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Math’s Versatility: From Planet to Theater
A word from Director Robert Bryant

Welcome to the Spring 2013 issue of the Emissary! Much has happened at MSRI since
our last issue, and I hope that you’ll enjoy the informative articles on our scientific pro-
grams as well as the news items about the accomplishments and recognitions of our
current and former members.

The semester started very early for us because MSRI participated in the US launch
of the Mathematics of Planet Earth 2013 project at the Joint Meetings in San
Diego. This yearlong project is sponsored by a consortium of more than 100 uni-
versities and institutes around the world, and its goal is to help inform the pub-
lic about the essential ways that mathematics is used to address the challenges
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Dr. Emily Shuckburgh gave a Simons Pub-
lic Lecture for MPE2013. See page 9.

— from climate science, to health, to
sustainability — that we face in living
on Earth. We are excited about this
collaboration, and hope that you’ll be-
come involved by visiting the web site
mpe2013.org to learn more about what
MSRI and its co-sponsors are doing to
promote mathematics awareness in these
important areas. (I’ll have more to say
about some of these events below.)

This spring’s programs, Commutative
Algebra (which is the continuation of a
yearlong program that started in the fall)
and Noncommutative Algebraic Geome-
try and Representation Theory, got off
to a great start, with a series of heav-
ily attended workshops that highlighted
the deep connections between the two
programs. You’ll find articles about each
program and some of the scientists and
postdoctoral fellows who are participat-
ing in them further along in this issue.

We have had some interesting public
events this spring, starting with our an-
nual collaboration with PlaygroundSF in
February. This year, the theme was “fear-

ful symmetry” (drawn from the famous Blake poem). One of our visiting members, Dave
Benson, and I met with the playwrights on February 13 to hold a discussion with them
about how mathematicians think about symmetry in music, mathematics, and physics,
why it is so important, and how it can be both enlightening and misleading. After that,
each of the playwrights had five days to write a 10-page play using the theme, and Dave
and I sat on the jury to help select the top six (of nearly 30 submissions) that would be
given staged readings on February 25 at the Berkeley Repertory Theatre.

The playwrights certainly came up with some creative and fascinating ways to make use
of the theme, and we were quite pleased with many of the entries. On the night of the
performance, we had one of the larger audiences that PlayGround has had (MSRI night

(continued on page 11)

−→

A singular resolution: The D4 singularity
x2y− y3 + z2 = 0 and its desingulariza-
tion. See the article about the NAGRT
program starting on page 6.
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Act Locally, Link Globally
Outreach Highlights from Fall 2012

Alissa S. Crans
Celebration of Mind
This past October, MSRI welcomed approximately 80 puzzle-
lovers of all ages to the first “Celebration of Mind” event that MSRI
has hosted. Celebration of Mind is a worldwide celebration of the
legacy of Martin Gardner, promoted by the Gathering 4 Gardner
(G4G) foundation and held annually on or near his birthdate.

The night opened in the Simons Auditorium with a viewing of an
episode of David Suzuki’s “The Nature of Things” that featured
Martin Gardner. This was followed by two-hour session in which
guests explored numerous display tables distributed throughout the
building. The tables presented an array of puzzles, games, activi-
ties, and a handful of books from Gardner’s vast collection. There
were dozens of physical puzzles, as well as over 40 books and 15
logic puzzles. We are extremely grateful to Stan Isaacs, long-time
officer of the Golden Section of the Mathematical Association of
America, for generously sharing many of the puzzles and books
from his personal collection.

As part of the activities, Elwyn Berlekamp, an MSRI Board of
Trustees member, a leading expert in the theory of games, and
a G4G officer, ran a dots and boxes “simul”; Nancy Blachman,
founder of the Julia Robinson Mathematics Festivals and a G4G
conference organizer, performed and explained card tricks; and
Matthias Beck, Associate Professor of Mathematics at San Fran-
cisco State University and the 2012 MSRI-UP Research Director,
led a Zometool construction.

Gary Antonick, author of the “Numberplay” blog at the New
York Times, also attended the event and mentioned it in his Oc-
tober 29, 2012, column. In the column, he shared a puzzle (the
13-Link Chain Puzzle) that was suggested to him by another guest
at our event!

It was a great evening filled with friendly, inquisitive people,
dozens of challenging puzzles, engaging conversations, and deli-
cious desserts that MSRI is delighted to have hosted.

Math Midway Events
Also during the fall, we collaborated on two evening activities with
our friends at the Lawrence Hall of Science (LHS). Both events
took advantage of the “Math Midway” — an interactive, “travel-
ing carnival” style mathematics exhibition developed by the new

Matthias Beck (San Francisco State Univ.) works with a young
Martin Gardner fan, Nico Brown, on a Zometool construction.

Museum of Mathematics (MoMath) in New York — that was being
hosted by LHS.

In October, Paul Zeitz, Professor of Mathematics at the University
of San Francisco and Director of the San Francisco Math Circle,
led a discusion for middle school students, teachers, and parents
that was followed by an exploration of the exhibit. This event was
also part of the annual Bay Area Science Festival.

The December event was a scavenger hunt through the exhibit or-
ganized for mathematics educators at all levels. There were numer-
ous tasks that involved the activities displayed in the exhibit, such
as locating points of symmetry on the “Monkey Mat,” creating a
specific tessellation using the “Miles of Tiles,” and illustrating a
regular hexagon in a cube in the “Ring of Fire.” This event was
additionally co-sponsored by the San Francisco Math Circle and
Circle for Teachers, the Oakland/East Bay Math Circle, and the
Bay Area Circle for Teachers.

On a related note, the directorate of MSRI has been, and contin-
ues to be, engaged in conversations with the directors of MoMath.
Alissa S. Crans, Director of Educational and Outreach Activities,
is serving on the organizing committee for the MOVES Confer-
ence (Mathematics of Various Entertaining Subjects) designed to
highlight recreational mathematics. More information, including
instructions for registering, can be found on the conference web-
site: http://momath.org/moves-conference.

