2013 SUMMER GRADUATE WORKSHOP, CORTONA, ITALY:
MATHEMATICAL GENERAL RELATIVITY
SCHWARZSCHILD GEOMETRY BASICS

Let gr be the Euclidean metric, with Cartesian coordinates x = (z!,22%,23) so that gg =

o 3.
Sijdrida?, and let |z| = (/S (21)2. If r = |z|, gp = dr® + r? g = dr® + r?(d¢? + sin®(¢) d6?).
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Consider the spatial Schwarzschild metric gg = (1 + %) g, defined on the manifold M given

by M =R3*\ {0} for m >0, M =R3 for m =0, and M = {& € R?: |z| > =%} for m < 0. Recall
that a portion of the maximally extended Schwarzschild space-time S is given by
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gg = — dt+<1+> gE
(1 + 27|”x|> 2|z|
on |z| > @ in case m # 0. You may use the fact that Ric(gs) = 0, and we can identify
M c Sn{t=0}.

PROBLEM 1. a. Show that M is totally geodesic in S.

b. Show that R(gs) = 0 by using the conformal deformation of scalar curvature from the first
Problem Set. Show that this is consistent with the Einstein constraint equations.

c. Is Ric(gg) = 07
PROBLEM 2. a. For m > 0, show that r — Z‘—f induces an isometry of gg which fixes ¥g = {r = F}.
b. For m > 0, show that Y is totally geodesic in M. Express m in terms of the area of Xg.

c. Find the area A(r) of S, = {z : |z| = r} of S, in the metric gg. For m > 0, show that A(r) has

a global minimum at r = .

d. When m < 0, A(r) — 0 as r — —()". Furthermore, a radial geodesic from r = rg > —% to
r = — has finite length. Can the Schwarzschild metric with m < 0 be completed by adding in a
point?

PROBLEM 3. a. Fix r and find the second fundamental form I and the mean curvature vector H
of S, ={z :|z| =r} of S, in the metric gs.

b. Compare A'(r) to [ H-X do, where X = % and do is the area measure induced by gg.

Sy
c¢. The Hawking mass of a surface ¥ is given by
A(Y) 1

) = 1—— [ H?
m (%) 167 167 do
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Find mg(S,).



PROBLEM 4. Show that there are no closed minimal surfaces in (M, gg) other than 3¢ as in Prob-
lem 2b. in case m > 0. (The argument should follow along the lines of the proof that there are no
closed minimal surfaces in (R3, gg).)

PROBLEM 5. Show that
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where the computation is done in the coordinates (z', 22, 23), and where v, is the Euclidean out-

ward unit normal, and do, is the Euclidean area measure (where (z°) are Cartesian coordinates for
the Euclidean metric).

PrROBLEM 6. In Euclidean space, the spheres minimize surface area for a given enclosed volume

V. In fact if a closed surface of area A encloses a volume V', the isoperimetric inequality in three
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dimensions is V' <

Let m > 0. Hubert Bray showed that the spheres S, = {z : |z| = r} in (M, (1 + 2)%gg) are
isoperimetric in the homology class of ¥y (defined above in #2a.). In other words, amongst all
surfaces homologous to ¥g and enclosing a certain volume V with >, the one with smallest area
is the sphere S, of the correct r value to enclose volume V.

a. Show that the volume V(r) enclosed by Xo and S, (r > %) and ¥ has the expansion
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V(r) = 3 (1 + Z—T + O(mr_2)> .

b. Conclude that the volume V enclosed by ¥ and the sphere S, of area A has the expansion
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V(A) = 254\/7? (1 - (3\/\/%) + O(mA—1)> .

PROBLEM 7. EMBEDDING THE SCHWARZSCHILD SPATIAL METRIC.

a. Let m > 0. Find an isometric embedding of (M, gs) into Euclidean space E*, identified in
Cartesian coordinates (z,y,z,w) with (R%, d2? + dy? + dz? + dw?). It might be easiest use the
other coordinates we introduced for the Schwarzschild metric: (1 — 2Tm)_ldr? + 12 gs2, T > 2m.
(This corresponds to “half” of (M, gs). The map you get will then extend by reflection to the other
“half.”) For w € S?, look for an embedding of the form z = rw > (rw,&(r)) € R Explain how
this justifies the picture we’ve drawn of the Schwarzschild spatial slice.

b. When m < 0 the argument breaks down. Instead, look for an isometric embedding into
Minkowski space M*, which is identified with R* with the metric da? + dy? + dz? — dw?.



