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1 Introduction

1.1 Hydrodynamic stability: a bit of history and context

Hydrodynamic stability is one of the oldest fields of fluid mechanics, dating back to the 1800s and
attracting the attention of many greats such as Reynolds, Stokes, Lord Kelvin, Lord Rayleigh, and
many others. This field is concerned with understanding the stability of laminar flow configurations
and, specifically, describing when and how these flows become unstable; modern applications natu-
rally include techniques for inhibiting, triggering, or otherwise controlling these instabilities. Aside
from these questions being theoretically natural, they are also of practical relevance and, indeed,
hydrodynamic stability is one of the main pillars of applied fluid mechanics. As we will see, it will
also provide us an interesting weakly nonlinear regime to study some fundamental processes in fluid
mechanics which are difficult to get a handle on otherwise.

The term Reynolds number is due to Reynolds’ hydrodynamic stability experiments flow through
a pipe. For a cylindrical flow configuration (r, θ, z) ∈ [0, R]× [0, 2π)× R, one can verify that

uz =
AR2

2ν

(
1−

( r
R

)2
)
, uθ = 0, ur = 0, p = −Az

is a solution to the 3D Navier-Stokes equations; this configuration represents pressure driven flow
in a pipe. What Reynolds did in [Rey83] was force fluid through a pipe while varying the various
parameters and observed that for small Re this laminar flow is stable but that for sufficiently large
Re he observed instability and spontaneous transition to turbulence. As theory and experiment
progressed it became clear that this transition to turbulence was occurring in systems which are
spectrally stable (see below)– this kind of transition is called subcritical transition or by-pass transi-
tion. This raised many interesting questions, especially since linear stability and nonlinear stability
were almost always assumed to go together in applied mathematics at the time.

Since the work of Reynolds, countless experiments and computer simulations have been done
on hydrodynamic stability problems in both 2D and 3D and the subject is both vast and rich; see
e.g. the texts [DR81, Yag12, SH01, Dra02] and the references therein. We will discuss some of the
many facets of the theory as we go along.

1.2 Notions of stability

Let N be a given (possibly nonlinear) operator N and suppose we have the abstract evolution
equation

∂tf = N [f ], (1.1a)

f(0) = fin, (1.1b)

with the equilibrium point N [f0] = 0. We will not trouble ourselves with well-posedness issues here,
so we can assume the abstract system (1.1) is well-posed in whatever spaces we care about.

We will not be discussing spectral theory much since in fluid mechanics, most of the linear oper-
ators are non-normal, which means AA∗ 6= A∗A. The spectral theorem shows that it is reasonable
to think of this as the correct generalization of “non-diagonalizable” from basic linear algebra; see
e.g. [RS79]. In particular, for non-normal operators, the spectrum of A may not tell us enough
information about the linear evolution ∂tf = Af for us to really “understand” the behavior. We will
see some examples for finite dimensional linear ODEs below. Recall that the definition of spectrum
for unbounded operators is the following; see e.g. [EN00, RS79].
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Definition 1. Let H be a Hilbert space and A : D(A) → H be a closed operator with domain
D(A) ⊂ H1. The resolvent set ρ(A) ⊂ C is given by

ρ(A) = {λ ∈ C : A− λI is invertible on D(A)→ H} .

The spectrum is then defined as σ(A) = C \ ρ(A).

Remark 1. In infinite dimensions, not everything in the spectrum corresponds to eigenvalues. We
will be studying a very important linear operator L = y∂xf on T × R, which is skew-adjoint on
L2(T× R).

Exercise 1.1. Verify that all eigenfunctions in L2 of L are independent of x and correspond to the
zero eigenvalue. That is, prove that if f ∈ L2 and y∂xf = λf , then f(x, y) = φ(y) for some φ (up
to redefinition on a set of measure zero).

We see from Exercise 1.1 that 0 ∈ σ(L). However, let us verify that iλ ∈ σ(L) for all λ ∈ R,
that is, the entire imaginary axis is also in the spectrum. For this, we need to ensure that the iλ is
not in the resolvent by proving that L− iλI is not invertible. We know already that we cannot do
this by exhibiting an eigenfunction, however, we can do this by exhibiting a sequence of functions
fn such that

(L− iλ)fn → 0

but that ‖fn‖L2 ≈ 1.
Let φ be a smooth, compactly supported bump function. Fix a k ∈ R and consider now the

sequence

fn(x, y) = eikxn1/2φ

(
n(y − λ

k
)

)
.

We can immediately check that ‖fn‖L2 =
√

2π ‖φ‖L2 , which is a fixed number. We can directly
compute that

(L− iλ)fn = (iky − iλ)fn

However

‖(iky − iλ)fn‖2L2 =

∫
n |λ− ky|2 φ2 (n(y − λ/k)) dxdy

=

∫
n |kz|2 φ2 (nz) dxdz

= n−2

∫
|kv|2 φ2(v)dxdv.

We see that this goes to zero as n → 0 which shows that L − iλI is not invertible. Therefore,
iλ ∈ σ(L).

Regardless of all the potential issues with using the spectrum to assess stability, it is still a very
useful notion, and one that is still the most common used by engineers and physicists.

1Recall that for unbounded operators, for example A = −∆ on H = L2, we cannot make sense of the operator
over the entire Hilbert space, hence we define the domain D(A) as the subset for which it makes sense to consider
A : D(A)→ L2 (for example, if A = −∆ and L2(T2) then we should take D(A) = H2(T2).
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Definition 2 (Spectral stability). Let Lf = DN [f0]f be the linearization of N . The equilibrium f0

is called spectrally stable in a Hilbert space X if σ(L)∩ {c ∈ C : Re c > 0} = ∅, where σ(L) denotes
the spectrum of L in X. The evolution is called spectrally unstable if σ(L)∩{c ∈ C : Re c > 0} 6= ∅.

Remark 2. Often times, if system is spectrally stable but the spectrum intersects the imaginary
axis, the terminology neutrally stable is used.

A different notion of stability, which is usually attributed to Lyapunov, is the following. When
a mathematician says “stable”, this is normally what he or she means.

Definition 3 (Lyapunov/nonlinear stability). Given two Banach spaces X and Y (usually the
same), the equilibrium f0 is called stable (from X to Y ) if for all ε > 0, there exists a δ > 0 such
that if

‖fin − f0‖X < δ.

then for all t > 0, the solution to (1.1) satisfies

‖f(t)− f0‖Y < ε.

We say f0 is unstable if it is not stable.

Remark 3. In many applications, X = Y , however in some applications this is too much to ask
and we instead take X to be a smaller space than Y (e.g. the restriction on the initial data is
stronger than the norm in which stability is deduced).

Even for finite dimensional linear systems, these two definitions of stability are not equivalent.

Exercise 1.2. Consider a finite dimensional ODE ∂tX = AX for a given fixed matrix A (and the
equilibrium is of course f0 = 0). Prove that if A is diagonalizable then spectral stability implies
Lyapunuv stability. However, prove that if A is not diagonalizable, then spectral stability does not
necessarily imply Lyapunov stability.

Exercise 1.3. Consider a finite dimensional ODE ∂tX = AX for a given fixed matrix A. Prove
that spectral instability always implies instability in the sense of Lyapunov.

Exercise 1.4. Consider a nonlinear finite dimensional ODE ∂tX = F (X) with equilibrium F (X0) =
0. Show that if ∇F (X0) is diagonalizable and σ(∇F (X0)) ⊂ {c ∈ C : Re c < 0}, then the equilib-
rium X0 is Lyapunov stable. Give an example that shows nonlinear stability can fail if we only
assume σ(∇F (X0)) ⊂ {c ∈ C : Re c ≤ 0} (hence, even for diagonalizable systems, neutral stability
does not imply Lyapunov stability).

A good rule of thumb is that spectral stability is in some sense the weakest kind of stability but
spectral instability tends to be a pretty strong kind of instability, and in many settings, spectral
instability is enough to deduce nonlinear instability.

We would also like to mention that in infinite dimensions, stability depends a lot on the norms
that you are measuring. For example, consider the (very relevant) PDE:

∂tf + y∂xf = 0 (1.2a)

f(0) = fin. (1.2b)

Exercise 1.5. Prove that the the equilibrium f ≡ 0 for (1.2) is spectrally stable in L2, Lyapunov
stable in L2, but Lyapunov unstable in H1 (in fact any Hs with s > 0).
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2 2D inviscid planar shear flows and Rayleigh’s theorem

We begin our study of hydrodynamic stability of inviscid shear flows, the simplest of all flows:

u(x, y) =

(
U(y)

0

)
,

where we will assume that U(y) ∈ C∞. We want to investigate the stability of this configuration
in the 2D Euler equations to start with. Later we will consider 3D and finite Reynolds number
generalizations.

One of the first works on the theoretical side of hydrodynamic stability was that of Lord Rayleigh
who in 1880 attempted to determine when a certain inviscid shear flow is stable or not in the 2D
Euler equations [Ray80]. He was interested in spectral stability, that is, to determine when there
does or does not exist unstable eigenvalues to the linearized problem. For the following, we will
mostly follow the treatment in [Dra02]. Lord Rayleigh derived a necessary condition for spectral
instability of 2D shear flows by what is sometimes referred to as the normal mode method. This
is just a name for the method of looking for sets of orthogonal eigenfunctions and eigenvalues for
the linearized problem. Rayleigh considered the linearization of 2D Euler about a given shear flow
(U(y), 0):

ut + U(y)∂xu+

(
u2U

′(y)
0

)
= −∇p (2.1a)

−∆p = 2U ′∂xu2 (2.1b)

u · n = 0. (2.1c)

say for y ∈ [−1, 1], a bounded channel.

Exercise 2.1. Write (2.1) as ∂tu+Lu = 0 for a linear operator L and verify that L∗L 6= LL∗ (and
hence L is non-normal).

