Problems for mapping class groups, day 1

1. Carefully prove that \(\hat{i}(a,b) \) depends only on the homology classes of the curves \(a \) and \(b \) in the surface \(S \).

2. Over all possible pairs of homotopy classes of curves \(a, b \) over all possible surfaces, exactly what values of pairs \((i(a,b), \hat{i}(a,b)) \) are possible?

3. Verify that composition in \(\text{Mod}(S) \) is well defined.

4. Show that \(\text{Homeo}_0(S, \partial S) \), the path component of the identity in \(\text{Homeo}^+(S, \partial S) \), is a normal subgroup.

5. Carefully show that the following are equivalent for \(\phi, \psi \in \text{Homeo}^+(S, \partial S) \), quoting theorems from the lecture:
 - \(\phi \) and \(\psi \) are in the same path component of \(\text{Homeo}^+(S, \partial S) \) in the compact-open topology.
 - \(\phi \) and \(\psi \) are in the same coset of \(\text{Homeo}_0(S, \partial S) \) the path component of the identity.
 - \(\phi \) and \(\psi \) are homotopic.

6. What happens if we do not demand that homeomorphisms fix \(\partial S \) pointwise or that homotopies are relative to \(\partial S \) in the definition of \(\text{Mod}(S) \)?

7. Show that every finite subgroup of the isometry group of \(S^2 \) embeds in \(\text{Mod}(S) \) for some surface \(S \).

8. An arc on a surface \(S \) is a map of an interval to \(S \). We demand that endpoints of intervals map to \(\partial S \), and if an endpoint is missing, then the map is proper (so the missing "endpoint" maps to a puncture of the surface). Arcs are considered up to proper homotopy relative to endpoints. State and prove a bigon criterion for arcs, and for an arc and a curve.

9. State and prove a criterion for checking whether a single curve has the minimal number of self-intersections for its homotopy class.

10. Classify the finite-order elements of \(\text{SL}_2(\mathbb{Z}) \). Conclude that a surface can have an interesting mapping class group, but still have limited possibilities for orders of finite-order elements.

11. Verify that for any mapping class \(f \) and any Dehn twist \(T_a \), we have \(T_f(a) = fT_af^{-1} \).

12. Verify the braid relation to yourself by drawing pictures. The braid relation states that if \(a, b \) are homotopy classes of curves on \(S \) and \(i(a,b) = 1 \), then \(T_aT_bT_a = T_bT_aT_b \).

13. Suppose a curve \(a \) is not nullhomotopic and is not homotopic to a puncture. Show that \(T_a \) is nontrivial in \(\text{Mod}(S) \).

14. Draw pictures of curves \(\alpha \) and \(\beta \) in a surface \(S \) with \(i(\alpha, \beta) \neq 0 \) and with \(T_a, T_b \) nontrivial. Verify that \([T_a, T_b] \neq 1 \) by drawing pictures.

15. Give a factorization of a finite order element of a mapping class group as a product of Dehn twists.

16. Let \(\text{Mod}^\pm(S) \) be the version of the mapping class group that includes classes of orientation-reversing homeomorphisms, up to equivalence by isotopy. Show that \(\text{Mod}^\pm(S) \) is a semidirect product of \(\mathbb{Z}/2\mathbb{Z} \) acting on \(\text{Mod}(S) \). Describe the action of \(\mathbb{Z}/2\mathbb{Z} \) on the set of Dehn twists coming from some such decomposition.
Problems for mapping class groups, day 2

Now that you’ve heard about the Alexander method, you may want to give some problems from yesterday another try. New problems for today:

1. What conditions must a set of Dehn twists satisfy in order for the intersection of their centralizers to be trivial?

2. Show that the center of every finite-index subgroup of $\text{Mod}(S_g)$ is trivial for $g \geq 3$.

3. Find a nontrivial central element of $\text{Mod}(S_2)$.

4. Look up the lantern relation and verify it using the Alexander method.

5. Use the lantern relation, the change of coordinates principle, and the Dehn–Lickorish theorem to prove that $\text{Mod}(S_g)$ has trivial abelianization for $n \geq 3$.