2012–13 Chancellor’s Scholar — Dylan Thurston
The UC Berkeley Chancellor’s Scholarship award carries a purse
of $50,000 and is open to nominees from MSRI only. Chancel-
lor’s Scholars must be top researchers and must also be known
for excellent teaching.

The 2012–13 Chancellor’s Scholar, Dylan Thurston of Columbia
University, is a mathematician of remarkable breadth and origi-
nality, with outstanding achievements in low-dimensional topol-
ogy, cluster algebra theory, and computational geometry. He is
also a great communicator, an engaging and enthusiastic teacher,
and a dedicated research supervisor, the qualities that made his

selection as the Chancellor Professor particularly fitting.

The graduate course he taught at Berkeley last fall, “The Geom-
etry and Algebra of Curves on Surfaces,” started from the funda-
mentals of hyperbolic geometry, led to Penner’s theory of dec-
orated Teichmüller spaces, and continued to the recently devel-
oped connections between combinatorial topology, hyperbolic
geometry, and cluster algebras. It was attended by a diverse au-
dience of graduate students, postdocs, and faculty, including a
number of MSRI members.

— Sergey Fomin

2

http://momath.org/moves-conference/


Matrix Factorizations
Daniel Murfet

This March, there was a focus period on matrix factorizations in the
Commutative Algebra program at MSRI. The study of matrix fac-
torizations was initiated by David Eisenbud in 1980 and has grown
into a vibrant field of research with connections to many areas of
mathematics and mathematical physics. The fundamental observa-
tion is that for a polynomialW ∈ C[x1, . . . ,xn] the equation

D2 =W

may have no solution in polynomials, but it may acquire solutions
when we enlarge our sphere of consideration to include matrices.
For example x21+x

2
2 has no square root, but nonetheless

(
0 x1− ix2

x1+ ix2 0

)2
= (x21+x

2
2) · I .

A matrix factorization of W is one of these matrix square roots,
that is, a block matrix with polynomial entries

D=

(
0 F
G 0

)
satisfying D2 =W · I. Does a matrix factorization always exist?
The example F = I,G =W · I shows that this is the case, but this
matrix factorization is contractible: there is a matrix of polynomi-
als H with I=DH+HD.

The more meaningful answer is that non-contractible matrix fac-
torizations exist precisely when the hypersurface W = 0 in Cn
is singular. Moreover, the structure of the space of possible ma-
trix factorizations encodes homological and geometric information
about the singularity; this explains the role of matrix factorizations
in singularity theory and commutative algebra.

Beyond these subjects, the last decade has seen matrix factoriza-
tions appear in surprising places including string theory and low-
dimensional topology, and my purpose in this article is to briefly
explain these two connections.

The Dirac Equation
To motivate the relation between matrix factorizations and string
theory, we begin in an earlier era of mathematical physics with a
famous construction of Dirac.

In the late 1920s physicists were seeking a description of the elec-
tron compatible with both relativity and quantum mechanics. These
two theories were in tension: according to nonrelativistic quantum
dynamics, the state of the electron is a complex-valued solution
ψ(x, t) of the Schrödinger equation. In this equation time plays a
special role, whereas according to relativity a Lorentz transforma-
tion relating the measurements of two observers may mix the time
coordinate of one with the spatial coordinates of the other, and so
the correct wave equation for the electron should be covariant with
respect to such transformations.

The first attempt was the Klein–Gordon equation[
−
1

c2
∂2

∂t2
+
∂2

∂x21
+
∂2

∂x22
+
∂2

∂x23
−
m2c2

 h2

]
ψ= 0

with time combined into the Lorentz invariant operator

2=−
1

c2
∂2

∂t2
+
∂2

∂x21
+
∂2

∂x22
+
∂2

∂x23
.

As a description of the electron this was a failure, but Dirac hit
upon the idea of looking for a first-order operatorD giving a square
root of 2. From the factorization(

2−
m2c2

 h2

)
=
(
D+

mc
 h

)(
D−

mc
 h

)
, (†)

one would obtain solutions of the Klein–Gordon equation from
solutions of the first-order differential equation (D− mc

 h )ψ = 0.
To find this square root D, he began with an ansatz involving un-
known quantities γµ: 4∑

µ=1

γµ
∂

∂xµ

2 =2=
∂2

∂x21
+
∂2

∂x22
+
∂2

∂x23
+
∂2

∂x24
,

where we set x4 = ict. In order for the left hand side to match the
right, these γµ must satisfy the equations

γ2µ = 1, γµγν+γνγµ = 0, (µ 6= ν) .

Using 4× 4 matrices of complex numbers satisfying these condi-
tions Dirac wrote down his famous equation 4∑

µ=1

γµ
∂

∂xµ
−
mc
 h

 ~ψ= 0,

which is Lorentz invariant, and is in fact the correct wave equation
for the relativistic electron. In this equation ~ψ stands for a tuple of
four functions.

A quick look at (†) shows that each of the functions in this tuple
is a solution of the Klein–Gordon equation, but what is the signif-
icance of ~ψ being a tuple rather than a single function? Resolving
this mystery led directly to the theoretical prediction of the exis-
tence of antimatter!

Let us now return to the world of polynomials, and reinterpret
Dirac’s construction as a matrix factorization of a quadratic form 4∑

µ=1

γµxµ

2 = (x21+x
2
2+x

2
3+x

2
4) · I .

This construction was generalized by Buchweitz, Eisenbud and
Herzog, who in 1987 classified matrix factorizations of nondegen-
erate quadratic forms.

Although it differs in many respects from this example, the mod-
ern connection between matrix factorizations and string theory is
similar in spirit. A Landau–Ginzburg model is a topological field
theory defined on a Riemann surface, whose Lagrangian depends
on a polynomialW. In 2002 Kapustin and Li realized that in order
to extend the theory to Riemann surfaces with boundary in a way
preserving supersymmetry, one has to choose a non-trivial square
root D of W. The fundamental quantities of the theory are then
expressed in terms of residues, traces and the derivatives ∂µD, in
a way analogous to the role of the γµ in the computation of corre-
lation functions in the quantum theory of the electron.