In vorticity form, this becomes

ωt + U(y)∂xω − U ′′∂xψ = 0

∆ψ = ω.

Notice that the zero-th Fourier mode in x ω0(t, y) = ω̂(t, 0, y) = 1
2π

∫
ω(t, x, y)dx is conserved by

the evolution, so we may assume without loss of generality that
∫
ωin(x, y)dx = 0 and hence that

remains true forward (and backward) in time (note that this conservation law is not true for the
nonlinear problem). We re-write on the streamfunction:

(∂t + U(y)∂x) ∆ψ − U ′′(y)∂xψ = 0. (2.2)

Note that if we are in a bounded channel, this comes with boundary conditions, in particular
∇ψ · τ = 0 on the upper and lower boundaries.

The problem is still translation invariant with respect to x so we can use the Fourier transform
in this direction. Therefore, we look for a solution of the form:

ψ(t, x, y) = φ(y)eiα(x−ct), (2.3)
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where α ∈ R is non-zero and c ∈ C. Notice that if (2.3) is going to satisfy the boundary condition
∇ψ · τ = 0, we are going to need to impose φ|±1 = 0. Upon substitution of (2.3) into (2.2) we get
Rayleigh’s problem:

(U(y)− c)
(
φ′′ − α2φ

)
− U ′′(y)φ = 0. (2.4)

We will have an unstable mode if we can find φ, c and α which solve (2.4) with Imc 6= 0 (noting
that if α, c, φ is a solution, then so is −α, c, φ). The horrible degeneracy at the point U(y) = c is
known as the “critical layer” in the applied literature; this is only possible when c ∈ R and so is
not relevant when we are looking for unstablities (it is relevant when looking for neutrally stable
modes). The degeneracy is connected with the continuous spectrum which lies on the imaginary
axis. However, let us not be too concerned with this (yet).

Theorem 2.1 (Rayleigh [Ray80]). Consider the 2D Euler equations linearized around the shear
flow (U(y), 0) with y ∈ [−1, 1] (or y ∈ R) given in (2.1). If the linearized 2D Euler equations have
an unstable eigenmode in H1, then U ′′ must vanish at least at one point (hence, any flow without
an inflection point is spectrally stable).

Proof. The proof proceeds by proving that if there is an unstable eigenvalue, then necessarily there
is an inflection point somewhere in the flow. This can be proved by an energy-type estimate on
(2.4). If there is an unstable eigenvalue, then there is a solution to (2.4) with α ≥ 0, Imc > 0, and φ
non-trivial. Dividing (2.4) by U − c (note that it is non-vanishing because Imc 6= 0 and U ∈ R) and
multiplying by φ an integrating by parts gives (note the boundary terms vanish due to φ|y=±1 = 0),∫ ∣∣φ′∣∣2 + α2 |φ|2 dy +

∫
U ′′(y)

U(y)− c
|φ|2 dy = 0.

Taking the imaginary part leaves us

Im c

∫
U ′′(y)

|U(y)− c|2
|φ|2 dy = 0.

By assumption Im c > 0, therefore we have,∫
U ′′(y)

|U(y)− c|2
|φ|2 dy = 0,

is a necessary condition for instability. This requires that U ′′(y) = 0 in at least one place, and hence
the theorem follows.

Remark 4. By elliptic regularity, if Im c 6= 0, any H1 solution to (2.4) will be C∞.

There are sharper spectral stability conditions [Fjo50], however, to our knowledge, there is still
no known sharp or nearly sharp condition for spectral stability. For example, the Couette flow
u = (y, 0) is linearly stable (as we will see) and so are flows that are nearby in a certain sense (see
below).

As it turns out, the result of Lord Rayleigh unfortunately extends to 3D via a result known
as Squire’s theorem [Squ33]. This theorem shows that if the 3D planar shear flow has unstable
eigenvalues, then so does the 2D problem, and hence if one is looking for eigenvalue instabilities,
then studying 2D is sufficient in the sense that any planar shear flow which is spectrally stable in
2D is also spectrally stable in 3D. See e.g. [Dra02] for a proof (it is not too hard actually, you
could do it as an exercise). I say “unfortunately” because this theorem is horrifically misleading as
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it suggests all interesting aspects of hydrodynamic stability can be found in 2D equations – this is
extremely false. In fact, it can be shown2 that pretty much every non-trivial shear flow is unstable
in the sense of Lyapunov for the linearized 3D Euler equations in (x, y, z) ∈ T× R2!

Theorem 2.2 (Squire’s theorem [Squ33]). Consider the 3D linearized Euler equations near a planar
shear flow (U(y), 0, 0) between parallel plates [−1, 1]. If there is a 3D unstable mode, then there is a
2D unstable mode with a faster or equally as fast growth rate. As a consequence, any planar shear
flow which is spectrally stable in the linear 2D Euler equations is spectrally stable also in the linear
3D Euler equations.

The method of normal modes sheds light on many classical problems in hydrodynamic stability
(and many other questions in hundreds of other fields), such as understanding the Rayleigh-Benard
convection cells, the Kelvin-Helmholtz instability, the Rayleigh-Taylor instability, the instability
of jets, and more; see e.g. [DR81, Dra02]. Unfortunately (its quite fortunate in another sense)
there are two major shortcomings of this method for hydrodynamic stability at high Reynolds
number: (A) the linearized inviscid problems usually do not have a purely discrete spectrum and so
looking for eigenfunctions is not sufficient3 and (B) the linearized problems are usually not normal
operators and so knowing the spectrum is usually not sufficient. Recall a linear operator is normal
if AA? = A?A in a suitable sense (let us not dwell on the finer points of spectral and unbounded
operator theory here). It is precisely this class of operators such that nice versions of the spectral
mapping theorems hold. Recall, spectral mapping theorems roughly tell you that if you know the
spectrum of A (and you have several technical conditions satisfied) then you not only know the
spectrum of etA but you also know the norm of this semigroup (see e.g. [EN00] for more precise
details). This is not true of non-normal operators: if A is not normal, than the norm of etA can vary
wildly from what its spectrum suggests [TE05]. The simplest example is the ODE (which actually
is pretty relevant to hydrodynamic stability as we will see):

∂tX =

(
−ε 1
0 −ε

)
.

The eigenvalues of the matrix are −ε < 0, hence if the operator were normal, the solutions would
be decaying and the operator norm of etA would be uniformly bounded in ε. However, instead we
have ‖X(t)‖ ≈ ‖X0‖ 〈t〉e−εt . ε−1 ‖X0‖, which shows that solutions can undergo a large transient
growth before eventually decaying. It was Orr [Orr07] who, to our knowledge, first pointed out
the potentially pivotal importance of non-normal transient growth in fluid mechanics. We will see
several examples of linear (and nonlinear) problems in fluid mechanics which can undergo a large
transient growth like the above.

3 Arnold’s nonlinear stability theorem for shear flows in a channel

Due to the non-normal nature of the linearizations, one can worry that nonlinear stability at high
or infinite Reynolds number can be hard to come by. This is because transient linear growth could
carry small perturbations out of the linear regime and into the fully nonlinear regime, triggering
a secondary instability, as first suggested by Orr [Orr07] (we will return to this idea later, which
is by now classical in applied fluid mechanics, see e.g. [TTRD93, RSBH98, SH01, TE05, Yag12]).

2See future lectures, or do it as an exercise by taking x averages of the 3D analogue of (2.1) and considering the
PDE that is left over.

3The viscous problem may have a discrete spectrum (depending on the boundary conditions or functions spaces)
however in the inviscid limit it will develop a continuous spectrum.
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However, there is a beautiful and classical result of Arnold [Arn65] which uses a variational method
to provide a simple proof of Lyapunov stability (in the H1 norm of u) for a class of 2D shear flows
in the nonlinear Euler equations. The basic ideas also generalize to many other situations, see e.g.
the review by [HMRW85] and the references therein.

To make life simple, let us explain the idea of Arnold in the channel (x, y) ∈ T× [−1, 1] with no-
penetration boundaries on the top and bottom edges; much more generality is possible [HMRW85].
Notice that this domain is not simply connected which means we have to be a bit careful about the
vorticity-streamfunction formulation of the equations.

3.0.1 Conservation laws and vorticity-streamfunction formulation in the channel T×
[−1, 1]

We consider smooth solutions to the 2D Euler equations

∂tu+ u · ∇u = −∇p (3.1a)

∇ · u = 0 (3.1b)

u · n|y=±1 = u2|y=±1 = 0. (3.1c)

The 2D incompressible Euler equations can be thought of formally as a Hamiltonian system for
the kinetic energy if interpreted correctly (also due to Arnold originally [Arn66]). Recall that the
energy is

E[u] =
1

2

∫
|u|2 dx.

Since we are in 2D, for any smooth function Φ, the associated Casimir,

CΦ[ω] =

∫
Φ(ω)dx

is conserved, where ω = ∂xu2−∂yu1 is the (scalar) vorticity. These Casimirs provide a useful infinite
set of conservation laws, which is one of the reasons that the 2D Euler equations are very different
than the 3D Euler equations.

Next, due to the Kelvin circulation theorem, the circulation around every connected component
of the boundary is constant. That is,

Γi =

∫
∂Di

u(t) · ds =

∫
∂Di

u(0) · ds.

This is a general fact, in this case, it applies to the lines y = ±1. Due to the shape of the domain
(in particular, the translation invariance in x), the total x momentum is still conserved. That is,

Mx =

∫ 1

−1

∫
u1(t, x, y)dxdy =

∫ 1

−1

∫
u1(0, x, y)dxdy.

