2013 Summer Graduate Workshop, Cortona, Italy:
 Mathematical General Relativity
 Schwarzschild Geometry Basics

Let g_{E} be the Euclidean metric, with Cartesian coordinates $x=\left(x^{1}, x^{2}, x^{3}\right)$ so that $g_{E}=$ $\delta_{i j} d x^{i} d x^{j}$, and let $|x|=\sqrt{\sum_{i=1}^{3}\left(x^{i}\right)^{2}}$. If $r=|x|, g_{E}=d r^{2}+r^{2} g_{\mathbb{S}^{2}}=d r^{2}+r^{2}\left(d \phi^{2}+\sin ^{2}(\phi) d \theta^{2}\right)$. Consider the spatial Schwarzschild metric $g_{S}=\left(1+\frac{m}{2|x|}\right)^{4} g_{E}$, defined on the manifold M given by $M=\mathbb{R}^{3} \backslash\{0\}$ for $m>0, M=\mathbb{R}^{3}$ for $m=0$, and $M=\left\{x \in \mathbb{R}^{3}:|x|>-\frac{m}{2}\right\}$ for $m<0$. Recall that a portion of the maximally extended Schwarzschild space-time \mathcal{S} is given by

$$
\bar{g}_{S}=-\left(\frac{1-\frac{m}{2|x|}}{1+\frac{m}{2|x|}}\right)^{2} d t^{2}+\left(1+\frac{m}{2|x|}\right)^{4} g_{E}
$$

on $|x|>\frac{|m|}{2}$ in case $m \neq 0$. You may use the fact that $\operatorname{Ric}\left(\bar{g}_{S}\right)=0$, and we can identify $M \subset \mathcal{S} \cap\{t=0\}$.

Problem 1. a. Show that M is totally geodesic in \mathcal{S}.
b. Show that $R\left(g_{S}\right)=0$ by using the conformal deformation of scalar curvature from the first Problem Set. Show that this is consistent with the Einstein constraint equations.
c. $\operatorname{Is} \operatorname{Ric}\left(g_{S}\right)=0$?

Problem 2. a. For $m>0$, show that $r \mapsto \frac{m^{2}}{4 r}$ induces an isometry of g_{S} which fixes $\Sigma_{0}=\left\{r=\frac{m}{2}\right\}$.
b. For $m>0$, show that Σ_{0} is totally geodesic in M. Express m in terms of the area of Σ_{0}.
c. Find the area $A(r)$ of $S_{r}=\{x:|x|=r\}$ of S_{r} in the metric g_{S}. For $m>0$, show that $A(r)$ has a global minimum at $r=\frac{m}{2}$.
d. When $m<0, A(r) \rightarrow 0$ as $r \rightarrow-\left(\frac{m}{2}\right)^{+}$. Furthermore, a radial geodesic from $r=r_{0}>-\frac{m}{2}$ to $r=-\frac{m}{2}$ has finite length. Can the Schwarzschild metric with $m<0$ be completed by adding in a point?

Problem 3. a. Fix r and find the second fundamental form $I I$ and the mean curvature vector \mathbf{H} of $S_{r}=\{x:|x|=r\}$ of S_{r} in the metric g_{S}.
b. Compare $A^{\prime}(r)$ to $\int_{S_{r}} \mathbf{H} \cdot \mathbf{X} d \sigma$, where $\mathbf{X}=\frac{\partial}{\partial r}$ and $d \sigma$ is the area measure induced by g_{S}.
c. The Hawking mass of a surface Σ is given by

$$
m_{H}(\Sigma)=\sqrt{\frac{A(\Sigma)}{16 \pi}}\left(1-\frac{1}{16 \pi} \int_{\Sigma} H^{2} d \sigma\right) .
$$

Find $m_{H}\left(S_{r}\right)$.

Problem 4. Show that there are no closed minimal surfaces in $\left(M, g_{S}\right)$ other than Σ_{0} as in Problem 2b. in case $m>0$. (The argument should follow along the lines of the proof that there are no closed minimal surfaces in $\left(\mathbb{R}^{3}, g_{E}\right)$.)

Problem 5. Show that

$$
m=\frac{1}{16 \pi} \lim _{r \rightarrow+\infty} \int_{|x|=r} \sum_{i, j=1}^{3}\left(\left(g_{S}\right)_{i j, i}-\left(g_{S}\right)_{i i, j}\right) \nu_{e}^{j} d \sigma_{e}
$$

where the computation is done in the coordinates $\left(x^{1}, x^{2}, x^{3}\right)$, and where ν_{e} is the Euclidean outward unit normal, and $d \sigma_{e}$ is the Euclidean area measure (where $\left(x^{i}\right)$ are Cartesian coordinates for the Euclidean metric).

Problem 6. In Euclidean space, the spheres minimize surface area for a given enclosed volume V. In fact if a closed surface of area A encloses a volume V, the isoperimetric inequality in three dimensions is $V \leq \frac{A^{3 / 2}}{6 \sqrt{\pi}}$.

Let $m>0$. Hubert Bray showed that the spheres $S_{r}=\{x:|x|=r\}$ in $\left(M,\left(1+\frac{m}{2 r}\right)^{4} g_{E}\right)$ are isoperimetric in the homology class of Σ_{0} (defined above in \#2a.). In other words, amongst all surfaces homologous to Σ_{0} and enclosing a certain volume V with Σ_{0}, the one with smallest area is the sphere S_{r} of the correct r value to enclose volume V.
a. Show that the volume $V(r)$ enclosed by Σ_{0} and $S_{r}\left(r \geq \frac{m}{2}\right)$ and Σ has the expansion

$$
V(r)=\frac{4 \pi r^{3}}{3}\left(1+\frac{9 m}{2 r}+O\left(m r^{-2}\right)\right)
$$

b. Conclude that the volume V enclosed by Σ_{0} and the sphere S_{r} of area A has the expansion

$$
V(A)=\frac{A^{3 / 2}}{6 \sqrt{\pi}}\left(1+\frac{(3 \sqrt{\pi}) m}{\sqrt{A}}+O\left(m A^{-1}\right)\right)
$$

Problem 7. Embedding the Schwarzschild spatial metric.
a. Let $m>0$. Find an isometric embedding of $\left(M, g_{S}\right)$ into Euclidean space \mathbb{E}^{4}, identified in Cartesian coordinates (x, y, z, w) with $\left(\mathbb{R}^{4}, d x^{2}+d y^{2}+d z^{2}+d w^{2}\right)$. It might be easiest use the other coordinates we introduced for the Schwarzschild metric: $\left(1-\frac{2 m}{r}\right)^{-1} d r^{2}+r^{2} g_{\mathbb{S}^{2}}, r>2 m$. (This corresponds to "half" of $\left(M, g_{S}\right)$. The map you get will then extend by reflection to the other "half." For $\omega \in \mathbb{S}^{2}$, look for an embedding of the form $x=r \omega \mapsto(r \omega, \xi(r)) \in \mathbb{R}^{4}$. Explain how this justifies the picture we've drawn of the Schwarzschild spatial slice.
b. When $m<0$ the argument breaks down. Instead, look for an isometric embedding into Minkowski space \mathbb{M}^{4}, which is identified with \mathbb{R}^{4} with the metric $d x^{2}+d y^{2}+d x^{2}-d w^{2}$.

