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Note: These solutions are a work in progress; comments, references, etc. are appreciated. Most
references and figures can be found with the problem statements.

Problem 1. 101 ants are placed randomly on a one-meter stick, except that one of them, Alice,
is placed in the exact center. Each ant is placed facing a random direction. At a certain moment
all of the ants start crawling in the direction they are facing, always traveling at one meter per
minute. When an ant meets another ant or reaches the end of the stick, it immediately turns
around and continues going in the other direction. What is the probability that after 1 minute
Alice is again at the exact center of the stick?

Discussion:Recall the thought experiment for Problem 1, Spring/Fall 2003, and add the require-
ment that batons bounce back from the ends of the stick. Exactly one minute after starting each
baton has bounced back from the end of the stick towards which it was originally headed and has
reached the exactly point that is the reflection of its starting point about the center. In particular,
Alice’s original baton, which started in the center of the stick, is now back in the center, with
some ant. But is that Aunt Alice?

The ordering of the ants remains invariant throughout the action-packed minute, so if Alice
was thekth ant from the left initially, she is still thekth ant from the left one minute later. Initially,
there werek−1 batons to the left of Alice’s; one minute later, these batons have all been reflected
about the center, so there are now exactlyk−1 batons to the right of Alice’s original baton. So at
the end Alice cannot have her original baton unless (unless and only unless) there were initially
exactly 50 ants on each side of her. The probability of this happening is exactly

2−100
(

100

50

)
.

Using Stirling’s formula, this is very close to 1/(5
√

2π), or about.0798, nearly 8 per cent.

Problem 2. A white king and a white rook play chess against a black king on a quarter-infinite
chessboard consisting of the first quadrant of the Cartesian plane. Initially, the White rook is at
the lower left hand square (0,0), the White king is adjacent to it at the square (1,0) on the lower
boundary, and the Black king is at (1,2). White moves first. On any move when he is not in check,
Black can elect to end the game by cashing out, receiving a payment from White of $(x + y) if
the Black king is on the square(x, y). Assuming correct play, how large a sum can Black earn?

Problem 3. A read-only array (ROM) containsn integers. Find a linear-time algorithm that
determines whether the array has a “majority element,” and if so, returns that value. An integer
x is a majority element in the array if it is ink locations, wherek > n/2.

Discussion: Repeatedly eliminate pairs of different elements. If any element remains it is the
only possible majority element, and a simple linear search can determine whether or not it is. One
clean way to perform the first step uses a stack, with operationspush(), pop(), andstacktop():
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Majority candidate(a)
for each elementc of the arraya

if the stack is empty orc is on top of the stack
push(c)

otherwise
pop()

if the stack is nonempty
return top()

This makes it clear that the first

step takes timeO(n), and it is clear that determining whether a specified element is a majority
element takes timeO(n).

Problem 4. A team ofn computer scientists meet and plot strategy in the following game. Your
job of course is to devise a strategy for them that maximizes the probability that they will win.

Each member of the team is assigned a unique public numberk from 1 ton.
When the contest begins, each contestant in placed in his own private room, with his own

primitive computer. No further communications between team members are permitted.
The game show host creates a ROM withn locations. Thek-th location has an entry±π(k),

whereπ is a random permutation of{1, . . . , n}, and each of then signs is chosen randomly.
Each contestant can program his or her computer to access this ROM. The program can

examine up ton/2 locations the ROM, but no more. Each program is allowed only a small fixed
number of scratch locations, but dynamic access to the ROM is allowed (i.e., the “next” location
can depend on the values observed in earlier locations).

After examiningn/2 locations of the ROM (or sooner, if his treasure hunt succeeds) thek-th
contestant is required to guess the sign ofk in whichever location it happens to occupy.

The team wins if and only if alln members of the team guess correctly. Find a strategy giving
your team a significant chance of winning even when the number of players is very large.

Discussion: Consider the graph whose nodes are the integers from 1 ton, with branches from
k to π [k]. The strategy for playerk is to look ata[1], a[2], . . . , a[n/2], wherea[1] = k and
a[ j +1] = π [|a[ j ]|] for each j . This traces a path in the graph. If nodek lies in a cycle of length
at mostn/2, the path traversed by playerk will complete the cycle and he will discover the object
of his quest.

The team’s strategy succeeds if the permutationπ is the product of cycles whichall have
length at mostn/2. The simple version of the strategy fails if and only if the permutationπ

contains some cycle of longer length. That happens if and only if for some small numbers (in
the interval 0≤ s < n/2, there is a cycle of lengthc = n − s. There are

(n
s

)
ways of picking the

elements not in this cycle, ands! permutations among them. The otherm = n − s elements must
lie in a single cycle, which can happen in(M − 1)! ways. So the number of permutations that
have a long cycle is

n/2∑
s=0

(
n

s

)
(n − s − 1)! s! =

n/2∑
S=0

n!

n − s
.

If a permutation is chosen at random from the set of alln! permutations, the probability of a
permutation which causes the team’s strategy to fail is

p =

n/2∑
s=0

1

n − s
.
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Note: There is a refinement of this strategy that allows the team to do slightly better: In
addition to winning whenever the longest cycle is no greater thann/2, they can also win half
of the time whenever the longest cycle is one greater. To achieve this, each member records the
cumulative product of all of the signs he has seen, and if he fails to find the sign he is looking for,
then he guesses that it is equal to the product of all of the signs he has seen. Although this guess
is correct only 50% of the time, if the cycle length is 1+ bn/2c the guesses of the team members
tracing this cycle will either all be correct or all be wrong.

Although this refinement gives a noticeable improvement whenn is small, its impact becomes
negligible asn becomes large.

For largen, the expression forp asymptotically approaches

p =

n∑
k=1+bn/2c

1

k
≈ ln2.

So for largen, the team fails only about 69% of the time. With probability over 30%, everyone
on the team succeeds in finding the sign bit for which he is looking.
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