3



From Singularities to Knots
Another application of matrix factorizations is to the study of
knots. A knot is a smoothly embedded circle in R3; a link is a
disjoint union of non-intersecting knots. The trefoil knot and Hopf
link are as shown below:

The basic problem in knot theory is to distinguish knots by com-
puting topological invariants, for example the Jones polynomial. In
2005 Khovanov and Rozansky introduced a new invariant HN(L)
of oriented links L (here N > 1 is an integer) using two particular
matrix factorizations D1,D2 of the isolated singularity

W = xN+1
1 +xN+1

2 −yN+1
1 −yN+1

2 .

This invariant is a finite-dimensional graded vector space

HN(L) =
⊕
i,j∈Z

HN(L)
ij,

which is homological, in the sense that cobordisms between links
determine morphisms of vector spaces. These invariants are be-
ing actively investigated by topologists, with H2 (also known as
Khovanov homology) being the best understood; it is known for
example that H2 distinguishes knots more finely than the Jones
polynomial.

The matrix factorizations D1,D2 are of the form 0 0 b1 b2
0 0 −a2 a1
a1 −b2 0 0
a2 b1 0 0

 (‡)

for some polynomials ai,bi in C[x1,x2,y1,y2] satisfying

W = a1b1+a2b2 .

For instance, there are clearly polynomials b1,b2 such that

W = (x1−y1)b1+(x2−y2)b2

and, although it is less obvious, there are b ′1,b
′
2 with

W = (x1+x2−y1−y2)b
′
1+(x1x2−y1y2)b

′
2 .

These two expressions, when used to fill in the matrix (‡), define
the matrix factorizationsD1,D2. As an aside for the experts: while
the b ′i,b

′
i are not unique, different choices determine the same ma-

trix factorizations.

Let us now sketch Khovanov and Rozansky’s construction using
the Hopf link LHopf as a running example. We begin with a projec-
tion of the oriented link onto the plane, with the “edges” between
crossings labelled by variables

x1

y1 y2

x2c1

c2

According to the orientation of the strands at the crossing c1 the
x-variables are outgoing and the y-variables are incoming. To each
crossing c we associate the polynomial Wc which is the sum of
the (N+1)st powers of the two outgoing variables minus the same
power of the two incoming variables. In the case of the Hopf link
we have simply

Wc1 =W, Wc2 =−W.

For each crossing c we can take the matrix Di and in each entry
replace x1,x2 by the outgoing variables at c, and y1,y2 by the
incoming variables at c. This substitution defines two matrix fac-
torizations Di(c) ofWc using the four variables incident at c.

In the next step, we label the crossings withD1 orD2 in all possi-
ble ways,

x1

y1 y2

x2

Di

Dj

and to such a labelling we associate the operator

Dij =Di(c1)⊗1+1⊗Dj(c2)

on V⊗2, where V =C[x1,x2,y1,y2]⊕4. For a general link one de-
fines in the same way an operator on V⊗m, wherem is the number
of crossings, and V is the free module of rank four over the poly-
nomial ring in the edge variables.

These operators all square to zero, since at the crossing c we have
placed a matrix factorization of Wc and the sum of these poly-
nomials over all crossings is zero. Returning to the Hopf link, the
relevant calculation is

D2ij =Di(c1)
2⊗1+1⊗Dj(c2)2 =Wc1 +Wc2 = 0.

The pair (V⊗2,Dij) is thus a complex, and on the direct sum of
the cohomologies of these complexes over all possible labellings,
which in our case is

C=
⊕

16i,j62

H∗(V⊗2,Dij),

Khovanov and Rozansky define another differential ∂ that encodes
for each crossing c whether it is an over or under-crossing. Finally,
their invariant is the vector space

HN(LHopf) :=H
∗(C,∂) .

Remarkably, this turns out to be a finite-dimensional vector space
independent of the planar projection chosen to represent the link.
For example: the N = 3 invariant of the Hopf link, expressed as a
Poincaré polynomial, is∑

i,j

dimCH3(LHopf)
ijtiqj =

1+q2+q4+q4t−2+2q6t−2+2q8t−2+q10t−2 .
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The t grading is homological with ∂ having degree one, while the
q grading is polynomial with xi in degree two.

The subject of knot homology has also been studied by mathemati-
cal physicists. In 1989 Witten showed that the Jones polynomial of
a knot K is related to the expectation value of a natural observable
in a topological field theory called Chern–Simons theory. These
ideas had a broad impact on topology and representation theory, for
example in the theory of quantum groups and modular tensor cate-

gories. Homological knot invariants also naturally arise in topolog-
ical field theory as spaces of states associated to K×R+, and the
implications of this perspective for mathematics are just beginning
to become clear.

As a result of this link with physics, we were visited by Nils Car-
queville and Ana Ros Camacho (both mathematical physicists) as
part of the March focus period on matrix factorizations.

Focus on the Scientists:
Claudiu Raicu and Michael Artin

Claudiu Raicu is an instructor at Princeton University and is
currently visiting MSRI as the initial Huneke Postdoctoral Fel-
low. (See the article on page 10 for more about the Huneke
Fellowship).

Claudiu works on problems that are a mixture of algebraic ge-
ometry, commutative algebra, representation theory and their

Claudiu Raicu

computational aspects. He has
worked on defining equations
of secant varieties, syzygies of
Segre–Veronese varieties, fi-
nite equivalence relations in
algebraic geometry, as well
as Boij–Söderberg theory on
complete intersections.

Already, Claudiu has solved
several conjectures posed by
other mathematicians. For
example, he proved a well-
known conjecture of Garcia–
Stillman–Sturmfels on the
defining equations of secant
varieties of Segre products for
an arbitrary number of factors. His solution was based on a
subtle use of the representation theory of the symmetric group.
This was quite surprising to some experts, as it seemed to
translate the question to a more difficult one. Remarkably, the
approach succeeded.