Before continuing, let us briefly discuss the vorticity stream-function formulation in the domain
T× [−1, 1]. Let (0, 0, ω) = ∇×u be the scalar vorticity. Next, consider looking for a streamfunction
ψ which satisfies ∆ψ = ω and u = ∇⊥ψ. In general, we know that since u · n|∂Di = ∇⊥ψ · n|∂Di =
∇ψ · τ |∂Di , ψ is constant on each connected component of the boundary. The streamfunction is
determined only up to a constant, but since there are two disconnected pieces of the boundary, the
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difference between the constants associated with each boundary is not determined. In this case it
is easy to see what the difference is. Consider taking x averages of u1:

u1(t, x, y) = −∂yψ(t, x, y)

〈u1〉x(t, y) = −∂y〈ψ〉x(t, y).

Integrating this in y gives

1

2π
Mx =

1

2π

∫
u1(t, x, y)dxdy = 〈ψ〉x(t,−1)− 〈ψ〉x(t, 1).

The LHS is a fixed number in time (the mean flow across the torus) and so the difference between
the value of the streamfunction at the top and bottom is this constant. Without loss of generality
we may as well take

〈ψ〉x(t,−1) = 0

〈ψ〉x(t, 1) = − 1

2π
Mx.

Hence, to find the streamfunction given the vorticity, we can solve the Dirichlet problem

∆ψ = ω

ψ(x,−1) = 0

ψ(x, 1) = − 1

2π
Mx.

Finally, let us note that when viewed in terms of the vorticity and streamfunction, (ω, ψ) the
energy becomes

E[ω] =
1

2

∫ ∣∣∣∇⊥ψ∣∣∣2 dx
=

1

2

∫
|∇ψ|2 dx

=
1

2

∑
i

∫
∂Di

ψ∇ψ · nds− 1

2

∫
ψωdx.

Note that because ψ is constant along the boundaries, this becomes

E[ω] =
1

2

∑
i

ψ|∂Di
∫
∂Di

u · ds− 1

2

∫
ψωdx.

Hence, −1
2

∫
ψωdx is conserved, since the energy, the circulations at the top and bottom, and the

value of ψ|∂Di are all individually conserved.

3.0.2 Variational stability

The general scheme of Arnold is to find suitable Φ and ai such that the equilibrium, ωE , is a critical
point of the conserved energy functional

HC [ω] =
1

2

∫
|u|2 dx+

∫
Φ(ω)dx+

∑
∂Di

aiΓi
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and that HC is locally convex and suitably coercive with respect to the L2 norms of the velocity
and vorticity in a neighborhood of the critical point. Recall, coercive with respect to a norm means
that control on the energy functional controls the norm; see below.

First let us compute the first variation of HC at ωE due to perturbations ω, ψ. The perturbations
are assumed to preserve the mean flow rate, and therefore ψ(x,−1) = ψ(x, 1) = 0. Computing the
first variation and integrating by parts (using uE = ∇⊥ψE and u = ∇⊥ψ) gives

DHC [ωE ]ω =

∫
uE · udx+

∫
Φ′(ωE)ωdx+

∑
∂Di

ai

∫
∂Di

u · ds

=

∫
∇⊥ψE · ∇⊥ψdx+

∫
Φ′(ωE)ωdx+

∑
∂Di

ai

∫
∂Di

u · ds

=

∫
∇ψE · ∇ψdx+

∫
Φ′(ωE)ωdx+

∑
∂Di

ai

∫
∂Di

u · ds

=

∫
ψE∇ψ · nds−

∫
ψEωdx+

∫
Φ′(ωE)ωdx+

∑
∂Di

ai

∫
∂Di

u · ds

= −
∫
ψEωdx+

∫
Φ′(ωE)ωdx+

∑
∂Di

(ai − ψE |∂Di)
∫
∂Di

u · ds.

In the last line we used that ∇ψ ·n = u ·τ and that ψE |∂Di is constant along the boundaries. Hence,
ωE will be a critical point of HC as soon as

ψE = Φ′(ωE), (3.2a)

ai = ψE |∂Di . (3.2b)

Suppose that we have a functional relationship ψE = Ψ(ωE). In this case, it suffices to have

Ψ(ωE) = Φ′(ωE),

and hence we can then take, for some constant λ,

Φ(t) =

∫ t

0
Ψ(τ)dτ + λ.

We see that the equilibrium determines Φ; now it suffices to see what kind of equillibria are such
that HC is convex near ωE . Let ωE(x) + ω(t, x) solve the full nonlinear 2D Euler equations in the
periodic strip. Consider now the conserved functional (the first term is conserved, last term is zero
by construction, and the second to last term is a constant in time):

F [ω] = HC [ω + ωE ]−HC [ωE ]−DHC [ωE ]ω.

Computing this out gives

F [ω] =

∫
1

2
|u|2 dx+

∫
Φ(ωE + ω)− Φ(ωE)− Φ′(ωE)ωdx.

If there exists a constant δ > 0 such that Φ′′ ≥ δ, then Φ is uniformly convex and therefore∫
Φ(ωE + ω)− Φ(ωE)− Φ′(ωE)ωdx ≥ δ

2

∫
|ω|2 dx.
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In this case we have

F [ω(0)] = F [ω(t)] ≥ 1

2
‖u(t)‖2L2 +

δ

2
‖ω(t)‖2L2 .

This means that the kinetic energy and the enstrophy of the perturbation are uniformly bounded.
If there is a constant C > 0 such that Φ′′ ≤ C then we also get

F [ω(0)] ≤ 1

2
‖u(0)‖2L2 +

C

2
‖ω(0)‖2L2 ,

which will imply the desired global nonlinear stability in L2 of the velocity and vorticity (sometimes
called the “energy norm” and “enstrophy norm”). Due to the divergence free condition, this is
equivalent to the H1 norm on the velocity.

The general procedure can be extended to some more general domains and other equillibria
which satisfy some kind of functional relationship ψE = Ψ(ωE) for some Ψ, however, let us continue
to just think about what this means for shear flows. In the case of a shear flow uE = (U(y), 0),

ωE(y) = −U ′(y)

U(y) = −∂yψ(y).

Therefore, taking y derivatives of (3.2a) gives

−U(y) = −Φ′′(ωE(y))U ′′(y),

or

U(y)

U ′′(y)
= Φ′′(ωE(y)).

Putting everything together, we have proved the following beautiful theorem.

Theorem 3.1 (Arnold’s nonlinear stability). Let uE = (U(y), 0) be a shear flow on T× [−1, 1] such
that U is smooth and such that there is some smooth function Ψ : R → R such that ψE = Ψ(ωE)
(where ωE = −U ′ is the vorticity). Suppose (up to Galilean invariance) that there exists constants
∞ > C > δ > 0 which satisfy

C >
U(y)

U ′′(y)
≥ δ.

Then the equilibrium uE is globally nonlinearly stable for the 2D incompressible Euler equations in
the energy and enstrophy norms if we restrict to perturbations which conserve Mx the mean zero
momentum. That is, if u + uE solves the 2D Euler equations in T × [−1, 1] and ω = ∂xu2 − ∂yu1

and satisfies
∫
T×R u1dx = 0, then there holds uniformly forward and backward in time (note that it

is u+ uE which solves the 2D Euler equations):

‖u(t)‖2L2 + ‖ω(t)‖2L2 .
C

δ

(
‖u(0)‖2L2 + ‖ω(0)‖2L2

)
. (3.3)

Remark 5. Due to the divergence free condition, (3.3) is equivalent to

‖u(t)‖H1 .
C

δ
‖u(0)‖H1 .

11



Remark 6. The above theorem proves, for example, that the equilibrium U(y) = 2 + y2 is nonlin-
early stable in energy and enstrophy norms in the 2D Euler equations.

Remark 7. We will see later that it would be unreasonable to expect L2 stability at the level of
the velocity only, that is, we will NOT be seeing any inequalities of the kind:

‖u(t)‖2L2 . ‖u(0)‖2L2 .

It will also be clear later that it is unreasonable to expect any kind of Hs stability for s > 1, that
is, we will NOT be seeing any inequalities of the following kind for s > 1:

‖u(t)‖2Hs . ‖u(0)‖2Hs .

In this sense, the choice of H1 in Arnold’s theorem is very natural and was dictated purely by the
variational structure of the equations.

Just to recap: the basic idea is to take advantage of the large numbers of conserved quantities
by finding one for which the equilibrium is a local minimizer and satisfies some sort of convexity
property. In some cases this is easier said than done, but in other cases, like the above, its not so bad.
Much more general results are possible, in particular, one can consider more general equillibria and
also more general stability criteria even for shear flows; see [HMRW85] and the references therein.
Moreover, the general idea and variations thereof applies to a very wide variety of applications
throughout plasma physics, atmospheric dynamics, and galaxy dynamics, to name a few.

As a last comment, Theorem 3.1 already tells us a lot, but on the other hand, it doesn’t tell
us about the behavior of higher norms. In this sense it doesn’t settle certain questions about the
actual dynamics of the solution: do solutions oscillate around in periodic or quasi-periodic orbits?
do solutions develop all kinds of crazy small scales rapidly and become increasingly turbulent at the
small scales? Do solutions settle back to shear flows in one way or another? The question of the
long-time dynamics is in general very poorly understood – and here we do not mean we just cannot
prove things, it is poorly understood even in the way physicists mean “understand”. Naturally, it
is this question we will be focusing on for the remainder of the course.

12



4 Mixing and dissipation in passive scalar flows at high Péclet
number

Previously, we were mainly concerned with deducing spectral stability or nonlinear stability for
planar shear flows. However, we neglected entirely the question of what the actual dynamics look
like, which are far more interesting than the previous discussion makes it sound. One of the main
dynamics we neglected to discuss was mixing. Here we will begin the discussion of these kinds of
dynamics by first focusing on passive scalar flows, rather than the linearized fluid equations.

The mixing and dissipation of passive scalars in a given incompressible velocity field is given by
the linear equation

∂tf + u · ∇f = κ∆f (4.1a)

f(0) = fin. (4.1b)

for a scalar f , a given velocity field u(t, x) with ∇ · u = 0 and a diffusivity κ > 0. In these lectures
we will not be concerned with regularity and well-posedness issues (not in the traditional sense
anyway) so it will suffice to assume u ∈ C∞t,x and fin ∈ C∞t,x.

