1. \(\bar{\partial} \) method and Hartogs extension

We begin in complex euclidean space \(\mathbb{C}^n \), with standard coordinates \((z_1, \ldots, z_n)\), \(z_k \in \mathbb{C} \) and \(z_k = x_k + iy_k \) for \(k = 1, \ldots, n \).

1.1. Cauchy-Riemann complex I. Let \(\Omega \subset \mathbb{C}^n \) be a domain, i.e. an open, connected set. If \(f : \Omega \to \mathbb{C} \) and \(f \in C^1(\Omega) \) (see Function Space table), define

\[
\frac{\partial f}{\partial z_k} = \frac{1}{2} \left[\frac{\partial f}{\partial x_k} - i \frac{\partial f}{\partial y_k} \right], \quad \frac{\partial f}{\partial \bar{z}_k} = \frac{1}{2} \left[\frac{\partial f}{\partial x_k} + i \frac{\partial f}{\partial y_k} \right], \quad k = 1, \ldots, n.
\]

(1.1)

The equations (1.1) define the first-order differential operators \(\frac{\partial}{\partial z_k} \) and \(\frac{\partial}{\partial \bar{z}_k} \). These operators are called the Cauchy-Riemann vector-fields and are easily seen to be derivations; thus we also refer to these operators as tangent vectors on \(\mathbb{C}^n \). If we consider the coordinate functions \(e_k(z_1, \ldots, z_n) = z_k \) and their conjugates \(\bar{e}_k(z_1, \ldots, z_n) = \bar{z}_k \), notice

\[
\frac{\partial}{\partial z_k}(e_\ell) = \delta_{kl}, \quad \frac{\partial}{\partial \bar{z}_k}(\bar{e}_m) = 0,
\]

where \(\delta_{kl} \) is the Kronecker symbol, while

\[
\frac{\partial}{\partial z_k}(\bar{e}_m) = 0 = \frac{\partial}{\partial \bar{z}_k}(e_m), \quad 1 \leq k, m \leq n.
\]

Differential forms, or co-tangent vectors, connected to the complex structure are also important. The basic first-order ones are

\[
dz_k = dx_k + idy_k \quad \text{and} \quad d\bar{z}_k = dx_k - idy_k, \quad k = 1, \ldots, n.
\]

Tangent vectors and co-tangent vectors naturally “pair” with each other. This is elaborated later. For now, take the view that \(\{dz_k, d\bar{z}_k\} \) are basis elements of an abstract vector space. When a function is written adjacent to one of these symbols, the understanding is the function is evaluated at a point and this number multiplies the corresponding symbol. Since the evaluation is often not explicitly written, this may be confusing initially but becomes familiar with practice.

For \(f \in C^1(\Omega) \), the exterior derivative of \(f \) is defined

\[
df = \sum_{j=1}^n \frac{\partial f}{\partial x_j} dx_j + \sum_{j=1}^n \frac{\partial f}{\partial y_j} dy_j.
\]
Some algebra allows this to be re-written as
\[df = \sum_{j=1}^{n} \frac{\partial f}{\partial z_j} dz_j + \sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_j} d\bar{z}_j \]
\[= \partial f + \bar{\partial} f. \tag{1.2} \]

The last equation defines the operators \(\partial \) and \(\bar{\partial} \), i.e.,
\[\bar{\partial} f(z) = \sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_j}(z) d\bar{z}_j \quad \text{for } z \in \Omega \]

and similarly for \(\partial f \). Thus \(\bar{\partial} f \) is a linear combination of the differential forms \(d\bar{z}_j \). In this way, it is an example of a \((0,1)\)-form.

1.2. Holomorphic functions.

Definition 1.3. Let \(\Omega \subset \mathbb{C}^n \) be a domain. A function \(f \in C^1(\Omega) \) is **holomorphic** on \(\Omega \) if \(\bar{\partial} f(z) = 0 \) for all \(z \in \Omega \). Let \(\mathcal{O}(\Omega) \) denote the set of holomorphic functions on \(\Omega \).

It’s important to remember that \(\bar{\partial} f(z) = 0 \), which looks like a scalar equation, is actually a system of equations: \(\bar{\partial} f = 0 \) means \(\frac{\partial f}{\partial \bar{z}_j} = 0 \) for all \(j = 1, \ldots, n \).