He also established the Geramita conjecture on the ideals of
minors of catalecticant matrices. In another direction, Claudiu
found a counterexample to a conjecture of János Kollár stating
that a finite equivalence relation is effective.

Claudiu grew up in Romania and received his undergraduate
degree at the University of Bucharest. In 2007 he started grad-
uate school at UC Berkeley, where he completed his degree
with David Eisenbud in 2011.

In addition to his research, Claudiu is involved in several out-
reach activities. In Romania he was an instructor for the Math
Olympiad. In Berkeley, he has been an instructor in the Berke-
ley Math circle, will give a lecture at the Marin Math Circle,
and will help with this year’s Bay Area Math Olympiad.

— Jerzy Weyman

Michael Artin is one of the organizers of the program on Non-
commutative Algebraic Geometry and Representation Theory,
currently running at MSRI.

Michael’s role in the creation of modern algebraic geometry
is well known and needs no introduction. What might be less

Michael Artin

known is that his first arti-
cle devoted to noncommuta-
tive algebras, “On Azumaya al-
gebras and finite dimensional
representations of rings,” was
published in 1969, predating a
number of his greatest contribu-
tions to algebraic geometry.

In the article, Michael char-
acterizes Azumaya algebras by
their representations, obtaining
an analogue of a similar result
for C∗-algebras. His theorem
is essentially a statement about
the solutions of matrix equa-
tions, and in this sense it can be
thought of as a first step into noncommutative algebraic geom-
etry. Besides being a cornerstone in the theory of PI-rings, the
theorem led to important questions in invariant theory which
gave rise to much further research.

In subsequent years Michael started a long term collabora-
tion with Bill Schelter. In their search for noncommutative
analogues of polynomial rings, the two discovered a class of
graded algebras intimately connected to the theory of elliptic
curves. It turned out that such algebras could be advantageously
studied by thinking of them as coordinate rings of noncommu-
tative projective planes. In other words: by doing noncommu-
tative algebraic geometry!

Despite considerable progress in recent years, the classifica-
tion of general noncommutative surfaces remains wide open.
Michael conjectures that up to birational equivalence, the list of
noncommutative surfaces is actually quite small. Some of the
surprising consequences of this provocative conjecture appear
at first sight easy to disprove, but so far no one has succeeded in
doing so. Instead, there is a large body of examples supporting
the conjecture.

Michael is also the recipient of the 2002 Steele Prize for Life-
time Achievement and the 2013 Wolf Prize. He received Hon-
orary Doctoral degrees from the universities of Antwerp and
Hamburg.

— Michel Van den Bergh
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Noncommutative
resolutions of singularities

Graham J. Leuschke

This spring’s semester program in Noncommutative Algebraic
Geometry and Representation Theory (NAGRT) brings together
researchers in many different aspects of noncommutative alge-
bra, such as deformation theory and Poisson structures, envelop-
ing algebras, noncommutative projective algebraic geometry, D-
modules, Calabi–Yau conditions, symplectic reflection algebras
and the many guises of Hecke algebras. I’ve been fortunate to par-
ticipate in both the NAGRT program and the year-long program
in Commutative Algebra, which have brought together these two
areas in a couple of workshops so far, with more to come. The
stimulation and cross-pollination between the programs have been
a delight to witness and exhilarating to participate in.

The NAGRT program actually kicked off last summer, with a two-
week Summer Graduate Workshop (http://tinyurl.com/NAGRT-
SGW) featuring lecture series by rising stars in the area on four
of the main themes of the program: noncommutative projective
geometry, deformation theory, symplectic reflection algebras, and
noncommutative resolutions of singularities. I would like to use
this space to sketch a very informal introduction to the last of those
topics; readers whose interest is piqued would be wise to pick up
Michael Wemyss’ notes from the workshop next. This topic has
quickly generated a large body of research, starting from its in-
troduction in string theory (!) around the turn of the millennium
and picking up steam with Michel Van den Bergh’s introduction of
“noncommutative crepant resolutions” in 2004. Applications have
been found, for example, in the context of the minimal model pro-
gram of Mori and Reid; in cluster theory (the topic of an MSRI pro-
gram last fall); in the study of Orlov’s singularity category; and in
the representation theory of maximal Cohen–Macaulay modules.

Commutative Resolutions of Singularities
First let us understand the commutative situation. A resolution of
singularities of an affine algebraic variety (the locus of solutions
of a system of polynomial equations) is a parametrization by the
points of a non-singular variety — that is, a manifold — via a map
which is a bijection almost everywhere. In other words, the smooth
space looks essentially the same as the original one, except that any
pinches, creases, self-intersections or other kinds of singularities
are smoothed out. This operation is basic in algebraic geometry: it
allows the reduction of many calculations and constructions to the
case of a smooth variety.

Applications are ubiquitous. For example, on a smooth variety one
has access to differential forms and to strong vanishing theorems
for cohomology, both of which one can try to push back down to
the singular space. Resolutions of singularities are known to exist
for all varieties over C by the work of H. Hironaka in the 1960s, for
which he was awarded the Fields Medal in 1970.

The Devil of Algebra
From an algebraic point of view, however, this situation leaves
something to be desired. In general, the classical correspondence
between algebraic geometry and commutative algebra gives a

lovely dictionary to translate information back and forth: a finitely
generated commutative algebra over the complex numbers, say R=
C[x1, . . . ,xn]/I, where I is an ideal generated by some polynomi-
als f1, . . . , fr, is realized geometrically by the common vanishing
locus SpecR := V(f1, . . . , fr) of the f’s. Conversely, an affine vari-
ety X⊂ AnC corresponds to the quotient OX = C[x1, . . . ,xn]/I(X)
of the polynomial ring by the ideal I(X) of polynomials vanishing
on X. The correspondence is very nearly one-to-one by Hilbert’s
Nullstellensatz; if one is willing to restrict to integral domains
(or to incant the magic word “scheme” from time to time), it be-
comes so. In that case the points of X correspond bijectively to
the maximal ideals, or equivalently the simple modules, of OX. In
some sense (which can be made precise) affine varieties over C
are the same thing as commutative integral domains finitely gen-
erated over C. The dictionary extends to all sorts of properties on
both sides; for example, X = SpecR is non-singular if and only if
R = OX is what’s called a regular ring, meaning that it has finite
global homological dimension (essentially this means that it is just
a polynomial ring).