6. Find a specific finite generating set for $\text{Mod}(S_2)$. (Follow the proof of the Dehn–Lickorish theorem.)

7. Find a path of length 3 in the curve complex of a surface.

8. Pick a surface S (this is interesting for $S = S_2$). Pick a mapping class f on that is not a product of Dehn twists in an obvious way. Pick nonseparating simple closed curves a and b with $i(a, b) = 1$.

 (a) Find paths between a and $f(a)$ in the curve complex, the nonseparating curve complex, and the modified nonseparating curve complex.

 (b) Express f as a product in terms of mapping classes stabilizing a and the Dehn twist T_b.

 (c) This is probably hard, depending on your example: express f as a product of Dehn twists.
Problems for mapping class groups, day 3

Please try problem 5 from yesterday: show that $H_1(\text{Mod}(S_g);\mathbb{Z})$ is trivial if $g \geq 3$. New problems for today:

1. Assuming that $\text{Mod}(S_g)$ is finitely presentable, deduce that $\text{Mod}(S_{g,n}^b)$ is finitely presentable (n punctures, b boundary components).

2. Prove the Euler–Poincaré formula.

3. Try out Thurston’s example: Model $S_{0,4}$ as the plane with three punctures p_1, p_2, p_3 in a row on the x-axis (the fourth puncture is the point at infinity). Let σ_1 be the counterclockwise half-twist swapping p_1 and p_2, and let σ_2 be the counterclockwise half-twist swapping p_2 and p_3. Let $f = \sigma_1^{-1}\sigma_2$. Pick an essential simple closed curve c and draw $f^k(c)$ for several positive integers k.

Here’s how to interpret your picture: roughly speaking, the pieces of your curve are somehow approaching the leaves of an unstable singular foliation for f. This picture led Thurston to the idea of train tracks, one of three constructions commonly used to characterize the structure of pseudo-Anosov mapping classes.

4. Recall that we identify the mapping class group $\text{Mod}(\mathbb{T}^2)$ of the torus \mathbb{T}^2 with $\text{SL}(2,\mathbb{Z})$ via the action on the fundamental group. Consider the mapping class f corresponding to the matrix \[
\begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}
\]. Verify that this mapping class is Anosov:

 (a) Concretely describe the transverse measured foliations \mathcal{F}^s, \mathcal{F}^u that some representative of f leaves invariant (up to scaling).

 (b) Find the representative ϕ of f that respects these foliations.

 (c) Find the stretch factor λ.

 (d) Verify that ϕ sends leaves of \mathcal{F}^s to leaves of \mathcal{F}^s (resp. for \mathcal{F}^u).

 (e) Verify that ϕ sends μ_s to $\lambda^{-1}\mu_s$ (resp. μ_u to $\lambda\mu_u$) by plugging in an arbitrary transverse arc.

5. Build a mapping class in $\text{Mod}(S_2)$ that is pseudo-Anosov by taking a product of Dehn twists. Use the Nielsen–Thurston classification to deduce that your mapping class really is pseudo-Anosov.
Problems for mapping class groups and Out(F_n), day 4

Distinguishing between boundary components and punctures is really important today, so here’s a reminder that S^1_g has a boundary component, and $S_{g,1}$ has a puncture.

New problems for today:

1. Show that the map $\text{Mod}(S_g) \to \text{Out}(\pi_1(S_g))$ is well defined. (Hint: consider the point pushing map $\pi_1(S_g) \to \text{Mod}(S_{g,1})$ and the action of $\text{Mod}(S_{g,1})$ on $\pi_1(S_g)$.)