The equation \(\frac{\partial f}{\partial \bar{z}_j}(z) = 0 \), for some \(j \), says that \(f \) satisfies the one-variable Cauchy-Riemann equations in the complex variable \(z_j \). Exercise I. Since we are assuming \(f \in C^1(\Omega) \), it follows that \(f \) is holomorphic in \(z_j \). Thus Definition 1.3 says every \(f \in \mathcal{O}(\Omega) \) is holomorphic as a function of one complex variable separately in each of the underlying variables \(z_1, \ldots, z_n \).

A theorem of Hartogs says that a function \(f(z_1, \ldots, z_n) \) that is holomorphic separately in each \(z_j \) must also satisfy Definition 1.3 i.e. the condition \(f \in C^1(\Omega) \) necessarily follows. This is false for smooth functions as the example \(g(x, y) = \frac{xy}{x^2+y^2} \) in \(\mathbb{R}^2 \) shows. The proof of Hartogs theorem is outside the main theme of these lectures, but will be discussed in the afternoon sessions.

1.3. Cauchy-Riemann complex II. A \((p, q)\)-form, for \(p \) and \(q \) positive integers such that \(1 \leq p, q \leq n \), is obtained by taking wedge products of the differentials \(dz_k \) and \(d\bar{z}_k \), with exactly \(p \) factors of the various \(dz_k \)s and \(q \) factors of the \(d\bar{z}_k \)s. Multi-index notation is useful: if \(I = (i_1, \ldots, i_p) \) and \(J = (j_1, \ldots, j_q) \) are \(p \) and \(q \)-tuples respectively, write

\[dz^I = dz_{i_1} \wedge \cdots \wedge dz_{i_p} \quad \& \quad d\bar{z}^J = d\bar{z}_{j_1} \wedge \cdots \wedge d\bar{z}_{j_q}, \]

and denote \(p = |I|, q = |J| \).

A \((p, q)\)-form is a linear combination of \(dz^I \wedge d\bar{z}^J \), as \(I \) and \(J \) range over all indices such that \(|I| = p \) and \(|J| = q \), i.e.

\[\beta = \sum_{|I|=p \atop |J|=q} \beta_{IJ} dz^I \wedge d\bar{z}^J \tag{1.4} \]

is a \((p, q)\)-form, where the coefficients \(\beta_{IJ} \) are functions on \(\Omega \).

Classes of \((p, q)\)-forms are obtained by requiring each \(\beta_{IJ} \) to belong to certain function spaces. Initially the most relevant classes of \((p, q)\)-forms are those with coefficients in \(C^\infty(\Omega) \), \(C^\infty(\overline{\Omega}) \), or \(C^\infty_0(\Omega) \), which we’ll denote as

\[\Lambda^{p,q}(\Omega), \quad \Lambda^{p,q}(\overline{\Omega}), \quad \text{or} \quad \Lambda^{p,q}_0(\Omega) \]

respectively.
1.4. The $\bar{\partial}$ method. The main analytic problem in several complex variables is the construction of functions $h \in \mathcal{O}(\Omega)$ with various side properties \mathcal{P}. There are many interesting \mathcal{P}, some examples are: taking given values on prescribed sub-varieties of Ω, blowing up as $z \to p \in b\Omega$, and being metrically or norm dominated by a given expression.

Power series methods, which are very successful in one-variable, generally fail in $\mathbb{C}^n, n \geq 2$. A powerful several variable technique for construction in several variables is to consider the inhomogeneous $\bar{\partial}$ system.

The method:

(a) Construct $f \in C^\infty(\Omega)$ with the desired property \mathcal{P} — this is usually easy.
(b) Consider the $(0,1)$-form $\alpha := \bar{\partial} f$.
(c) Find a solution to $\bar{\partial} u = \alpha$ that is well-behaved wrt property \mathcal{P}.
(d) Define $h := f - u$. Then $h \in \mathcal{O}(\Omega)$ and satisfies \mathcal{P}.

The italicized phrase suggests both the scope and challenge of the method. Its precise formulation depends on the character of property \mathcal{P}. We turn to our first example in the next section.