The A2 singularity x3+y2+z2 = 0, also called “trumpet.”

Here comes the fly in the ointment, at least for a naive commutative
algebraist. Resolutions of singularities of affine varieties are hardly
ever affine varieties again. Instead they are glued together out of
affine varieties, in the same way that a complex manifold is glued
together out of copies of Cn: there are charts, and transition func-
tions, so that locally one can pretend one is working with an affine
variety, even though globally it’s something a bit different. How-
ever, this gluing process breaks the dictionary with commutative
algebra. There is a global algebraic object associated to a resolu-
tion of singularities of an affine variety X= SpecR, called the Rees
ring (or blowup algebra) R[It], but now the connection between the
geometry and the algebra becomes more subtle. Smoothness of the
geometry corresponds to regularity of certain rings of fractions of
R[It]. It’s not impossible to make the translation, but it’s annoying.

Too Few Commutative Rings
A stubborn commutative algebraist might hope that all this is un-
necessary, that it is possible to resolve the singularities of an affine
variety (= ring) with another affine variety. To discuss this pos-
sibility, we’d better look at the actual definition. A morphism of
varieties π : Y −→ X is a resolution of singularities if

(i) Y and X are birational, meaning that π is surjective and the
fields of rational functions K(Y) and K(X) coincide;

(ii) π is proper, in the sense that the inverse image of a compact
set is compact; and

(iii) Y is non-singular.
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Passing to algebra reverses the arrows, so given, say, an integral
domain R, we hope to find a ring homomorphism ϕ : R−→ S sat-
isfying appropriate versions of (i)–(iii). Birationality is easy: we
can require the induced map on quotient fields Q(R) −→Q(S) to
be an isomorphism. It is a standard fact from algebraic geometry
that a proper map between affine varieties is necessarily a finite
map, so we assume R −→ S is finite, that is, S is a finitely gener-
ated R-module via ϕ. Finally, S should be a regular ring. In other
words, perhaps a resolution of singularities of R is an intermediate
algebra R ⊆ S ⊆Q(R) which is a finite R-module and is a regular
ring.

Unfortunately, this hope is soon dashed. The ring C[x,y,z]/(x3+
y2+z2), corresponding to the “trumpet” singularity (shown in the
figure on the previous page), has no regular finite extensions in its
quotient field. One really needs the additional flexibility of gluing
together affine varieties to resolve this singularity.

Allow a Little Noncommutativity

The idea of a non-commutative desingularization, now, is a natural
one: find a replacement for resolution of singularities using possi-
bly non-commutative rings. We are therefore interested in defining
what it should mean for a ring homomorphism R −→ Λ, where
R is commutative and Λ is not necessarily so, to be called a non-
commutative resolution of singularities of R.

Peeking back at properties (i)–(iii) in the definition of a resolu-
tion of singularities with the goal of translating them to a non-
commutative scenario, we hit an immediate stumbling block. In-
sisting that a map of rings R −→ Λ as above induces an isomor-
phism on quotient fields is clearly too strong: it forces Λ to be
commutative!

We extricate ourselves from this awkward situation by adopting
the representation-theoretic point of view. One of the guiding prin-
ciples in algebraic geometry and commutative algebra in the last
50 years, since Grothendieck, has been that properties of a vari-
ety X (respectively, a ring R) are encoded in the category QchX
of quasi-coherent sheaves that X supports (respectively, the cate-
gory Mod R of modules over R). We lose no information in this
transition: an affine variety X or commutative finitely generated
C-algebra R can easily be reconstructed from QchX or Mod R.

On the other side, it can happen that two non-commutative rings
Λ and Γ support indistinguishable categories of modules; in this
case we say Λ and Γ are Morita equivalent. The canonical exam-
ple is that a field K and the matrix ring Matn×n(K) are Morita
equivalent. It’s common practice in non-commutative algebra not
to distinguish between Morita-equivalent rings. In particular, we
can ask only that (i) hold up to Morita equivalence, that is,

(i ′) R −→ Λ is birational, meaning that the “fraction field”
K⊗R Λ of Λ is a matrix ring over the fraction field K of
R.

This leads to a provisional definition: A non-commutative desing-
ularization of a ring R is an R-algebra R −→ Λ (with R mapping
into the center of Λ) which is finitely generated as an R-module,
birational in the sense of (i ′), and has finite global dimension.

Unfortunately, finite global dimension is a relatively weak property
for non-commutative rings, and so there are various strengthen-
ings of this definition. For example, Dao–Iyama–Takahashi–Vial

define a non-commutative resolution of R to be an R-algebra of fi-
nite global dimension which is isomorphic to the ring of endomor-
phisms EndR(M) of some finitely generated faithful R-moduleM.
Even stronger, Van den Bergh defined a non-commutative crepant
resolution to be an endomorphism ring Λ ∼= EndR(M) having fi-
nite global dimension, such that in additionM is reflexive andΛ is
maximal Cohen–Macaulay as an R-module. These “NCCRs” have
attracted a great deal of interest.

There are also weaker definitions. Kuznetsov and Lunts recently
announced the existence, in all situations where a resolution of sin-
gularities is known to exist, of a categorical resolution of singular-
ities, which is defined entirely at the level of derived categories of
sheaves, without reference to rings at all.

Drawing Pictures of Noncommutativity

Leaving aside the pros and cons of the various definitions, let us
consider an example where there is consensus on a good answer.
Put R = C[x,y,z]/(xy− z2). Then R is the coordinate ring of the
quadric cone X in the figure below.

Y

π //

X

The A1 singularity X : (z2 = xy) and its resolution Y.

