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The Pila—Wilkie Theorem

PW Theorem PW for curves PW, general case = Reparameterization  Variations

Pila—Wilkie Theorem

Let S CR" be definable in an o-minimal expansion of the ordered
field of real numbers. Assume that S contains no infinite
semialgebraic subset*. Let € > 0. There exists C = C(€) > 0 such
that if H > C, then S contains at most H® rational points of height
at most H, i.e. setting S(Q,H) :={g€SNQ"| ht(g) <H}, we
have that for H > C, [S(Q,H)| < H®.

*If we set

S42 .= union of infinite, connected semialgebraic subsets of S, and
Strans :— §\ S22 then Pila and Wilkie in fact proved a stronger
statement, in which this assumption on S is dropped, and the
conclusion states that for H > C, we have |S™"(Q,H)| < H®.
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First remarks on the proof

PW Theorem PW for curves PW, general case = Reparameterization  Variations

o We may assume S C (0, 1) (consider maps x — +x=! which
preserve definability and height).

o We may assume that S =TI'(F) for some definable function
F:(0,1)" — (0,1) (using cell decomposition and § = "),

@ The key auxiliary result is the following:

Reparameterization Lemma

Let F: (0,1)" — (0,1)" be definable. For all p > 1, there exists a
finite set @ of C” maps ¢: (0,1)”™ — (0,1)™ such that

° Upeolm(9) = (0,1)™;
o forall ¢ € @, Hq)(“H ||Fo¢ H<1 for all |a| <p.
Moreover, |®| depends on p and uniformly on F, as do the ¢ € ©.
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Pila—Wilkie for curves
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Assuming Reparameterization, sketch proof of Pila—Wilkie for
curves, i.e.

Let f: (0,1) — (0,1) be definable and assume that T'(f) = T(f)"".
For all € > 0, there exists C = C(€) > 0 such that, for all H > C,

IC()(Q,H)| < H.

Observe that for all subintervals I C (0,1) and all non-zero
P € R[X,Y], there is some « € I such that P(o,f(a)) # 0.
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Number Theory - Step 2
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There are 3 steps to the proof.

STEP 2 is purely number theoretic.

We start by choosing p,d € N satisfying certain easy conditions
(p>25, 4p <d* < 5p).

For C? functions ¢, y: (0,1) — (0,1), whose derivatives up to order
p are bounded by 1, set, for ¢;; € Z,

Gx):= ), () ylx).

0<s,1<d—1

Suppose H is as large as you need (wrt d) and suppose 8 € (0 1) is

such that ¢(B), w(B) € Q(H). Then G(B) =0 or |G(B)| > by
Goal: choose ¢,; = ¢, ,(H,d) and I =I(H,d) such that if
I a € (0,1) is an interval of length at most [, and B €Iy 4 has

¢(B),w(B) € Q(H), then |G(B)| < -
MEM Thomas MSRI 02/05/2014 R



Number Theory - Step 2
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Apply Taylor's Theorem around some o € (0, 1):

=l (gsyt)0) . Syt (P)
6= Y cs,,<z‘¢ V)@ oy @V <és,t>(x_a>,,)

! 1
0<s,r<d—1 =0 g wr

for &, between x and o.

Now use the fact that ||¢?|],||y@|| <1 forall i=0,...,p, and
Thue-Siegel/ Dirichlet Box Principle, to find ¢y, and [ such that if
Be(a—La+i), then |G(B)| < W Hence for those B for
which also ¢(B), y(B) € Q(H), we have G(8) = 0.

[ and d are related in such a way that increasing the length of the
interval increases the degree of d required.
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Pigeonhole Principle (again) - Step 1
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STEP 1 Start with f: (0,1) — (0,1) as above, € > 0, and suppose
for a contradiction that, for infinitely many H, |['(f)(Q,H)| > HE.
Choose d =d(€),p = p(€) as proscribed above so that

I(d,H) > Ii

By Reparameterization, there exists @ (p(¢)), a finite set of C?
functions, such that Jycqlm(¢) = (0,1) and for all ¢ € @,

H¢ H HFo¢ H<1 for all || < p.

