Logo

Mathematical Sciences Research Institute

Home » Workshop » Schedules » Exponential stability of Euler integral in the three--body problem

Exponential stability of Euler integral in the three--body problem

Hamiltonian systems, from topology to applications through analysis I October 08, 2018 - October 12, 2018

October 11, 2018 (03:30 PM PDT - 04:30 PM PDT)
Speaker(s): Gabriella Pinzari (Università di Padova)
Location: MSRI: Simons Auditorium
Video

Abstract

The first integral characteristic of the fixed two--centre problem is proven to be an approximate integral (in the sense of N.N.Nekhorossev) to the three--body problem, at least if the masses are very different and the particles are constrained on a plane. The proof uses a new normal form result, carefully designed around the degeneracies of the problem, and a new study of the phase portrait of the unperturbed problem. Applications to the prediction of collisions between the two minor bodies are shown.

Supplements
Asset no preview Notes 11.1 MB application/pdf Download
Video/Audio Files

16-Pinzari

H.264 Video 16-Pinzari.mp4 158 MB video/mp4 Download
Buy the DVD

If none of the options work for you, you can always buy the DVD of this lecture. The videos are sold at cost for $20USD (shipping included). Please Click Here to send an email to MSRI to purchase the DVD.

See more of our Streaming videos on our main VMath - Streaming Video page.