The usual resolution of singularities of the cone is one of the first
anyone sees: it is obtained by blowing up the vertex, replacing it
by a copy of the projective line P1. The result Y is topologically
a cylinder, and the map π : Y −→ X from the cylinder to the cone
is just the contraction of the P1 to a point. Set Λ = EndR(R⊕ I),
where I = (x,z) is the ideal of R generated by x and z. Then Λ is
a noncommutative ring, which can also be written as a subring of
the 2×2 matrices over R

Λ=

(
R I

I−1 R

)
,

since EndR(I) = R. Relatively standard computations then show
that there is an equivalence of derived categories

Db(QchY)
'−→Db(Mod Λ).

Following the philosophy that we should identify an algebro-
geometric object with the modules or sheaves it supports, we are
thus led to the conclusion that Λ is a resolution of singularities of
the cone X.
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Schematic of the non-commutative desingularization of the
cone.

Here is a slightly more concrete approach to the same exam-
ple, based on work of Crawley-Boevey (and earlier work by
Kronheimer, Cassens–Slodowy, Reiten–Van den Bergh, and Ito–
Nakamura). The cone X and its resolution Y can both be realized as
moduli spaces of certain semisimple representations of preprojec-
tive algebras of type A1. Explicitly, the points of X are in bijection
with equivalence classes of diagrams

C
a ++

b ′
33
C ,

b
kk

a ′ss

(†)

where a, a ′, b, b ′ are complex numbers such that aa ′ = bb ′. Two
such diagrams are equivalent if they are the same up to scaling
by non-zero complex numbers in each copy of C. The resolution
Y, on the other hand, is realized by representations (†) such that
a and b ′ are not both zero. In particular, the preimage of the ver-
tex is given by such representations which are not simple, which,
given that a 6= 0 6= b ′, amounts to saying that a ′ = 0= b. In other
words, the “exceptional fiber” of the noncommutative resolution is
parametrized by representations with dimension vector (1, 1) of
the Kronecker quiver

C u //
v // C

in which u and v are not both zero. This gives exactly a P1 of such
representations, again up to scaling by C∗ in each vertex. Thus the
commutative resolution of singularities is manifest within the cat-
egory of modules over the preprojective algebra, that is, the non-
commutative ring whose elements are formal linear combinations
of paths in the diagram (†) subject to the relations aa ′ = b ′b and
a ′a= bb ′.

The remarks above constitute just a couple of myriad possible per-
spectives on this example, and of course the example can be gener-
alized in half a dozen different ways. Ideas like these form a cross-
roads where the participants in this semester’s program can meet on
common ground and extend our understanding in new directions.

Forthcoming Workshops
June 15, 2013 to July 28, 2013: MSRI-UP 2013

June 17, 2013 to June 21, 2013: Bay Area Circle for Teachers
(BACT) Summer Workshop 2013

June 24, 2013 to June 28, 2013: Pacific Rim Mathematical Asso-
ciation (PRIMA) Congress 2013

For a complete list of all upcoming workshops and programs,
please see www.msri.org/scientific. A list of programs for 2014–15
is included in the call for membership applications on page 9.

Endowed Positions at MSRI
MSRI is grateful for the generous support that has created four
endowments that support faculty and postdoc members of its
programs each semester.

The Viterbi Postdoctoral Fellows are funded by an endow-
ment from Trustee Andrew Viterbi, Erna Viterbi, and the Viterbi
Family Fund of the Jewish Community Foundation. Both the
Eisenbud and Simons Professorships are funded by an en-
dowment from the Simons Foundation. The Huneke Postdoc-
toral Fellows are supported by a new endowment, announced
on page 10.

Spring 2013 Special Postdocs

Commutative Algebra
Huneke Fellowship: Claudiu Raicu, Princeton University

Noncommutative Algebraic Geometry and
Representation Theory
Viterbi Fellowship: Maria Chlouveraki, University of Edinburgh

2013–14 Eisenbud and Simons Professorships

Mathematical General Relativity (Fall 2013)
Piotr Chruściel, University of Vienna
Gregory Galloway, University of Miami
James Isenberg, University of Oregon
Hans Ringström, KTH Royal Institute of Technology
Vincent Moncrief, Yale University
Robert Wald, University of Chicago

Optimal Transport: Geometry and Dynamics (Fall 2013)
Cédric Villani, Institut Henri Poincaré & Université de Lyon
Wilfrid Gangbo, Georgia Institute of Technology
Robert McCann, University of Toronto
Ludovic Rifford, Université de Nice – Sophia Antipolis

Algebraic Topology (Spring 2014)
Charles Rezk, University of Illinois at Urbana-Champaign
Doug Ravenel, University of Rochester
Bill Dwyer, University of Notre Dame
Michael Mandell, Indiana University at Bloomington

Model Theory, Arithmetic Geometry, and Number
Theory (Spring 2014)
François Loeser, Université Pierre et Marie Curie
Ehud Hrushovski, Hebrew University
Minhyong Kim, University of Oxford
Sergei Starchenko, University of Notre Dame

Clay Senior Scholars
The Clay Mathematics Institute Senior Scholar awards support
established mathematicians who will play a leading role in a
topical program at an institute or university away from their
home institution. MSRI will host five Clay Senior Scholars in
2013–14:

Igor Rodnianski, Massachusetts Institute of Technology
Vincent Moncrief, Yale University
Cédric Villani, Institut Henri Poincaré and Univ. de Lyon
Lars Hesselholt, Nagoya University
Ehud Hrushovski, Hebrew University
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Mathematics Weighs in on Climate Disruption
MPE2013 Simons Public Lecture at the
Palace of Fine Arts

Anne Brooks Pfister

Dr. Emily Shuckburgh, a mathematician and climate scientist with
the British Antarctic Survey, delivered the second Simons Public
Lecture on “Climate Disruption: What Math and Science Have to
Say” on March 4, 2013, at the Palace of Fine Arts in San Francisco,
to an audience in the nearly packed 960-seat venue.

The talk was one in a series of nine public lectures, funded by the
Simons Foundation, scheduled at nine international locations —
ranging from Melbourne to Berlin — which are part of the Math-
ematics of Planet Earth (MPE2013) activities being held this year
worldwide. It was co-hosted by MSRI and the American Institute
of Mathematics.