Since {Im(¢)}sca cover (0,1), by the Pigeonhole Principle (PHP),
there is some ¢ € @ for which L(f Tim(s)) (Q, H) > ﬁHg.

Now cover dom(@) = (0,1) with [}] intervals of length at most L.
Again, by PHP, one of these subintervals I is such that
F(frlm(q}[l))(QaH) |q)” ‘|H8> o] l H®> @‘Hz
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Zero Estimates - Step 3
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STEP 3 Taking ¢ = ¢ and w =fo¢ in Step 2, we see that, for
infinitely many H, there is a function

Gu(x):= Y cole H)xf(x)
0<s,<d—1
such that ‘Z(E}:I)’ > ﬁH%
But consider the definable family
F={{x] )Y rxfx)'=0}|r,eRfor0<sr<d—1}.

0<s,t<d—1

Each member of .% has only finitely many connected components,
and we can bound this number uniformly, by N(d), say; since
['(f) = [(f)", these connected components must be singletons.

So ‘Z(E;;)] < N(d(e)).

2 0o
Now let H > (N(d(g))|®|)s. Contradiction. [J
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PW, general case
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General case: consider I'(F), for F: (0,1)" — (0,1) with

F(F) — F(F)trans.

Step 1 and Step 2 go through routinely to give us an analogous
polynomial Py € R[Xy,...,X,,.1] with Z(Py)NT(F)(Q,H) > HF
for some r(m) >> 0.

Note that I'(F) = I'(F)"™™ = dim (Z(Py) NT['(F)) < m (else
contains Ay NT(F) for some open box Ay of dim m+1).

We would like to employ an argument which uses induction on
dimension to get a contradiction at this point, but the definition of
the above set depends on H.

However this just means we were proving the wrong theorem.
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Uniform Pila—Wilkie
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Uniform Pila—Wilkie Theorem

Let {S; | ¥ € R¥} be a definable family, S; € R” for all x € R%.
For all € > 0, there exists D = D(&) > 0 such that, for all ¥ € R¥
and H > D,

either (1) Sy contains an infinite semialgebraic subset
|S=(Q,H)| < H®.

o
=
—
[\)

=

Moreover, which of (1)z or (2)x holds depends definably on X, and,
if (1)5 holds, the set may be chosen to depend definably on X.

The same strategy works for proving this, as all arguments are
uniform in definable families and the sets (Z(Py) NI(F)) lie in one
fixed family not depending on H.
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Sketch proof of Reparameterization - C! — 1
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cl—1

C'-reparameterization for F = (Fy,...,F,): (0,1) — (0,1)".
Assume without loss that one F; is the identity.

Subdivide (0,1) into intervals on which each Fj is C' and |Fj| —|F}]
has constant sign, for j,k=1,...,n.

(Monotonicity Theorem and Uniform Bounds)

is biggest on I (it will

On subinterval I choose the j; such that ‘FJ’I
be > 1). Set ¢;(x) :ijl(c—l— (d—c)x), where Fj, = (c,d).

The required parameterization is the set of @s together with
constant maps for the singletons separating Is.
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cr—1

CP-repara. for F: (0,1) — (0,1)".

It is enough to find a “CP-reparameterization” whose derivatives are
bounded by some function of p.

Subdivide (0, 1) into intervals I on which all F; are C?, |F}| <1, and
the coordinate functions of F*) are either identically zero or
nowhere zero. (Monotonicity Theorem and C! — 1-reparam.)

For each I = (a,b), set ¢; = a-l—%(b—a)xp.

Then Hq)](q)H <p!, for0<qg<p.

