An improved bound on the Hausdorff dimension of Besicovitch sets in \(\mathbb{R}^3 \): Joshua Zahl, 19 May 2017
joint work with Nets Katz

A Besicovitch set in \(\mathbb{R}^n \) is a compact set containing a line segment pointing in every direction.

Conjecture. Every Besicovitch set in \(\mathbb{R}^n \) must have Hausdorff dimension \(n \).

Theorem. (Katz, Zahl) Every Kakeya set in \(\mathbb{R}^3 \) has \(H \)-dimension \(\geq \frac{5}{2} + \epsilon_0 \), where \(\epsilon_0 > 0 \).

Let \(\delta > 0 \). A tube is a \(\delta \)-neighborhood of a unit line segment.

Definition. A set \(\Pi \) of tubes satisfies the Wolff axioms if (1) every tube in \(\Pi \) is in \(B(0,1) \), (2) for every rectangular prism \(R \) of dimensions \((2,s,t) \), at most \(\delta - 2st \) tubes from \(\Pi \) are contained in \(R \).

Theorem. (Katz, Zahl) Let \(\Pi \) be a set of tubes that satisfy the Wolff axiom. If \(|\Pi| = \delta - 2 \), then \(\delta^{\frac{1}{2} - \epsilon_0} \lessapprox |\cup_{T \in \Pi} T| \).

For each of the tubes, let \(Y(T) \). If \(\sum_{T \in \Pi} |Y(T)| > \lambda \) then

\[
\lambda^{\delta^{\frac{1}{2} - \epsilon_0}} \lessapprox |\cup_{T \in \Pi} Y(T)|
\]

(1)

Theorem. (Katz, Laba, Tao) Let \(\Pi \) be a set of \(\delta^{-2} \) tubes pointing in \(\delta \)-separated directions. Then,

\[
|\cup_{T \in \Pi} T| \geq \delta^{\frac{1}{2} - \epsilon_1} \quad \text{or} \quad |\cup_{T \in \Pi} N_{\delta^{\frac{1}{2}}(T)}| \geq (\delta^{\frac{1}{2}})^{\frac{1}{2} - \epsilon_1}.
\]

Heisenberg Group: \(\mathbb{H} = \{(x, y, z) \in \mathbb{C}^3, Im(z) = Im(xy)\} \)

If \(a, b \in \mathbb{R}, c \in \mathbb{C} \), the line \((0, w, b) + \mathbb{C}(1, a, \overline{w}) \subset \mathbb{H} \).

Let \(R = \mathbb{F}_p[t]/(t^2) \). If \(a \in R, a = a_1 + a_2t \) where \(a_1, a_2 \in \mathbb{F}_p \).

\[
X = \{(x_1 + x_2t, y_1 + y_2t, z_1 + z_2t)|z_2 = x_1y_2 - y_1x_2\}.
\]

If \(a, b, c, d \in \mathbb{F}_p, ad - bc = 1 \), then \((a + aat, b + abt) + R(c + act, d + adt)X \).

\(\Pi : \mathbb{R}^3 \rightarrow \mathbb{F}_p^3, \Pi(x) = \mathbb{F}_p^3 \).

Vague Theorem. If \(\Pi \) is a counter example to the above theorem, then it is either the Heisenberg or \(SL_2 \) example.
A regulus is a (quadric) surface in \mathbb{R}^3 that is doubly ruled by lines.

If L_1, L_2, L_3 are skew lines then the union of the lines incident to L_1, L_2, L_3 form a regulus.

$H(T_0)$ is the "hairbrush of T_0", the set of tubes from Π that hit T_0.

A regulus strip is a set of the form $N_\delta(Z) \cap N_{\delta^{1\over 2}}(L) \cap B(0, 1)$, where $N_\delta(Z)$ is a regulus and $N_{\delta^{1\over 2}}(L)$ is a line in Z.

If T is a SL_2 type set Π is a disjoint union of $\delta^{-1\over 2}$ sets each of which is contained in a regulus strip.

Lines in $\mathbb{R}^3 \leftrightarrow$ points in \mathbb{R}^4.

Tubes in $\mathbb{R}^3 \leftrightarrow$ δ-balls in \mathbb{R}^4

If T is a SL_2 type counter example then $image(T)$ in \mathbb{R}^4 is contained in $N_{\delta^{1\over 2}}(Z(p))$. $P(a, b, c, d) = ad - bc - 1.$