During the evening, Dr. Shuckburgh explained how mathematics is
used in essential ways not only to help us model the Earth’s climate,
but also to make sense of the enormous amount of scientific data
being collected in the effort to understand what is happening to our
climate and what the consequences of those changes might be.

As the leader of the Open Oceans research group at the British
Antarctic Survey, Dr. Shuckburgh focuses her work on the role of
the polar oceans in the global climate system. Her research uses
theoretical approaches and observational studies in the Arctic and
Antarctica, as well as numerical modeling.

Dr. Shuckburgh reviewed the mathematical models and climate
data that that she employs in her work. From the climate data, she
highlighted the relatively recent increase seen in carbon dioxide
concentrations and other greenhouse gases, as well as the strik-
ing reduction in Arctic sea ice that has melted over the last three
decades: an area equivalent to the size of the Eastern region of the
United States (a little more than 3 million square km). Since 1992,
the total polar ice sheet melt has contributed to a sea level rise of
0.6 mm per year.

She also explained how the changing climate system has severe im-
plications for the future — on coastal properties and infrastructure,
food production, risk of extreme droughts and floods, and the dis-
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At the San Francisco ‘leg’ of the Simons Public Lecture se-
ries for MPE2013: (from left to right) Brian Conrey, Estelle
Basor, Hélène Barcelo, Emily Shuckburgh, Robert Bryant, and
Nathaniel Simons.

ruption of ecosystems throughout the world — and she presented
various global scenarios based on projected increases in the Earth’s
surface temperature.

The predictions envision dire prospects for the planet if mitigation
strategies are not implemented soon to peak global emissions and
keep below a two degree rise in the global temperature. Nonethe-
less, she emphasized that collective action could work to solve the
challenging problems that we now face. According to Dr. Shuck-
burgh, the science is clear and the way ahead to a habitable, healthy
Earth can still be in our future, but it’s in our hands.

MSRI will host another MPE2013-related event this summer for
graduate students (but please be advised that it is already fully en-
rolled!). “Introduction to the Mathematics of Seismic Imaging,”
organized by Professor Gunther Uhlmann, will be held at MSRI
from July 19 to August 9 (see http://tinyurl.com/MPE2013SGS).

Call for Membership Applications
MSRI invites membership applications for the 2014–2015 aca-
demic year in these positions:

Research Professors by October 1, 2013
Research Members by December 1, 2013
Postdoctoral Fellows by December 1, 2013

In the academic year 2014–2015, the research programs are:

New Geometric Methods in Number Theory and Automor-
phic Forms, Aug 11 to Dec 12, 2014
Organized by Pierre Colmez, Wee Teck Gan (chair), Michael
Harris, Elena Mantovan, Ariane Mézard, and Akshay Venkatesh

Geometric Representation Theory, Aug 18 to Dec 19, 2014
Organized by David Ben-Zvi (chair), Thomas Haines, Florian

Herzig, Kevin McGerty, David Nadler, Ngô Bảo Châu, Catha-
rina Stroppel, and Eva Viehmann

Dynamics on Moduli Spaces of Geometric Structures, Jan 12
to May 22, 2015
Organized by Richard D. Canary, William Goldman, François
Labourie, Howard Masur (chair), and Anna Wienhard

Geometric and Arithmetic Aspects of Homogeneous Dynam-
ics, Jan 19 to May 29, 2015
Organized by Dmitry Kleinbock (chair), Elon Lindenstrauss,
Hee Oh, Jean-François Quint, and Alireza Salehi Golsefidy

MSRI uses MathJobs to process applications for its positions.
Interested candidates must apply online at www.mathjobs.org af-
ter August 1, 2013. For more information about any of the pro-
grams, please see www.msri.org/scientific/programs.
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Huneke Postdoctoral Fellowship Launches with New Endowment
MSRI is proud to announce the beginning of the Huneke Postdoctoral Fellowship, funded by
a generous endowment from Professor Craig Huneke. Currently a trustee of MSRI, Huneke is
internationally recognized for his work in commutative algebra and algebraic geometry. Among his
fundamental contributions is his discovery, with Melvin Hochster, of the notion of tight closure. In a
long and fruitful collaboration, Hochster and Huneke forged this very original idea into a powerful
tool that has led to great advances in our understanding of algebra in characteristic p, inspiring
several hundred publications over the last 20 years.

Huneke is a great teacher, expositor, and organizer. He has mentored more than twenty Ph.D. students
and a long list of postdocs. He is co-author, with his former student Irena Swanson, of a book on
integral closure that has become the standard reference in the subject. He was co-organizer of the
2002–03 program on Commutative Algebra at MSRI. He currently holds the title of Marvin Rosen-
blum Professor of Mathematics at the University of Virginia, where he is the Chair of the Mathematics
Department. Before moving to Virginia in 2012, he was the Henry J. Bischoff Professor of Mathe-
matics at the University of Kansas. Claudiu Raicu (profiled on page 5) is the the first recipient of the
Huneke Fellowship.
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Craig Huneke

Puzzles Column
Elwyn Berlekamp and Joe P. Buhler

1. Find all of the ways that 2013 can be written as a sum of consec-
utive integers (not necessarily positive).

Comment: This is due, in essence, to Nelson Blachman and was
included in a video of Nelson, by George Csicsery, that was linked
to in the Numberplay column in the New York Times on March 4,
2013. The column itself featured a probability puzzle due to Nel-
son.

2. Consider a variant of the game “Battleships” played on the real
line, in which your goal is to shoot and hit a battleship. There is a
single battleship of length 4 that moves at a fixed (but unknown)
integral velocity in a fixed, but unknown, direction (left or right),
starting at time t = 0 at an unknown location. At each nonnega-
tive integral time t you are allowed to shoot at some integer on the
line. You are told whether or not you hit the battleship; if you hit
you win, otherwise the battleship continues moving and you get
another shot in one unit of time.

