that in any cube Qi only the contribution of
the mass coming from Q′i has been considered, while for most of the cubes
this could be negligible with respect to the mass arriving from other cubes.

Remark 23. Notice that the threshold 1− 1/d is the same which appears
in Chapter 4 for the concentration case.

4.8 The dα distance and its comparison with W1

In [102] it is proven that, for α > 1 − 1/d, the quantity dα defines a new
distance over the space of probability measures P(Ω), which induces the
weak topology and endows P(Ω) with a structure of length space.

It is natural, as the branching transport problem (PX) comes from a
variant of Monge’s problem, to compare the distance arising here (dα) and
the one coming from Monge-Kantorovich theory (W1). As far as now we
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know that the two distances induce the same topology on P(Ω), which is
the same induced by the weak convergence, and it is easily checked ([102])
that W1 ≤ dα. The purpose of this Section is to give a sharp quantitative
estimate of the kind dα ≤ C(W1)β. This question was raised as a conjecture
by Cedric Villani while reviewing the PhD Thesis [22]. Such an inequality
would give an a priori estimate on dα which is, by the way, numerically
relevant. Indeed W1 is much easier to compute by linear programming than
dα, which involves a non-convex optimization problem.

Three continuous extensions of the Gilbert-Steiner problem In
analogy with the Monge-Kantorovich problem, the discrete Gilbert-Steiner
model has been recently set in a continuous framework where the wells and
sources are arbitrary measures, instead of a finite sum of Dirac masses.
There were at least three approaches to this generalization, which we shall
review briefly.

Xia’s relaxation

Xia, in [102], has proposed a new formalization leading to generalizations of
this problem to arbitrary probability measures µ and ν.

In fact Steiner and Monge’s problems represent the limit cases α = 0
and α = 1, respectively.

The important modelization idea by Xia is that if one looks at Gilbert’s
problem with µ =

∑m
i=1 aiδxi and ν =

∑n
j=1 bjδyj , then any irrigation graph

G, which - we recall it - is a weighted directed graph satisfying Kirchhoff’s
law, can be identified with a vector measure

G =
∑

e∈E(G)

w(e)H1|e~e (8.1)

where ~e denotes the unit vector in the direction of e and H1 is the one-
dimensional Hausdorff measure. It turns out that G satisfies Kirchhoff’s
law if and only if

div G = µ− ν (8.2)

in the distributional sense.

If we take now µ, ν two probability measures on a domain Ω ⊂ RN , a
vector measure u on Ω with values in RN is called by Xia [?] a transport path
from µ+ to µ− if there exist two sequences µ−i , µ+

i of finite atomic measures
with equal mass and a sequence of finite graphs Gi irrigating (µ+

i , µ
−
i ) such
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that µ+
i → µ+, µ−i → µ− as measures and Gi → T as vector measures. The

energy of T is defined by

Mα(T ) := inf lim inf
i→∞

Mα(Gi)

where the infimum is taken over the set of all possible approximating se-
quences {µ+

i , µ
−
i , Gi} to T . Denote

Mα(µ+, µ−) := inf{Mα(T ) : T is a transport path from µ+ to µ−}.

If α ∈ (1 − 1
N , 1], by Theorem 3.1 in [?], the above infimum is finite and

attained for any pair (µ+, µ−). Xia showed or conjectured in a series of
papers several structure and regularity properties of optimal transport paths
which we shall comment later on.

Maddalena-Solimini’s patterns

Maddalena and Solimini [81] gave a different (Lagrangian) formulation in
the case of a single source supply µ+ = δS . They model the transportation
network as a set of particle trajectories, or “fibers”, χ(ω, ·), where χ(ω, t) ∈
RN represents the location of a particle ω ∈ Ω at time t and χ(ω, 0) = S.
The set Ω is an abstract probability space indexing all fibers ; it is endowed
with a measure | · | (without loss of generality one could take Ω = [0, 1]
endowed with the Lebesgue measure). All the fibers are required to stop at
some time T (ω) and to satisfy χ(ω, 0) = S for all ω, i.e. all fibers start at
the same root S. The set of fibers is given a structure corresponding to the
intuitive notion of branches. Two fibers ω and ω′ belong to the same branch
at time t if χ(ω, s) = χ(ω′, s) for s ≤ t. Then the partition of Ω given by
the branches at time t yields a time filtration. The branch of ω at time t is
denoted by [ω]t and its measure by |[ω]t|. The energy of the set of fibers, or
“irrigation pattern” is defined by

Ẽα(χ) =

ˆ
Ω

ˆ T (ω)

0
|[ω]t|α−1dωdt

It is easily checked on discrete trees that this definition extends the Gilbert
energy (??). The measure µ− irrigated by a pattern is easily defined. For
every Borel set A in RN , µ−(A) is the measure of the set of fibers stopping
in A, µ−(A) = |{ω, χ(ω, T (ω)) ∈ A}|.
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Traffic plans

In [?] the pattern formalism was extended to the case where the source is
any Radon measure. The authors of [?] called “traffic plan” any probability
measure on the set of Lipschitz paths. The equivalence of all models is
proven in [80] and [?]. More precisely:

1. When the irrigated measures µ+ and µ− are finite atomic, the traffic
plan minimizers are the same as the Gilbert finite graph minimizers.

2. For two general probability measures µ+ and µ−, Xia’s minimizers are
also optimal traffic plans and conversely.

3. When µ+ = δS is a single source, optimal patterns and optimal traffic
plans are equivalent notions.

Throughout the paper we shall refer to the formalism of traffic plans
which is the slight extension of the pattern formalism as explained above.
The next section formalizes all definitions and recalls all properties we shall
need in the sequel. They refer mainly to [?], [?], [?], [81]. The used formalism
and the form given to statements follow [?], [?] and [?].