The advection diffusion equation is a classical and very important problem of practical and
theoretical interest and certainly deserves to be studied in its own right. The hope is then that
understanding certain aspects of this problem will also tell us something about hydrodynamic
stability.

To non-dimensionalize we can replace (since the equation is linear we don’t really need to rescale
f)

f?(t, x) = f

(
t

LU−1
,
x

L

)
u?(t, x) =

1

U
u

(
t

LU−1
,
x

L

)
and we have

∂tf
? + u? · ∇f? =

κ

LU
∆f.

The dimensionless number in front of the ∆ is called the (inverse) Péclet number,

Pe =
UL

κ
.

It is a ratio of the time-scale of advective transport to the diffusive transport.

4.1 Passive scalar in Couette flow

Let us begin with the simplest of all examples: the planar Couette flow (dropping the ?’s and using
κ = Pe−1 as the inverse Peclet number)

∂tf + y∂xf = κ∆f (4.2a)

f(0) = fin. (4.2b)

We will take periodic boundary conditions in x and infinite in y, so we have our problem on a
cylinder (x, y) ∈ T× R (we could also consider in 3D or higher but nothing is different for passive
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scalars). The problem (4.2) was first solved by Lord Kelvin in 1887 [Kel87]. First, let us consider
the case κ = 0. In this case, the solution is just

f(t, x, y) = fin(x− ty, y).

Taking the Fourier transform gives the following:

f̂(t, k, η) =
1

2π

∫
e−ikx−iηyfin(x− ty, y)dxdy

=
1

2π

∫
e−ikx−ikty−iηyfin(x, y)dxdy

= f̂in(k, η + kt).

For each k this is a linear-in-time transfer of information to high frequencies. This implies the lack
of compactness in L2 and the weak convergence back to equilibrium:

Exercise 4.1. For fin ∈ L2, prove that if f solves (4.2) with f(0) = fin, then f(t) ⇀ 〈fin〉x in
L2. Show that this convergence is only strong if f(t) = 〈fin〉x for all t. Similarly, prove that if
fin 6= 〈fin〉x and fin ∈ Hn, then ‖f(t)‖Hn ≈ 〈t〉n ‖fin‖Hn (we are denoting 〈t〉 = (1 + |t|2)1/2).

The phenomenon of weak convergence despite the fact that we are on a compact set (sort of)
is usually called mixing. Draw a picture or two of the Couette flow evolution to convince yourself
that the linear evolution is not so dissimilar from some of the fundamental processes that take place
when you stir milk into coffee.

Notice that the behavior in Exercise 4.1 is not possible in finite dimensional Hamiltonian systems.
For the rest of the lectures, we will denote

|k, η| = |k|+ |η|
〈k, η〉 = (1 + |k, η|2)1/2.

We get the decay in negative Sobolev norms, at a price. For all s ≥ 0,

‖f − 〈f〉x‖H−s .
∑
k 6=0

∫
1

〈k, η〉2s
∣∣∣f̂in(k, η + kt)

∣∣∣2 dη
.
∑
k 6=0

∫
1

〈k, η〉2s〈η + kt〉2s
∣∣∣〈η + kt〉2sf̂in(k, η + kt)

∣∣∣2 dη
.

1

〈t〉s
‖fin − 〈fin〉x‖Hs .

One can view this as a more quantitative estimate on the weak convergence. We will re-visit the
loss of regularity in this formula at length later. Notice that if we take the Fourier transform of
∂tf + y∂xf = 0 we get

∂tf̂ − k∂ηf̂ = 0,

which is still a shear flow. This is an important point: mixing in Couette flow is transport to infinity
in frequency.

Consider now the diffusive case, for κ > 0

∂tf + y∂xf = κ∆f.

14



In this case, Lord Kelvin, in [Kel87], defined the variables X = x−ty and g(t,X, y) = f(t,X+ty, y),
which then solves

∂tg = κ∆Lg

∆L = ∂XX + (∂y − t∂X)2.

The ‘L’ stands for ‘linear’ for reasons which will make more sense later. Taking the Fourier transform
and then integrating gives

∂tĝ = −κ
(
k2 + |η − kt|2

)
ĝ,

and

ĝ(t, k, η) = f̂in(k, η) exp

[
−κ
∫ t

0

(
k2 + |η − kτ |2

)
dτ

]
. (4.3)

Notice that we have the following bound∫ t

0
|η − kτ |2 dτ & min(|η|2 t, k2t3).

To see this, consider separately contributions to the integral from τ ≤ η
2k and τ ≥ 2ηk . From (4.3),

this shows that we get the following enhanced dissipation estimate for some c (which happens to be
< 1/3),

‖g6=‖L2 . ‖gin‖L2 e
−cνt3

The key point to the decay is the relationship between ν and t. The characteristic time-scale when
the dissipation begins to dominate is τED ∼ ν−1/3, which is significantly faster than the ν−1 time-
scale associated with the heat equation. The Couette flow is sending information to high frequencies
linearly in time, and this is where the 3 comes from (order of the Laplacian in the damping plus one
from the integral). One can imagine this relaxation mechanism like the way a cup of coffee relaxes
after you stir it up into a vortex. First, the angular dependence is eliminated as the fluid stirring
itself mixes information to high frequencies where it is rapidly dissipated, like the relaxation of
k 6= 0 modes. Over a longer time scale the (approximately) radially symmetric mean vortex relaxes
in place as a laminar flow.

4.2 More general shear flows

The Couette flow is so easy we might get the impression that more general problems will continue
to be super easy. This is not correct, and surprisingly little is known in mathematical rigor about
more general flows (which is not to say that nothing is known or that there exists no good work on
this – that is far from the truth, see e.g. [CKRZ, BW13, GGN09, Den13, BCZGH15, Zil14a, Zil14b]
to name a small subset of related works, however our knowledge is still quite limited relative to
what might be desired).

Following how we approached the Couette flow, the first goal is to consider the inviscid problem
and study the transfer of information to high frequencies. Getting enhanced dissipation rates is
in general harder, though see [CKRZ, BW13] for some information on this. Let us first try with
a humble goal of considering more general shear flows than Couette; in this case results are not
difficult.
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We will prove the following two basic theorems, the proof is in a style similar to some found
in [Zil14a] combined with some ideas from the method of stationary phase for classical oscillatory
integrals [Ste93]. I will state a version on T × R and a version on T2, but it admits suitable
generalizations to more general tori, channels bounded by walls with no flux boundaries, and higher
dimensions.

Theorem 4.1 (Mixing by shear flows in T× R). Let U(y) ∈ C∞ and let f solve the PDE

∂tf + U(y)∂xf = 0.

Then

(i) If there is some δ > 0 such that |U ′(y)| ≥ δ for all y, then

‖f(t)− 〈f〉x‖H−1 . 〈t〉−1 ‖f(0)‖L2
xH

1
y
. (4.4)

(ii) If there is some δ > 0 such that |U ′′(y)| ≥ δ for all y, then

‖f(t)− 〈f〉x‖H−1 . 〈t〉−1/2 ‖f(0)‖L2
xH

1
y
. (4.5)

(iii) More generally, suppose there is some R and δ such that |U ′(y)| ≥ δ for all |y| ≥ R and
further that there are finitely many points yi, 1 ≤ i ≤ K, such that U ′(yi) = 0 and finitely
many inflection points where U ′′(ỹi) = 0. Further suppose that U ′ degenerates only to finite
order: that is, there is a finite n ∈ N which is the minimal integer such that U (n)(yi) 6= 0 for
all yi (the critical points of the flow). Then,

‖f(t)− 〈f〉x‖H−1 . 〈t〉−1/n ‖f(0)‖L2
xH

1
y
. (4.6)

Remark 8. Items (i) and (ii) are special cases of item (iii), however, the statements are less technical
and the proofs can be made much more direct in the cases of (i) and (ii).

This theorem has the following analogue on T2, which we only state in the general case now.

Theorem 4.2 (Mixing by shear flows in T2). Let U(y) be C∞ with finitely many points yi, 1 ≤
i ≤ K, such that U ′(yi) = 0 and finitely many inflection points where U ′′(ỹi) = 0. Suppose that U ′

degenerates only to finite order: that is, there is a finite n ∈ N which is the minimal integer such
that U (n)(yi) 6= 0 for all yi (the critical points of the flow); necessarily n ≥ 2. Let f solve the PDE

∂tf + U(y)∂xf = 0.

Then, we have the decay rate:

‖f(t)− 〈f〉x‖H−1 . 〈t〉−1/n ‖f(0)‖L2
xH

1
y
. (4.7)

Remark 9. Notice the loss of regularity in (4.7). From the example of the Couette flow, we can
surmise that this is necessary to deduce the pointwise-in-time decay estimate.

Remark 10. The proof will show that one can be a tiny bit more precise about exactly the norm
that appears on the RHS of (4.7).
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Proof. We may assume without loss of generality 〈f〉x = 0 and t ≥ 1. First observe that

‖f‖H−1 = sup
φ∈H1:‖φ‖H1=1;φ

∫
fφdA.

Let φ be such an arbitrary test function. Fourier transform in x only, denoting this as f̂k(t, y), we
get ∣∣∣∣∫ fφdA

∣∣∣∣ =

∣∣∣∣∣∑
k

∫
f̂k(0, y)eikU(y)tφ̂k(y)dy

∣∣∣∣∣
≤
∑
k

∣∣∣∣∫ f̂k(0, y)eikU(y)tφ̂k(y)dy

∣∣∣∣ .
The result will follow by the method of stationary phase (see e.g. [Ste93]). Indeed, let χε(y) be a
smooth cutoff function supported in ε intervals around the critical points yi. Then consider the two
contributions separately:∣∣∣∣∫ f̂k(0, y)eikU(y)tφ̂k(y)dy

∣∣∣∣ ≤ ∣∣∣∣∫ (1− χε(y)) f̂k(0, y)eikU(y)tφ̂k(y)dy

∣∣∣∣+

∣∣∣∣∫ χε(y)f̂k(0, y)eikU(y)tφ̂k(y)dy

∣∣∣∣
= T1 + T2.