Find a strategy that guarantees that you will win in finite time (!).

Comment: Rumor has it that this was used as an interview question
at a hedge fund.

3. (a) There are n equally-spaced objects on a line. How many per-
mutations are there of them in which every object ends up within
one unit of its original position?

(b) You again have n objects, but now they are arranged in a cir-
cle. As before, the question is how many permutations are there in
which no object moves further than one unit (in either direction)?

Comment: Part (a) was overheard at an MSRI meeting of the Aca-
demic Sponsors and Trustees, leading to part (b). Curiously, rumor
has it that Will Shortz used (b) for the specific case n = 8 in a
recent puzzle tournament.

4. At some particular instant of time,N planets are located in space
arbitrarily. (For our purposes, a planet is a solid opaque ball of ra-
dius 1, and planets do not overlap.) At one instant, any point on any

planet is colored red if none of the other N−1 planets are visible
from that point. Prove that the sum of the areas of all the N red
regions equals exactly the surface area of one planet.

Comment: This is apparently well-known to some, though no one
can cite a source; we heard the problem from Gregory Galperin.
You are welcome to start with the two-dimensional analogue.

5. (a) Find six orderings of the numbers 1,2,3,4 such that any or-
dered 3-tuple of distinct numbers from that set can be obtained by
deleting one element from one of your chosen orderings.

(b) Show that it is not possible to find six orderings of {1,2,3,4,5}
such that all ordered 3-tuples of the set can be obtained by deleting
two elements of one of your chosen 5-tuples.

Comment: This problem was motivated by the January 2013 puzzle
on the IBM research puzzle web site “Ponder This.”

6. Let Vn denote the set of 2n points in Rn whose coordinates
are −1 or 1, i.e., the vertices of the cube in Rn that is centered at
the origin and has side 2. Let C(n) be the largest cardinality of a
subset of Vn with the property that all pairwise distances between
elements of the set are equal.

Find bounds on, or exact values of, C(n) for as many values of n
as you can.

Comment: This question was asked by Dan Asimov.
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A Word from the Director
(continued from page 1)

at PlayGround is one of their most popular), and the audience’s reception of the plays
was very enthusiastic. We are waiting to learn which of the plays might make it into the
“Best of PlayGround” festival at the end of the year. I think we have a couple of strong
contenders.

In March, we joined forces with the American Institute of Mathematics in Palo Alto,
CA, to be the local co-sponsors of the second in the series of nine lectures in the Simons
Public Lecture Series. This series, sponsored by the Simons Foundation, is part of the
events of MPE2013, and “our” lecture on March 4 at the Palace of Fine Arts in San
Francisco was a big success.

Dr. Emily Shuckburgh from the British Antarctic Survey spoke about “Climate Disrup-
tion: What Math and Science Have to Say.” It was an inspiring lecture because it ad-
dressed not only how we are studying the problem of climate disruption, but also laid out
ideas for how we could begin to prepare for it. You can read a full report on the lecture on
page 9. Filling a 960-seat auditorium for a lecture of this kind was a challenge for both
MSRI and AIM, but by collaborating and pooling our resources and contacts, we were
able to get the word out and we were gratified with a nearly full auditorium for Emily’s
lecture. It was recorded and will be made available (along with the other lectures in the
series) by the Simons Foundation. I hope that you’ll take an opportunity to watch it if
you weren’t able to attend.

On March 18, we had the public premiere at the Roxie Theater in San Francisco of
the biographical film Taking the Long View: The Life of Shiing-shen Chern, which was
part of a small film festival featuring the mathematical films of George Csicsery. Of
course, Professor Chern was MSRI’s founding director, and we have been very pleased
with the enthusiastic reception the film has garnered in private showings so far. We have
just recently learned that Taking the Long View has been approved for syndication for
showing on public television in the US, so we are looking forward to having more people
learn about the life of this remarkable mathematician and cultural figure.

Finally, this will be the last Director’s Word from me, since my term as MSRI’s Director
ends on July 31. I think it is appropriate for me to thank the many, many people (which
includes you) who have given so generously of their valuable but limited time and their
equally precious and seemingly unlimited talent to help me and MSRI in our mission to
serve the communities for which it was founded. It has been a tremendous honor to be
entrusted with leading such a dedicated group of people, and I find it hard to express
in words just how grateful I am to all of you for this opportunity. Ultimately, it is you
who have made it possible for an institution such as MSRI to prosper and give back to
the community a valuable resource for furthering mathematics research, training young
talent, and reaching out to delight and inform the public.

With David Eisenbud as the incoming Director and a remarkable staff, MSRI is in excel-
lent hands, and, with your help, we can all look forward to a great future for MSRI and
the society that it proudly serves.

. . . And a Word for the Director
The MSRI Board of Trustees honored Robert Bryant,
Director of MSRI, at its March 2, 2013, annual meet-
ing. Following the meeting, Board members celebrated
the accomplishments of Dr. Bryant’s term as Direc-
tor (Aug 1, 2007 to Jul 31, 2013). A poem (shown
at right) by trustee Ed Baker, written in tribute to
Dr. Bryant’s leadership, was read at the gathering and
received warm and enthusiastic applause.
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For Robert Bryant

Rock solid,
chiseled
from stone.

A granitic
island amid
the drifting tides.

Steadfast
within the unexpected
flow of turbulence.

You came
with a vision,
for mathematics.

An ascent up
Parnassus,
perched majestically

On the precipice,
the epicenter
for endless

Mathematical tremors
emanating
around the globe.

The muses were
in disarray,
instead of

Inspiration,
discovery
and new objects,

You were compelled
to enter
a management labyrinth.

To confront a tangled
web of challenges
and details.

A man of truth,
your will
was resolute.

Rock solid
steadfast,
chiseled from granite.

Your implacable
focus and determination
were just enough

To escape the
labyrinth’s
mazy gloom.

You leave MSRI
in your image,
on a foundation

Of rock,
secure,
fully prepared

For mathematics’
next seismic
shifts.

— Ed Baker
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