2. Derive the Dehn–Nielsen–Baer theorem for S^1_g from the Dehn–Nielsen–Baer theorem for S_g.

3. Let a be a separating simple closed curve in S^1_2. We can relate S^1_g to $S_{g,1}$ by capping the boundary with a puncture, and to S_g by forgetting the puncture, so we can also consider a to be curve in $S_{g,1}$ and S_g. A

Compute the action of $T_a \in \text{Mod}(S^1_g)$ on $\pi_1(S^1_g)$ in terms of a standard basis for $\pi_1(S^1_g)$. Use your answer to also give the action of $T_a \in \text{Mod}(S_{g,1})$ on $\pi_1(S_g)$ in terms of a standard generating set, and give the image of $T_a \in \text{Mod}(S_g)$ under the map to Out($\pi_1(S_g)$).

4. Use folding to check which of the following homomorphisms $F_2 \to F_2$ is an automorphism and which isn’t:

\[
\begin{align*}
&f_1: & x & \mapsto xy^2xyxy & \quad \text{or} \quad f_2: & x & \mapsto xyxy^2xyxy \\
& & y & \mapsto yxyxy & & y & \mapsto yxyxy
\end{align*}
\]

5. Express the following automorphism of F_3 as a product of Nielsen moves and compute its inverse. (It may be easier to do this with Nielsen reduction than with folding.)

\[
\begin{align*}
&f: & x & \mapsto xyz \\
& & y & \mapsto xyxz^{-1} \\
& & y & \mapsto yzx^{-1}
\end{align*}
\]

6. Show that $\text{Aut}(F_n)$ has a generating set consisting of $4(n-1)$ transvections and a single inversion.

7. Find a free abelian subgroup of Out(F_n) of rank $2n-3$.
Problems for mapping class groups and $\text{Out}(F_n)$, day 5

New problems for today:

1. Use the symplectic form
 \[
 J = \begin{pmatrix}
 0 & 1 & 0 & 0 \\
 -1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & -1 & 0
 \end{pmatrix}
 \]
 and work in the group $\text{Sp}(4, \mathbb{Z}) = \{ A \in \text{GL}(n, \mathbb{Z}) | A^T J A = J \}$. Suppose $A \in \text{Sp}(4, \mathbb{Z})$ is a “row operation” matrix such that for any B, the last row of AB is the sum of the first and last row of B. Then A has the form:
 \[
 A = \begin{pmatrix}
 * & * & * & * \\
 * & * & * & * \\
 * & * & * & * \\
 1 & 0 & 0 & 1
 \end{pmatrix}
 \]
 What is the simplest way we can fill in the rest of A and still get a matrix in $\text{Sp}(4, \mathbb{Z})$? (Is there a “symplectic row operation” that differs from the standard row operation described above by changing only one matrix entry?)

2. Repeat the previous problem, but with other row operations.

3. Find a mapping class in $\text{Mod}(S_2)$ that maps to the matrix in your answer to problem 1. (This one’s tricky; the answer is in Farb–Margalit.)

4. What is the action of a Dehn twist on $H_1(S)$?

5. Give an example of a relation that is true for elementary matrices in $\text{GL}(n, \mathbb{Z})$ but is not true for the corresponding Nielsen moves. Use this to give an example of an element of IA_n.

6. Suppose A and B are abelian groups and we have a central extension
 \[
 1 \to A \to G \xrightarrow{\pi} B \to 1
 \]
 with $A = [G, G]$. Show that the kernel of the natural map $\ker(\text{Aut}(G) \to \text{Aut}(B))$ is isomorphic to the abelian group $\text{Hom}(B, A)$. (Hint: if $\phi : B \to A$ is a homomorphism, then $\psi : G \to G$ defined by $\psi(g) = \phi(\pi(g))g$ is an automorphism.)

7. Suppose a and b are a pair of disjoint simple closed curves in S_1^3 that separate the surface into two genus-one surfaces. Let f be the bounding pair map $T_a T_b^{-1}$. Check that f is in the Torelli group \mathcal{T}_g. Compute the Johnson homomorphism of f.

8. What are the minimal graphs of rank 3 with the maximal number of vertices? What are the faces of the simplices corresponding to each one in the simplicial structure on Outer space X_3?