On T2, the phase ikU(y) is stationary so we cannot use any integration by parts. However, we can
employ (together with the H1(R) ↪→ L∞(R) embedding):

T2 . ‖χε‖L1

∑
k

‖fk‖L∞y ‖φ−k‖L∞y . ε ‖f‖L2
xH

1
y
.

For T1 we have to be a little more precise. On T1 we may employ 1
ikU ′(y)t

d
dye

ikU(y)t = eikU(y)t and
integrate by parts to deduce

T1 .
1

〈t〉
sup
y

1|y−yi|>ε

|U ′(y)|
∑
k

1

|k|

(∥∥∥f̂k∥∥∥
L2
y

‖∇φ−k‖L2
y

+
∥∥∥∇f̂k∥∥∥

L2
y

‖φ−k‖L2
y

)
+
∑
k 6=0

1

t |k|

∣∣∣∣∫ eikU(y)t 1

U ′(y)
∂yχε(y)f̂(k, y)φ̂(k, y)dy

∣∣∣∣
+

1

t |k|

∣∣∣∣∫ eikU(y)t

(
d

dy

1

U ′(y)

)
(1− χε(y))f̂(k, y)φ̂(k, y)dy

∣∣∣∣
= T10 + T11 + T12.

The treatment of T11 is straightforward

T11 .
1

〈t〉
sup
y

1|y−yi|>ε

|U ′(y)|
∑
k 6=0

‖∂yχε‖L1

∥∥∥f̂k∥∥∥
H1

∥∥∥φ̂k∥∥∥
H1
.

.
1

〈t〉
sup
y

1|y−yi|>ε

|U ′(y)|

∥∥∥f̂k∥∥∥
L2H1

∥∥∥φ̂k∥∥∥
L2H1

.

By non-degeneracy (and Taylor’s theorem) we get

sup
y

|1− χε(y)|
|U ′(y)|

≈ sup
y

1|y−yi|>ε

|U ′(y)|
. ε−n+1.
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For T12 we have to be a bit more precise due to the derivative of the nearly singular (U ′)−1. Let
χ̃ε(y) be a smooth cutoff supported in εn−1 intervals around the inflection points. Then we further
divide

T12 ≤
1

〈t〉

∣∣∣∣∫ (1− χε(y)) (1− χ̃ε(y))

(
d

dy

1

U ′(y)

)
f̂k(0, y)eikU(y)tφ̂k(y)dy

∣∣∣∣
+

1

〈t〉

∣∣∣∣∫ (1− χε(y)) χ̃ε(y)

(
d

dy

1

U ′(y)

)
f̂k(0, y)eikU(y)tφ̂k(y)dy

∣∣∣∣
= T121 + T122.

For T121 we note that the U ′ is monotone on each disjoint interval where the integral is supported
(call these intervals Ji, 1 ≤ i ≤ N) and U ′ is bounded below by |U ′| & ε1−n on the support of the
integrand. Therefore (using again the embedding H1(R) ↪→ L∞(R)),

T121 .
1

〈t〉
‖f‖L2L∞ ‖φ‖L2L∞

N∑
i=1

∫
Ji

∣∣∣∣ ddy 1

U ′(y)

∣∣∣∣ dy
=

1

〈t〉
‖f‖L2H1 ‖φ‖L2H1

N∑
i=1

∣∣∣∣∫
Ji

d

dy

1

U ′(y)
dy

∣∣∣∣
≤ 2N

〈t〉
‖f‖L2H1 ‖φ‖L2H1 sup

y∈Ji

1

|U ′(y)|

.
1

〈t〉εn−1
‖f‖L2H1 ‖φ‖L2H1 .

For T122 we use instead that |χ̃εU ′′| . εn−1 because U is smooth. From this we have

T122 .
1

〈t〉

∣∣∣∣∫ (1− χε(y)) χ̃ε(y)

(
U ′′(y)

(U ′(y))2

)
f̂k(0, y)eikU(y)tφ̂k(y)dy

∣∣∣∣
.

1

〈t〉
∥∥χ̃εU ′′∥∥L∞y ε2−2n ‖f‖L2H1 ‖φ‖L2H1

.
1

〈t〉
ε1−n ‖f‖L2H1 ‖φ‖L2H1 .

Putting everything together we get

‖f(t)‖H−1 . T1 + T2 .

(
ε+

1

〈t〉εn−1

)
‖f(0)‖L2H1 .

Hence, we can choose the optimal ε,

ε ≈ 〈t〉−
1
n .

and deduce

‖f(t)‖H−1 . 〈t〉−
1
n ‖f(0)‖L2

xH
1
y
,

which completes the proof.

18



5 Linearized 2D Euler and Navier-Stokes equations revisited

There is one case in which we can understand the entire nonlinear dynamics of Navier-Stokes (in
2D and 3D) and Euler (in 2D), at least for very smooth solutions, near a shear flow. This shear
flow is the Couette flow (y, 0) (or (y, 0, 0) in 3D of course) with (x, y) ∈ T × R or (x, y, z) ∈
T×R× T. The first work was 2D Euler [BM13], then 2D Navier-Stokes [BMV14] then 3D Navier-
Stokes [BGM15a, BGM15b] (in both chronological and complexity ordering). The flow is quite nice
and canonical but is also by far the easiest at the linear level and it is apparent that in order to
understand the nonlinear problem, we will need an extremely precise understanding of the linear
problem.

Due to the fact that the nonlinearity does not leave the x averages of the vorticity invariant,
in order to understand nonlinear perturbations of Couette, we will need to be able to understand
nearby flows (in some sense). Consider first the linearized 2D Navier-Stokes equations in vorticity
form near an arbitrary shear flow:

∂tω + U(y)∂xω − U ′′∂xψ = ν∆ω

∆ψ = ω.

For the Couette flow, U(y) = y, U ′′ = 0 and so the linearized Navier-Stokes equation reduces back
to the passive scalar equation. However, one thing we did not consider is what happens to ψ (and
hence the velocity). From previous lectures we saw that if we wrote f(t, z, y) = ω(t, z + ty, y) and
φ(t, z, y) = ψ(t, z + ty, y), we derive

∂tf = ν∆Lf

∆Lφ = f

∆L = ∂zz + (∂y − t∂z)2.

By taking Fourier transforms and integrating, we derived (actually Kelvin derived [Kel87]),

f̂(t, k, η) = ω̂in(k, η) exp

[
−ν
∫ t

0
k2 + |η − kτ |2 dτ

]
,

which implies the enhanced dissipation estimate (denoting f6= = f − f0 = f − 1
2π

∫
f(t, x, y)dx):

‖f6=‖Hσ . ‖ωin‖Hσ e
−cνt3 ,

for some 0 < c < 1/3. From the equation for φ we further derive

φ̂(t, k, η) = − f̂(t, k, η)

k2 + |η − kt|2
.

Now we observe something that Orr (basically) observed in 1907 [Orr07]: by using 〈η〉〈η−kt〉 & 〈kt〉,
we get the following for any β ∈ [0, 2],

‖φk 6=0(t)‖Hσ .

∑
k 6=0

∫
〈k, η〉2σ

∣∣∣f̂(t, k, η)
∣∣∣2(

k2 + |η − kt|2
)2dη


1/2

.
1

〈t〉β
‖fk 6=0(t)‖Hσ+β . (5.1)
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This provides a decay of the streamfunction in the new variables (z, y). The crucial point here is
that the decay is independent of Reynolds number. This effect is called inviscid damping4. Now
using that

u1(t, x, y) = −∂yψ(t, x, y) = − ((∂y − t∂x)φ) (t, x− ty, y)

u2(t, x, y) = ∂xψ(t, x, y) = − (∂xφ) (t, x− ty, y),

we derive ∥∥u1
k 6=0(t)

∥∥
L2 + 〈t〉

∥∥u2
k 6=0(t)

∥∥
L2 .

1

〈t〉
‖fin‖H4 .

For the linear equations, we have û1(t, 0, η) = û1 in(0, η) and u2
0(t, x, y) = 0 (the latter due to the

incompressibility) and hence ∥∥∥∥u(t)−
(
u0(0, y)

0

)∥∥∥∥
L2

. 〈t〉−1 ‖fin‖H4 ,

which shows convergence back to a shear flow – back to equilibrium. This is a purely inviscid
stabilization mechanism wherein the shear flow opposes any non-shear flow motion and so returns
back to equillibrium (at least at the linear level).

Although Orr predated Sobolev spaces, Orr understood where the regularity loss in (5.1) comes
from. He pointed out that if one considers modes with η/k ≥ 0, then the streamfunction associated
with these modes first grows, reaches a maximum in amplitude at t = η

k and the decays again.
Orr referred to the time kt = η as the critical time, which is the terminology we will use here, In
particular, the kinetic energy associated with the mode (k, η) is amplified by a factor of ≈ |η/k|.
This mechanism of transient growth then decay is known as the Orr mechanism and has a number
of interesting implications also in atmospheric dynamics [Boy83, Lin88]. Using this general idea
we can prove that the linearized 2D Euler equations in velocity form are Lyapunov unstable with
respect to the L2 norm (despite being spectrally stable).

Theorem 5.1. Consider the linearized 2D Euler equations around Couette flow:

∂tu+ y∂xu+

(
u2

0

)
= −∇p (5.2a)

∇ · u = 0 (5.2b)

u(0) = uin. (5.2c)

These equations are Lyapunov unstable in the L2 norm in the sense that for all ε > 0, there exists
smooth initial data with ‖uin‖L2 < ε such that the resulting solution u(t) to (5.2) satisfies

sup
t∈[0,∞)

‖u(t)‖L2 = 1.

