Open problem: Is there an algorithm to decide whether a periodic sandpile in \mathbb{Z}^2 is explosive?

Lionel Levine

Let $s: \mathbb{Z}^2 \to \{0, 1, 2, 3\}$ be periodic, i.e.

$$s(x) = s(x + \lambda), \qquad x \in \mathbb{Z}^2, \lambda \in \Lambda$$

for a full rank sublattice $\Lambda \subset \mathbb{Z}^2$ (if you like, take $\Lambda = m\mathbb{Z} \times n\mathbb{Z}$).

We view s as a (stable) sandpile: each site $x \in \mathbb{Z}^2$ starts with s(x) chips. Now fix a positive integer n, add n chips at the origin, and try to stabilize. This means: every time you see a site with 4 or more chips, you can topple it by sending 1 chip to each of the four nearest neighbors. Let u(x) be the number of times x topples. (This number does not depend on the order of topplings.) Then either

- 1. $u(x) < \infty$ for all $x \in \mathbb{Z}^2$, and u(x) = 0 for some $x \in \mathbb{Z}^2$; or
- 2. $u(x) = \infty$ for all $x \in \mathbb{Z}^2$.

If case 2 holds for some $n < \infty$, then we say that s is *explosive*.

Problem. Find an algorithm that takes s as input and decides whether or not s is explosive.

Figure 1 shows a sandpile in the process of exploding. The figure is reproduced from [1], where you can find some more background and references. Here are a few things we know:

• If the density

$$\rho(s) := \frac{1}{|\mathbb{Z}^2/\Lambda|} \sum_{x \in \mathbb{Z}^2/\Lambda} s(x)$$

is strictly less than 2, then s is not explosive.

Figure 1: The sandpile $s=2+1_{\Lambda}$ is explosive, where Λ is the lattice in \mathbb{Z}^2 spanned by (1,10) and (10,1). The image above was obtained by starting with s, adding n=5000 chips at the origin and performing some toppings. Each pixel is colored according to the number of chips present at the corresponding site of \mathbb{Z}^2 (yellow 0, red 1, light blue 2, dark blue 3, black 4 or more). Every site in \mathbb{Z}^2 will topple infinitely often.

- If $s \leq 2$ on infinitely many rows and columns of \mathbb{Z}^2 , then s is not explosive.
- If $s \geq 2$ everywhere and $\{s = 3\}$ meets every row and column of \mathbb{Z}^2 , then s is explosive.

References

[1] Anne Fey, Lionel Levine and Yuval Peres, Growth rates and explosions in sandpiles, J. Stat. Phys. 138:143–159, 2010. arXiv:0901.3805