Now consider the derivatives of Fo¢;. These are expressions in
terms of ¢,(‘1)s and £ o ¢y, so we need to bound the latter.
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(New) Analytic Trick
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Lemma (no model theory; only analysis)

Let p>1, I a bounded interva/ inR, f: I —(0,1) a CP*! function
such that for allx€ I andj=0,....p+1, f9(x)#0. Then for all

x€landj=0,...p, [fV(x)] < (’H ) , where 8;(x) is the
distance from x to the nearest endpoint of I.

As ¢ =a+ %(b—a)x” maps onto (a, %), &(¢s(x)) = 3(b—a)x”
and so, applying the lemma to F|, it comes, after some
computations, that H Fo(p, H <c1pP, for 0 < g <p.
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CP — m-Reparameterization
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CP-repara. for F: (0,1)™ — (0,1)".

We may assume F is C? on (0,1)™. (Cell Decomposition Theorem)
First, induction on m with x,, as a parameter to obtain what is
almost a CP-reparameterization: a finite set @ of functions ¢
which cover (0,1)” such that H(])(O‘)H |[(Fo (]))(“)H <1, for all

o € N" with || <p AND o, <0.

Now an induction on k (where the above is the k = 0 case) to obtain
analogously defined @y (where @, <k+1) from @y (04, <k).
This uses a similar (but much less messy) substitution lemma to
the one from the original proof, where one builds a function by
taking as coordinate functions all ¢ for ¢ € @, as well as the
derivatives of all Fo ¢, and their derivatives, and then one
reparameterizes and substitutes in the (domain of the) last variable.
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Algebraic Points
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The natural extension of these ideas is to consider algebraic points
instead of rational points (using the absolute multiplicative height).

That could mean either points with coordinates in a fixed real
number field F C R of degree k.
We count points in the analogously defined S™"(F, H).

Or it could mean algebraic points whose coordinates have degree
bounded by a fixed number k.

In that case we count the size of |S™™(k,H)| =
|S"ams O {(x1,...,x,) € R™ | for all i,[Q(x;) : Q] <k and ht(x;) < H}|.

In both cases, the analogous version of the Pila-Wilkie Theorem
holds (Pila 2009).
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Improving on Pila—Wilkie

PW Theorem PW for curves PW, general case = Reparameterization  Variations

It is not possible to obtain an improvement in the H¢ bound which
would hold for all o-minimal expansions of the real ordered field.

Given any function €(H) — 0 as H — oo, there is a transcendental
analytic function f: [0,1] — R and a sequence (H,), with H, —

such that, for all n € N, |T(f)(Q, H,)| > H:™)
definable in the o-minimal structure Ry,.

. These functions are

However, there is a proposed improvement for Reyp:

Wilkie's Conjecture (2006)

Let F C R be a number field of degree k. Suppose S is definable in
Rexp and does not contain an infinite semialgebraic subset. There
exist ¢(S,k),v(S) > 0 such that |S(F,H)| < c(logH)".

There is a version for algebraic points of bounded degree
formulated by Pila (2010), where the exponent y = ¥(S,k).
MEM Thomas MSRI 02/05/2014



Wilkie's Conjecture
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Wilkie's Conjecture (2006, in the form stated by Pila in 2010)

O Let F CR be a number field of degree k € N. For all sets S
definable in Reyp, there exist ¢(S,k),¥(S) >0 s.t.
|S"ns(F H)| < c(logH)?, for H > e.

Q Let k€ N. For all sets S definable in Reyp, there exist
c(8,k),y(S,k) >0 s.t. [S"(k,H)| < c(logH)?, for H > e.

What do we already know?

@ (1) holds for all S with dim(S) =1 (Jones-T./Butler (2010)).

@ Goes via proving the bound of (1) for S =T'(f), where f is a
one variable transcendental function implicitly defined from
Pfaffian functions (or existentially definable in R psyy).

@ Bound of (1) holds for S with dim(S) =2 IF S is implicitly
defined from Pfaffian functions AND has a geometric property
called mild parameterization (e.g. S definable in Ryespfar).
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