4The name “inviscid damping” seems to have been first adopted by plasma physicists due to its similarity with a
related mechanism in the Vlasov equations of kinetic theory known as Landau damping, discovered later by Landau
[Lan46] (see e.g. [MV11, BMM13] and the references therein). In fact, many people simply refer to both Landau and
inviscid damping as Landau damping, however, we prefer to use a different terminology to emphasize that the two
mechanisms are not totally isomorphic, instead they are different examples of a unifying concept known as “phase
mixing”. See [BM13] and the references therein for more information.
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Proof. Consider the initial vorticity ω̃(x, y) = c0 sinxφ(y) for a smooth, non-trivial, compactly
supported cut-off φ and a constant c0 chosen such that

∥∥∇⊥∆−1ω̃
∥∥
L2 = 1. Define for λ > 0 to be

chosen

ω̃λ(x, y) = c0 sin(x+ λy)φ(y).

By the inviscid damping estimate (5.1) and the arguments that follow, we get∥∥∥∇⊥∆−1ω̃λ

∥∥∥
L2

. λ−1.

Next consider initial data ω(0, x, y) = ω̃λ(x, y) and ∂tω + y∂xω = 0, then

ω(t, x, y) = ω̃λ−t(x, y).

Moreover, note that u(t, x, y) solves the linearized 2D Euler equations. Putting everything together,
we have a solution to the Euler equations with

‖u(0, x, y)‖L2 . λ−1

‖u(λ, x, y)‖L2 = 1.

5.1 More general shear flows

Naturally, one wants to investigate inviscid damping (and enhanced dissipation) for more general
shear flows, beginning of course at the linear level. Recall from previous sections that the vorticity
equation is not a passive scalar equation for flows that are not Couette flow:

∂tω + U(y)∂xω − U ′′∂xψ = 0 (5.3a)

∆ψ = ω. (5.3b)

If the U ′′∂xψ term were absent, we would have a passive scalar equation and we know from Theorem
4.2 that inviscid damping would occur (at least at some rate). The extra term in the linearized
equations may be lower order, but its presence is still problematic since we cannot so easily deduce
the streamfunction is decaying in order to treat it as in the passive scalar case. However, we can
still do something in a neighborhood of flows which look like the Couette flow.

Let me show a relatively simple argument for getting inviscid damping estimates on (5.3). I will
make no attempt to be as accurate or as general as possible; for better and more general results,
see Zillinger [Zil14a] on linear inviscid damping of monotone shear flows which satisfy a smallness
condition on U ′′ (this can be interpreted as a condition requiring the shear be locally close to
the Couette flow). The proof is also a warm-up for the more technically challenging issues in the
nonlinear problem and, in particular, the proof is stylistically closer to some techniques used in
[BM13, BMV14, BGM15a, BGM15b].

Theorem 5.2 (Zillinger [Zil14a]). There exists a universal ε0 > 0 such that if ‖U ′ − 1‖H6 < ε0
then the solution to the linearized 2D Euler equations around the shear flow uE = (U, 0) in T × R
experiences the following inviscid damping for ωin ∈ H3:∥∥u1

k 6=0

∥∥
L2 .

1

〈t〉
‖ωin‖H2∥∥u2

k 6=0

∥∥
L2 .

1

〈t〉2
‖ωin‖H3 .
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Proof. Change of variables

First, it suffices to assume that 1
2π

∫
T ωin(x, y)dx = 0 as the functions which are independent of x

are in the nullspace of the linear operator. Next, we want to reformulate the problem a bit. First,
we want to rewind by the characteristics but we also want to re-scale the y coordinates to make the
shear look more like Couette flow (this will be pivotal later for slightly subtle reasons). That is, we
define

X = x− tU(y) (5.4a)

Y = U(y). (5.4b)

By choosing ε0 small enough, ‖U ′ − 1‖L∞ . ‖U ′ − 1‖H1 < ε0 implies U is strictly monotone and
hence by the implicit function theorem, this coordinate transform is always invertible and we can
always solve for x and y in terms of (X,Y ): x = x(t,X, Y ), y = y(Y ). Now define the new variables

f(t,X, Y ) = ω(t, x(t,X, Y ), y(Y ))

φ(t,X, Y ) = ψ(t, x(t,X, Y ), y(Y )).

We can check now that f and φ satisfy the following, where g(Y ) = U ′(U−1(Y )) and b = U ′′(U−1(Y )),

∂tf = b∂Xφ (5.5a)

∆tφ := ∂2
Xφ+ g(∂Y − t∂X)2φ+ b(∂Y − t∂X)φ = f. (5.5b)

Our goal now is to first get a uniform in time H3 estimate on f , then to (hopefully) be able to prove
this implies inviscid damping on φ, and then transfer this information to inviscid damping on u.

Constant coefficient toy model

Suppose we just wanted to get a simple L2 estimate on f . To do so, we’re not going to use the
L2 norm, instead, we will design a norm which is well-adapted to the Orr mechanism lurking on
the RHS of the f equation. One can also draw parallels with the ghost weight energy method of
Alinhac [Ali01]. Imagine that we had the following equation now for b ∈ R:

∂tf = b∂x∆−1
L f.

First, if b ∈ R one can solve this equation explicitly in Fourier, moreover, there is an energy structure
here that ensures the L2 norm and all Hs norms are conserved exactly (because |∆L|−1/2 is self-
adjoint, which is not going to generally work in the the variable coefficient problem). Let us suppose
we are too dumb to notice this. On the Fourier side, suppose we take absolute values, then we get

∂t

∣∣∣f̂ ∣∣∣ (t, k, η) ≤ |b| |k|
|k|2 + |η − kt|2

∣∣∣f̂ ∣∣∣ (t, k, η)

≤ |b|
1 +

∣∣η
k − t

∣∣2 ∣∣∣f̂ ∣∣∣ (t, k, η) (5.6)

By the comparison for ODEs, if |b| ≤ 1 (its clear this is not a requirement we really “need” here
but it will be important for the general problem below) we can deduce the following: if w(t, k, η)
such that w(t, 0, η) = 1 and for k 6= 0 we have

∂tw(t, k, η) =
1

1 +
∣∣η
k − t

∣∣2w(t, k, η)
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then ∣∣∣f̂ ∣∣∣ (t, k, η)

w(t, k, η)
≤
∣∣∣f̂ ∣∣∣ (0, k, η).

Note that 1 . w−1 ≤ 1. Now the idea is to use w(t, k, η)−1 as a Fourier multiplier, and we
immediately deduce

‖f(t)‖Hs .

∥∥∥∥ 1

w(t,∇)
f(t)

∥∥∥∥
Hs

≤ ‖fin‖Hs .

Variable coefficient estimates

Now we turn to the full PDE and begin an Hs energy estimate using w−1 as a Fourier multiplier:

1

2

d

dt

∥∥w−1(t,∇)f
∥∥2

Hs = −
∑∫

∂tw

w3
〈k, η〉2s

∣∣∣f̂ ∣∣∣2 dη +
(
w−1f, w−1(b∂xφ)

)
Hs

= CKw + L. (5.7)

The CKw stands for “Cauchy-Kovalevskaya” because this trick of weakening the norm to introduce
negative terms goes all the way back there (though in analytic regularity). Note that the CKw term
is written as (we are using that w and ∂tw are both strictly positive)

CKw = −

∥∥∥∥∥
√
∂tw

w

1

w
f

∥∥∥∥∥
2

Hs

.

For the term L, our goal is to eventually deduce:

L . ‖b‖Hσ

∥∥∥∥∥
√
∂tw

w
f

∥∥∥∥∥
2

Hs

,

from which the result will follow if b is small since we can absorb the entire contribution with the
CKw term. The approach hinges on being able to approximate ∆tφ with ∆Lφ in a rather specific
manner. We will use the following three basic inequalities

〈k, η〉s .s 〈η − ξ〉s + 〈k, ξ〉s (5.8a)

w(t, k, η) ≈ w(t, k, ξ) (5.8b)

∂tw

w
(t, k, η) =

1

1 +
∣∣η
k − t

∣∣2 .
〈η − ξ〉2

1 +
∣∣∣ ξk − t∣∣∣2 ≈ 〈η − ξ〉

2∂tw

w
(t, k, ξ). (5.8c)

Armed with these observations, we note

L .
∑∫

η,ξ

〈k, η〉s

w(t, k, η)

∣∣∣f̂(t, k, η)
∣∣∣ 〈k, η〉s |k|
w(t, k, η)

∣∣∣b̂(η − ξ)∣∣∣ ∣∣∣φ̂(t, k, ξ)
∣∣∣ dξdη

.
∑∫

η,ξ

〈k, η〉s

w(t, k, η)

∣∣∣f̂(t, k, η)
∣∣∣ ∣∣∣〈η − ξ〉sb̂(η − ξ)∣∣∣ |k|

|k|2 + |ξ − tk|2
〈k, ξ〉s

w(t, k, ξ)

∣∣∣∆̂Lφ(t, k, ξ)
∣∣∣ dξdη.
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Note that what we did here in the second line was to multiply and divide by ∆L. Now, we use a
few more of the above inequalities:

L .
∑∫

η,ξ

〈k, η〉s

w(t, k, η)

∣∣∣f̂(t, k, η)
∣∣∣ ∣∣∣〈η − ξ〉sb̂(η − ξ)∣∣∣ 1

1 +
∣∣∣ ξk − t∣∣∣2

〈k, ξ〉s

w(t, k, ξ)

∣∣∣∆̂Lφ(t, k, ξ)
∣∣∣ dξdη

.
∑∫

η,ξ

√
∂tw

w

〈k, η〉s

w(t, k, η)

∣∣∣f̂(t, k, η)
∣∣∣ ∣∣∣〈η − ξ〉s+1b̂(η − ξ)

∣∣∣√∂tw

w

〈k, ξ〉s

w(t, k, ξ)

∣∣∣∆̂Lφ(t, k, ξ)
∣∣∣ dξdη

.
∥∥∥〈η〉s+1b̂(η)

∥∥∥
L1
η

∥∥∥∥∥
√
∂tw

w
w−1f

∥∥∥∥∥
Hs

∥∥∥∥∥
√
∂tw

w

1

w
∆Lφ

∥∥∥∥∥
Hs

. ‖b‖Hs+3

∥∥∥∥∥
√
∂tw

w
w−1f

∥∥∥∥∥
Hs

∥∥∥∥∥
√
∂tw

w

1

w
∆Lφ

∥∥∥∥∥
Hs

. (5.9)

where in the second to last line we used Cauchy-Schwarz and then Young’s convolution inequality
in frequency. At this point we would be done if ∆L = ∆t and b is sufficiently small. However, this
is not true. Instead, we need another lemma:

Lemma 1. For ‖1− g‖Hs+3 + ‖b‖Hs+3 sufficiently small, there holds∥∥∥∥∥
√
∂tw

w

1

w
∆Lφ

∥∥∥∥∥
Hs

.

