Logo

Mathematical Sciences Research Institute

Home » Workshop » Schedules » q-abelianization for line defects

q-abelianization for line defects

Connections for Women: Holomorphic Differentials in Mathematics and Physics August 15, 2019 - August 16, 2019

August 15, 2019 (03:30 PM PDT - 04:30 PM PDT)
Speaker(s): Fei Yan (Rutgers University)
Location: MSRI: Simons Auditorium
Primary Mathematics Subject Classification No Primary AMS MSC
Secondary Mathematics Subject Classification No Secondary AMS MSC
Video

04-Yan

Abstract

I will talk about some joint work with Andrew Neitzke, where we introduce a new "invariant" (with possible wall-crossing) for framed links in a three-manifold M=C \times R with C being an oriented surface. This invariant, denoted as F(L) for a framed link L, is valued in the GL(1) skein algebra of another three-manifold M'=C' \times R, where C' is an N-fold cover of C. 

Under various special limits, F(L) turns into more familiar objects. When L is contained in a 3-ball in M, F(L) reproduces certain one-variable limit of the HOMFLY polynomial of L. When the projection of L to C has no crossings and the homology class of L is nontrivial, F(L) becomes a generating function encoding the spectrum of framed BPS states associated with certain half-BPS line defect in a 4d N=2 supersymmetric theory. In general, F(L) is a "hybrid" of the above two quantities. 

The construction of F(L) is realized via a homomorphism from the GL(N) skein algebra of M to the GL(1) skein algebra of M'. In my talk I will first review the notion of skein algebras. Then I will describe this homomorphism for the special case of N=2, followed by some examples. 

Supplements No Notes/Supplements Uploaded
Video/Audio Files

04-Yan

H.264 Video 894_27299_7861_04-Yan.mp4
Buy the DVD

If none of the options work for you, you can always buy the DVD of this lecture. The videos are sold at cost for $20USD (shipping included). Please Click Here to send an email to MSRI to purchase the DVD.

See more of our Streaming videos on our main VMath Videos page.