1.4.1. $\bar{\partial}$ is over-determined. The method requires solving $\bar{\partial} u = \alpha$, for α a given $(0,1)$-form. Or, in more general situations, if α is a (p,q)-form. For the moment, consider forms with smooth coefficients, i.e., in $\Lambda^{p,q}(\Omega)$, to focus on the main issue. If $\alpha \in \Lambda^{0,1}(\Omega)$, the equation $\bar{\partial} u = \alpha$ is over-determined in $\mathbb{C}^n, n > 1$.

$$\bar{\partial} u = \alpha \iff \begin{cases} \frac{\partial u}{\partial \bar{z}_1}(z) = \alpha_1(z) \\ \vdots \\ \frac{\partial u}{\partial \bar{z}_n}(z) = \alpha_n(z) \end{cases}$$

Notice there are n data functions $\alpha_1, \ldots, \alpha_n$ — but only a single solution u. Therefore α must satisfy compatibility conditions before there is a chance to solve $\bar{\partial} u = \alpha$. Indeed if u solves $\bar{\partial} u = \alpha$, then

$$\frac{\partial \alpha_k}{\partial \bar{z}_j} = \frac{\partial^2 u}{\partial \bar{z}_j \partial \bar{z}_k} = \frac{\partial \alpha_j}{\partial \bar{z}_k}, \quad \forall k, j.$$ (1.5)

Consequently only α satisfying the necessary conditions (1.5) are allowed when trying to solve $\bar{\partial} u = \alpha$. The conditions (1.5) are more succinctly expressed after the $\bar{\partial}$ operator is extended to higher level forms in Lecture 3.

1.5. Solving $\bar{\partial}$ with compact support. Our first example of an interesting side condition is to take $\mathcal{P} =$ “has compact support”.

Theorem 1.6 (Solving $\bar{\partial}$ with compact support). If $\alpha \in \Lambda^{0,1}_0(\mathbb{C}^n), n > 1$, satisfies conditions (1.5), there exists $u \in \Lambda^{0,0}_0(\mathbb{C}^n)$ such that $\bar{\partial} u = \alpha$.

Remark 1.7. This result does not hold in \mathbb{C}^1, unless $\int_{\mathbb{C}} \alpha(\zeta) \zeta^k dV(\zeta) = 0$ for all $k \in \mathbb{Z}^+$.

Exercise II. The proof of Theorem 1.6 uses the one-variable generalized Cauchy Integral formula. This result is important enough to state separately.
Theorem 1.8 (Generalized CIF). If $\Omega \subset \mathbb{C}$ is a domain with C^1 boundary (see Lecture 5) and $u \in C^1(\Omega)$, then
\begin{equation}
 u(z) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{u(\zeta)}{\zeta - z} \, d\zeta + \frac{1}{2\pi i} \int_{\Omega} \frac{\partial u / \partial \zeta}{\zeta - z} \, d\zeta \wedge d\bar{\zeta}, \quad z \in \Omega. \tag{1.9}
\end{equation}

Proof. Fix $z \in \Omega$. For $\epsilon > 0$, let $B(z, \epsilon) = \{w \in \mathbb{C} : |w - z| < \epsilon\}$ be the disc centered at z of radius ϵ. Consider the domain $\Omega_\epsilon = \Omega \setminus B(z, \epsilon)$.

Recall Stokes theorem: if D is a C^1 bounded domain and $\omega \in \Lambda^{1,0}(\overline{D})$ then
\[\int_{\partial D} \omega = \int_{D} d\omega, \]
where bD is positively oriented. Apply Stokes to $\omega(\zeta) = \frac{u(\zeta)}{\zeta - z} \, d\zeta$ on the domain Ω_ϵ, noting the two separate components, $b\Omega$ and $bB(z, \epsilon)$, of the boundary $b\Omega_\epsilon$. The result is
\[\int_{\partial \Omega_\epsilon} \frac{u(\zeta)}{\zeta - z} \, d\zeta - i \int_{0}^{2\pi} u\left(z + \epsilon e^{i \theta}\right) \, d\theta = \int_{\Omega_\epsilon} \frac{\partial u / \partial \zeta}{\zeta - z} \, d\zeta \wedge d\bar{\zeta}. \]
The second integral on the LHS is $(b\mathbb{B}(z, \epsilon)) \omega$, parameterizing by $\zeta(\theta) = z + \epsilon e^{i \theta}$ and the $−$ sign coming from positively orienting $b\Omega_\epsilon$. Rearranging this equation, using $d\zeta \wedge d\zeta = -d\zeta \wedge \bar{\zeta}$,
\[\int_{\partial \Omega_\epsilon} \frac{u(\zeta)}{\zeta - z} \, d\zeta + \int_{\Omega_\epsilon} \frac{\partial u / \partial \zeta}{\zeta - z} \, d\zeta \wedge d\bar{\zeta} = i \int_{0}^{2\pi} u\left(z + \epsilon e^{i \theta}\right) \, d\theta. \]

Let $\epsilon \to 0$. The RHS tends to $2\pi i u(z)$, since u is continuous. This gives (1.9). □

Note that when $u \in O(\Omega)$, Theorem 1.8 reduces to the usual Cauchy Integral formula.