∥∥∥∥∥
√
∂tw

w

1

w
f

∥∥∥∥∥
Hs

.

Proof. The main key insight is the first step:

∆Lφ = f + (1− g)(∂Y − t∂X)2φ− b(∂Y − t∂X)φ.

Next, we will mostly just use (5.8) in a very similar manner to our estimates on L above. Indeed,∥∥∥∥∥
√
∂tw

w

1

w
∆Lφ

∥∥∥∥∥
Hs

.

∥∥∥∥∥
√
∂tw

w

1

w
f

∥∥∥∥∥
Hs

+

∥∥∥∥∥
√
∂tw

w

1

w

(
(1− g)(∂Y − t∂X)2φ

)∥∥∥∥∥
Hs

+

∥∥∥∥∥
√
∂tw

w

1

w
(b(∂Y − t∂X)φ)

∥∥∥∥∥
Hs

:=

∥∥∥∥∥
√
∂tw

w

1

w
f

∥∥∥∥∥
Hs

+ E1 + E2.

Let us just consider E1, E2 is similar. Using (5.8) again we deduce,

E1 ≈

∥∥∥∥∥
∫
ξ

√
∂tw

w
(k, η)

〈k, η〉s

w(t, k, η)

(
(1− ĝ)(η − ξ)(ξ − tk)2φ̂(k, ξ)

)
dξ

∥∥∥∥∥
L2
k,η

.

∥∥∥∥∥
∫
ξ
〈η − ξ〉s+1(1− ĝ)(η − ξ)(ξ − tk)2

√
∂tw

w

〈k, ξ〉s

w(t, k, ξ)
φ̂(k, ξ)dξ

∥∥∥∥∥
L2
k,η

.

Using Young’s convolution inequality we then get

E1 .
∥∥〈η〉s+1(1− ĝ)(η)

∥∥
L1
η

∥∥∥∥∥
√
∂tw

w

1

w
∆Lφ

∥∥∥∥∥
Hs

. ‖1− g‖Hs+3

∥∥∥∥∥
√
∂tw

w

1

w
∆Lφ

∥∥∥∥∥
Hs

.
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For E2 we get a similar estimate. Therefore,∥∥∥∥∥
√
∂tw

w

1

w
∆Lφ

∥∥∥∥∥
Hs

.

∥∥∥∥∥
√
∂tw

w

1

w
f

∥∥∥∥∥
Hs

+ ‖1− g‖Hs+3

∥∥∥∥∥
√
∂tw

w

1

w
∆Lφ

∥∥∥∥∥
Hs

+ ‖b‖Hs+3

∥∥∥∥∥
√
∂tw

w

1

w
∆Lφ

∥∥∥∥∥
Hs

.

Since the linear equations are globally well-posed in H3 on the vorticity, we know that the norms
in question are all a priori finite. This allows us to move terms to the LHS and divide, giving us
(for some C > 0):∥∥∥∥∥

√
∂tw

w

1

w
∆Lφ

∥∥∥∥∥
Hs

≤ 1

1− C ‖1− g‖Hs+3 − C ‖b‖Hs+3

∥∥∥∥∥
√
∂tw

w

1

w
f

∥∥∥∥∥
Hs

,

from which the result follows.

Connecting now Lemma 1 with (5.9) and (5.7) we deduce that for ‖b‖Hs+3 sufficiently small,

‖f(t)‖Hs ≈
∥∥w(t,∇)−1f(t)

∥∥
Hs ≤ ‖fin‖Hs .

It remains now to see why this uniform Hs bound implies Theorem 5.2. First, we note the following
lemma.

Lemma 2. For ‖1− g‖Hs+3 + ‖b‖Hs+3 sufficiently small, there holds

‖φ(t)‖Hs−2 .
1

〈t〉2
‖f(t)‖Hs .

Proof. Arguing as in (5.1) we have

‖φ(t)‖Hs−2 .
1

〈t〉2
‖∆Lφ(t)‖Hs .

From here the lemma follows in a manner very similar to Lemma 1.

Now we use

u1(t, x, y) = −U ′(y) ((∂v − t∂z)φ) (t, x− tU(y), U(y))

u2(t, x, y) = (∂zφ) (t, x− tU(y), U(y)),

to deduce (we are also using that composition under U(y) is bounded on L2, which comes from the
uniform monotonicity of U),

‖u1(t)‖L2 . 〈t〉 ‖∇φ(t)‖H1 . 〈t〉−1 ‖fin‖H3

‖u2(t)‖L2 . ‖∇φ(t)‖H1 . 〈t〉−2 ‖fin‖H3 .

Theorem 5.2 now follows.
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6 Nonlinear 2D Euler equations near the Couette flow

Now we come to the main question: does inviscid damping and enhanced dissipation hold for the
nonlinear dynamics near the Couette flow? This is a question with an answer which is far from
obvious as there is no clear, convincing, reason a priori to expect the linear behavior to dominate
for all time. Numerics, physical experiments, and formal asymptotics were not conclusive either for
a few subtle reasons (see e.g. [Shn12] and the references therein). Hence, this is a nice example of
a place where mathematical analysis can answer questions that even physicists consider open.

Consider first 2D Euler in vorticity form near the Couette flow with (x, y) ∈ T× R.

∂tω + y∂xω +∇⊥ψ · ∇ω = 0

∆ψ = ω.

The results of [BM13] essentially show that, up to a correction due to the quasilinearity, the nonlinear
dynamics are qualitatively similar to the linear dynamics provided the solutions are small5 and
smooth The regularity we need to work in is called Gevrey-1

s with s ∈ (0, 1] [Gev18] and is quantified
with a scale of norms for λ > 0

‖f‖Gλ;s =
∥∥∥eλ|∇|sf∥∥∥

2
.

Notice that s = 1 corresponds to real analytic whereas s < 1 does not (and there are compactly
supported functions in Gλ;s for s < 1). This is a scale of very nice spaces that connects the two
(somewhat pathological) extremes of C∞ and real analytic. However, this is not why we are working
in this regularity class – we will see that it’s “necessity” here is predicted by formal weakly nonlinear
analysis. In [BM13] we prove (slightly paraphrased and updated):

Theorem 6.1 (Nonlinear inviscid damping [BM13]). Let s ∈ (1/2, 1] and let λ > λ′ > 0 and δ > 0.
There exists an ε0 = ε0(λ, λ′, s, δ) such that if

‖uin‖L2 + ‖ωin‖Gλ;s = ε < ε0,

then there exists some ω∞ ∈ Gλ
′;s(R2) and u∞, φ(t) ∈ Gλ′;s such that the following holds with all

implicit constants independent of ε and t:

u∞(y) = −∂y∂−1
yy 〈ω∞〉x (6.1)

‖ω(t, x+ ty + tφ(t, y), y)− ω∞‖Gλ′;s .
ε2

〈t〉
(6.2)∥∥u1

6=(t)
∥∥
L2 + 〈t〉

∥∥u2(t)
∥∥
L2 .

ε

〈t〉
(6.3)∥∥〈u1(t)〉x − u∞

∥∥
Gλ′;s .

ε

〈t〉2
(6.4)∥∥φ(t)− 〈u1(t)〉x

∥∥
Gλ′;s . ε〈t〉δ−1. (6.5)

Remark 11. Theorem 6.1 implies ω(t) ⇀ ω∞ (a good exercise).

5You might ask “small relative to what in what units?” but remember we have scaled the velocities and lengths so
that we have a problem on a torus of side-length 2π and a background shear flow with slope 1. In units, the smallness
is relative to these parameters, in particular, for a torus of side-length of 2πL and shear of slope β, we should get a
smallness condition which is linear in β but the dependence on L is a bit more opaque due to the Gevrey-1/s norm, as
rescaling the variables changes the λ and the ε0 depends in a very complicated manner on λ (although by dimensional
analysis, we expect it to be roughly ≈ exp(−CLp) for some C and p = p(s)).
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The proof of Theorem 6.1 can also be used to prove the following, more or less relying on the
fact that ω∞ − ωin = O(ε2):

Corollary 1. There is an open set in Gλ;s of initial data which result in solutions ω(t) satisfying
the following for all σ > 0 and t ∈ R:

‖ω∞‖2 < ‖ω(t)‖2
ε〈t〉σ ≈ ‖ω(t)‖Hσ .

