## 2013 Summer Graduate Workshop, Cortona, Italy: <br> Mathematical General Relativity <br> Euclidean Harmonic Functions

1. a. Verify that the following distributional equations hold: $\Delta\left(\frac{1}{2 \pi} \log |x|\right)=\delta_{0}$ in dimension $n=2$, while $\Delta\left(\frac{1}{(2-n) n \omega_{n}}|x|^{2-n}\right)=\delta_{0}$ in dimensions $n>2$. Here $\delta_{0}$ is the Dirac delta distribution at the origin.
b. Suppose $f \in C_{c}^{2}\left(\mathbb{R}^{n}\right), n>2$. Suppose $\operatorname{spt}(f) \subset\{x:|x| \leq K\}$. Then if we let $u(x)=$ $\frac{1}{(2-n) n \omega_{n}} \int_{\mathbb{R}^{n}}|x-y|^{2-n} f(y) d y$, then $\Delta u=f$ by the above. Moreover, show that $u$ has an expansion of the form $u(x)=\frac{A}{|x|^{n-2}}+\frac{B_{i} x^{i}}{|x|^{n}}+O\left(|x|^{-n}\right)$. Express the constants $A$ and $B_{i}$ in terms of integrals involving $f$.
2. a. Show that if $u$ is harmonic with an isolated singularity at $x=0$, then the singularity is in fact removable if $\lim _{x \rightarrow 0}|x|^{n-2} u(x)=0$ in case $n>2$, and in case $n=2$, if $\lim _{x \rightarrow 0} \frac{u(x)}{\log |x|}=0$.
b. If $K[u]$ is the Kelvin transform of $u$, find $\Delta(K[u])$ in terms of $\Delta u$. Conclude that $K[u]$ is harmonic if and only if $u$ is harmonic. Recall $K[u](x)=|x|^{2-n} u\left(x^{*}\right), x^{*}=|x|^{-2} x$.
c. Prove that if $n>2$ and $u$ is harmonic near infinity. Prove that $u$ is harmonic at infinity if and only if $\lim _{|x| \rightarrow+\infty} u(x)=0$.
3. If $v$ is harmonic at infinity and $n>2, v$ admits an expansion at infinity in terms of spherical harmonics. We derived the first two terms which give $v(x)=\frac{a_{0}}{|x|^{n-2}}+\frac{a_{i} x^{2}}{|x|^{n}}+O\left(|x|^{n}\right)$. Derive the next order term, in case $n=3$.
4. Let $\left(\mathbb{S}^{n}, g_{0}\right)$ be the standard unit round sphere, $\mathbb{S}^{n}$ embedded in $\mathbb{R}^{n+1}$ as $\{|x|=1\}$. It is a fact that the lowest positive eigenvalue $\lambda_{1}$ for $\Delta_{g_{0}}$ corresponds to the eigenfunctions $x^{i}$ (Euclidean coordinates) restricted to the sphere. Compute $\lambda_{1}=n$ by using $\Delta_{g_{0}}\left(x^{i}\right)=-\lambda_{1} x^{i}$. Multiply by $x^{i}$, integrate by parts, and use the fact that $\nabla_{g_{0}} x^{i}$ is the tangential component of $\nabla x^{i}=e_{i}=\frac{\partial}{\partial x^{i}}$.
5. Recall Bôcher's Theorem: if $u>0$ is harmonic in a punctured ball $B \backslash\{0\}$, there exist $v$ harmonic in $B$ and $b \geq 0$ so that $u(x)=\left\{\begin{array}{l}b \log \left(\frac{1}{(x \mid}\right)+v(x), \quad n=2 \\ b|x|^{2-n}+v(x), \quad n>2 .\end{array}\right.$
a. Show that $b$ and $v$ are uniquely determined.
b. $\Omega \subset \mathbb{R}^{n}$ is an open set, $n>2$. If $u$ is harmonic in $\Omega \backslash\{a\}(a \in \Omega)$, so that $u>0$ in a deleted neighborhood of $a$, show there is a number $b \geq 0$ and a function $v$ harmonic on all of $\Omega$ so that on $\Omega \backslash\{a\}, u(x)=b|x-a|^{2-n}+v(x)$.
c. $n>2$. If $u$ is harmonic on $B \backslash\{0\}$, and $\liminf _{x \rightarrow 0}|x|^{n-2} u(x)>-\infty$, there exists $v$ harmonic in $B$, $b \in \mathbb{R}$ so that $u(x)=b|x|^{2-n}+v(x)$ on $B \backslash\{0\}$.
d. What can you say about a positive harmonic function on $\mathbb{R}^{n} \backslash\{0, a\}, a \neq 0$ ?