Proof of Theorem 1.6 Define
\[u(z_1, z_2, \ldots, z_n) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\alpha_1(\zeta, z_2, \ldots, z_n)}{\zeta - z_1} \, d\zeta \wedge d\bar{\zeta}, \]
\[= \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\alpha_1(\zeta + z_1, z_2, \ldots, z_n)}{\zeta} \, d\zeta \wedge d\bar{\zeta}. \]
The second equality follows by change of variables $\zeta \to \zeta + z_1$.

Consider the second integral defining u. Differentiation under the integral sign shows $u \in C^\infty(\mathbb{C})$. Additionally, taking $\frac{\partial}{\partial z_k}$, for any $k = 1, \ldots, n$, of both sides yields
\begin{align}
\frac{\partial u}{\partial z_k} &= \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial \alpha_1}{\partial z_k}(\zeta + z_1, z_2, \ldots, z_n) \frac{1}{\zeta} \, d\zeta \wedge d\bar{\zeta} \\
&= \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial \alpha_1}{\partial z_k}(\zeta + z_1, z_2, \ldots, z_n) \frac{1}{\zeta - z_1} \, d\zeta \wedge d\bar{\zeta} \\
&= \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial \alpha_k}{\partial z_1}(\zeta, z_2, \ldots, z_n) \frac{1}{\zeta - z_1} \, d\zeta \wedge d\bar{\zeta}, \tag{1.10}
\end{align}
The compatibility conditions (1.5) give the second equality. The third equality follows by change of variables.

Choose R large enough so that $\text{supp} \, \alpha \subset B(0, R)$. In particular $\alpha \equiv 0$ on $bB(0, R)$. Theorem 1.8 then says that
\[\frac{1}{2\pi i} \int_{B(0, R)} \frac{\partial \alpha_k}{\partial z_1}(\zeta, z_2, \ldots, z_n) \frac{1}{\zeta - z_1} \, d\zeta \wedge d\bar{\zeta} = \alpha_k(z_1, \ldots, z_n), \]
But the LHS above equals the RHS of (1.10). Thus \(\frac{\partial u}{\partial \bar{z}_k} = \alpha_k \), \(k = 1, \ldots, n \); in other words \(\partial u = \alpha \).

\[\square \]

1.6. **Hartogs extension.** Theorem [1.6] leads to a remarkable extension result proved by Hartogs (by a different method) more than 100 years ago. The phenomena expressed by this result has no analog in \(\mathbb{C}^1 \). This result (and the biholomorphic inequivalence of topological cells in \(\mathbb{C}^n \)) inaugurated the study of several complex variables as a separate field.

Theorem 1.11 (Hartogs). Let \(\Omega \) be a bounded domain in \(\mathbb{C}^n \), \(n > 1 \), and \(K \subset \subset \Omega \) such that \(\Omega \setminus K \) is connected.

Then every \(f \in \mathcal{O}(\Omega \setminus K) \) is the restriction of an \(F \in \mathcal{O}(\Omega) \).

Let’s sketch how the \(\partial \) method works here:

(a) Let \(\chi \in C_0^\infty(\Omega) \) such that \(\chi \equiv 1 \) on a neighborhood of \(K \). Set

\[
 f(z) = \begin{cases}
 (1 - \chi) \cdot f(z) & \text{if } z \in \Omega \setminus K \\
 0 & \text{if } z \in K
\end{cases}
\]

(b) Set \(\alpha = \bar{\partial} f \). Note that \(\alpha = - (\bar{\partial} \chi) \cdot f \) where \(f \) is defined, \(\bar{\partial} \alpha = 0 \), and \(\alpha \in \Lambda_0^{0,1}(\mathbb{C}^n) \) (just extend \(\alpha \) by 0 off \(\text{supp}(\bar{\partial} \chi) \)).

(c) Invoke Theorem 1.6 to find \(u \in \Lambda_0^{0,0}(\mathbb{C}^n) \) solving \(\bar{\partial} u = \alpha \).

(d) Define \(F = f - u \). Consider the component of \(\partial \Omega \) that also bounds a neighborhood of \(\infty \). In an open set of this boundary component, \(u \equiv 0 \) and \(\chi \equiv 0 \). Thus, \(F = f \) on this set. Since \(\Omega \setminus K \) is connected, \(F = f \) on all of \(\Omega \setminus K \).

A more formal proof of Theorem 1.11 can be found in Krantz, “Function theory of several complex variables”, Theorem 1.2.6.