As far as Sobolev norm explosion results go, this is not so impressive given that faster rates are
known in other settings; see e.g. [Den09, KŠ14] (although this gives very precise controls on all
finite regularity norms which is lacking in other norm explosion results). However, the two more
interesting points are (A) the orbits are not pre-compact in L2 and (B) there is an open set of
solutions whose norm does NOT grow exponentially. This setting is arguably somewhat contrived,
however, neither of these have been verified in any setting of 2D Euler before so they are still of
note.

We certainly do not have time to cover the entire proof, however, there should be time to discuss
the most important points. The general schematic follows the technique we used to prove Theorem
5.2 above.

6.1 Nonlinear coordinate transform

In the linearized case, we used the coordinate transform (5.4). In the nonlinear case, we have the
added complications that our shear flow is not stationary in time, not known a priori, and cannot
be assumed to have significantly more regularity than the solution itself. The first step is to find
the analogue of (5.4). Let us suppose that we are unsure how to guess it (for 2D Euler it is not so
hard to guess, but for NSE it is less obvious, especially in 3D), and hence it makes sense to search
for a coordinate system of the general form

X = x− ty − th(t, y)

Y = y + h(t, y).

The first thing to note is that this is going to require h′ small, so that we may invert the coordinate
transform to recover information in (x, y) from information in (X,Y ). This precise form is dictated
so that the y derivatives transform in a specific way. Namely, if we denote f(t,X(t, x, y), Y (t, y)) =
ω(t, x, y) and φ(t,X(t, x, y), Y (t, y)) = ψ(t, x, y), then

∂xω(t, x, y) = (∂Xf)(t,X(t, x, y), Y (t, y))

∂yω = (1 + ∂yh(t, y)) ((∂Y − t∂X)f) (t,X(t, x, y), Y (t, y)),

and similar for φ. Similar to (5.5), we derive (note the new term involving ∂th),

∂tf +

[(
− d
dt(th)(t, y)− ū1(t, y)

∂th

)
+

(
−(1 + ∂yh)(∂Y − t∂X)φk 6=0

∂Xφ

)]
·
(

∂Xf
−(1 + ∂yh)(∂Y − t∂X)f

)
= 0

∆tφ = f

∂XX + (1 + ∂yh)2(∂Y − t∂X)2 + ∂yyh(∂Y − t∂X) := ∆t.

We have kept for a moment ū1(t, y) written in the y coordinates; note that ū1(t, y) = −(1 +
∂yh(t, y))(∂Y φ̄)(t, Y (t, y)). The idea is then to choose h to eliminate the shear flow contribution,
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which implies

d

dt
(th) = ū1.

Then, notice the very crucial cancellation that ensures that the governing equations become

∂tf + ∂th∂Y f + (1 + ∂yh)∇⊥X,Y φk 6=0 · ∇X,Y f = 0

∆tφ = f.

However, we are not done here. We need to be able to get good estimates on h and its derivatives, and
we need to get them in the (X,Y ) variables. It turns out there are a variety of good reasons to derive
PDEs for h and its derivatives in (X,Y ), but the most obvious reason is because compositions, like
those involved in moving back and forth between variables, is poorly behaved in infinite regularity
classes (see e.g. [MV11, BM13] and the references therein). If we want to avoid measuring high
regularity norms of compositions, then we will have to get our highest norm estimates on everything
in the (X,Y ) variables. First, using C(t,X, Y ) = h(t, x, y), Ui(t,X, Y ) = ui(t, x, y), g = (∂th),
v′ = 1 + (∂yh) (in the same sense as above) and so forth, we get

g =
Ū1 − C

t
,

which by

∂tC + g∂Y C =
1

t
[ū1 − C]

and (by taking x-averages of the momentum equation),

∂tŪ1 + g∂Y Ū1 + v′(U6= · ∇(U1)6=) = 0,

gives (by taking a time derivative)

∂tg + g∂Y g = −2

t
g − v′

t
(U 6= · ∇(U1) 6=).

As a side note, we used the x average structure to eliminate the −v′U1t∂XU1 term, which could
have been problematic (this cancellation is much more crucial in 3D). By taking a y derivative of
the definition of h and changing coordinates, we also get

∂t(v
′ − 1) + g∂Y (v′ − 1) =

1

t

(
−f̄ − (v′ − 1)

)
.

In the proof of [BM13, BMV14] it is actually useful to derive yet another PDE for the quantity on
the RHS. We will not get so deep into the estimates here; as an exercise you could derive the PDE
and think about why it might be useful.

6.2 Weakly nonlinear heuristics and the toy model

We know already that an H2 bound on ω(t, x − ty, y) in the linear case implies inviscid damping
of the (linearized) velocity field. With this in mind, it hence makes sense that an H2 bound on f
will give us inviscid damping for the nonlinear problem. Indeed, if we deduce sufficient regularity
estimates on the coefficients, then the proof of Lemma 2 adapts and we do indeed get inviscid
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damping, as long as we have sufficient Sobolev regularity on g, v′, and f . Now return to the
vorticity equation in the new variables and see about deducing such an Hs bound:

∂tf + g∂Y f + v′∇⊥X,Y φk 6=0 · ∇X,Y f = 0

∆tφ = f.

Let us think for a moment about the following simpler system, for which we will already see the
problem:

∂tf +∇⊥X,Y φk 6=0 · ∇X,Y f = 0 (6.6a)

∆Lφ = 0. (6.6b)

Let us see what happens when we attempt an Hs estimate:

1

2

d

dt
‖f(t)‖2Hs = −〈f,∇⊥φ · ∇f〉Hs .

First assume that s > 1 so that Hs(T×R) ↪→ L∞(T×R). The two leading terms are when all the
derivatives land on ∇⊥φ or when all the derivatives land on ∇f . The latter term cancels and so we
basically have the following (just using that 3/2 > 1 = d/2):

−〈f,∇⊥φ · ∇f〉Hs .
∥∥∥∇⊥φ∥∥∥

H3/2
‖f‖2Hs +

∥∥∥∇⊥φ∥∥∥
Hs
‖f‖Hs ‖∇f‖H3/2 . (6.7)

For the first term, we can pay regularity on f for decay using (5.1), and deduce∥∥∥∇⊥φ∥∥∥
H3/2

. 〈t〉−2 ‖f‖H9/2

Hence, if we take s ≥ 9/2, the first term in the energy estimate becomes∥∥∥∇⊥φ∥∥∥
H3/2
‖f‖2Hs . 〈t〉−2 ‖f‖3Hs .

If this were the only term, this would be sufficient for stability, since we could get a global in time
estimate for small enough initial data. This can be done via a continuity/bootstrap argument:

Exercise 6.1. Use a continuity argument to prove that if X(t) is non-negative, continuous in time,
and satisfies

Ẋ(t) ≤ C

〈t〉2
(X(t))2,

for some C > 0 then there exists an ε0 depending only on C such that if X(0) < ε0 initially then
X(t) < 2ε0 for all time.

Recall that a “continuity argument” amounts to assuming that X(t) ≤ 4ε0 on a maximal time
interval containing zero [0, T ?] and deducing that for ε0 sufficiently small, one can deduce the
stronger estimate X(t) < 2ε0. Continuity is used in two places: first, to prove that T ? > 0 and
second, to prove that the latter estimate implies T ? = +∞. The argument is basically a continuous
form of induction; see [Tao06] for more discussion.

Now turn to the second term in (6.7), which is the difficult term. If we attempt to pay regularity
again, we would run into trouble if we used (5.1), since in order to get something integrable we
would need to use ∥∥∥∇⊥φ(t)

∥∥∥
Hs

.
1

〈t〉1+δ
‖f(t)‖Hs+2+δ .
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However, this is a massive loss of derivatives, worse than even the backwards heat equation, and we
definitely cannot close a nonlinear estimate with this. Hence, if we don’t think of something more
sophisticated we have no chance of going forward.

Let us briefly consider the physical mechanism behind this loss of regularity. For a single Fourier
mode, the linear evolution is given by eik(x−ty)+iηy = eikx+i(η−kt)y and we are writing our vorticity
as a linear combination of these waves (in the linear case). For sufficiently small data, we hope
to prove that the linear term dominates (forgetting about the time-dependence in the shear flow),
in which case maybe the nonlinear problem is in some sense written also as a superposition of
these waves except now with amplitudes which are coupled together through the nonlinear term.
We saw above that the critical time, when t = η/k, is when each mode in the vorticity has the
largest nonlinear effect, not coincidentally, the regularity loss in (5.1) is required exactly to control
the contribution of this time. From here one imagines a kind of nonlinear effect wherein a mode
near its critical time has a strong nonlinear reaction and moves enstrophy to a mode which is still
yet to reach its critical time, making another strong nonlinear response later in the future and
potentially beginning a self-sustaining cycle. One could hope that this is disallowed by some special
structure of the equations, however, it is not. Precisely this kind of behavior has been isolated in
2D Euler experimentally in 2005 [YDO05, YD02], following the much earlier famous experiments
producing a similar kind of phenomenon in plasmas in 1968 [MWGO68] (in fact, both experiments
were performed by the same laboratory). The effect is called an echo or when there is a sequence
of echoes feeding into one another, an echo cascade. See also [VMW98, Van02]. Physically, we are
worried about an echo cascade triggering a larger instability and transition away from Couette flow.
In the proof of Landau damping in the Vlasov equations, analysis of these plasma echoes plays a
major role; see [MV11, BMM13] (understanding the plasma echoes are central to both). See [FR14]
for an example showing that in the absence of plasma echoes, a relatively easy proof is available
for the Vlasov equations (they study a version of the Vlasov equations which does not permit echo
cascades due to the particular structure of the equations).

Let us return to mathematics (sort of) and consider this loss of regularity more carefully. First,
we saw in the above argument that the regularity loss occurs when the streamfunction has all the
derivatives landing on it. So it makes sense to reduce our model (6.6) further to a toy model with
a given smooth function q,

∂tf +∇⊥∆−1
L fk 6=0 · ∇q = 0,

which is now a linear model. Next, we note that because ̂∇⊥∆−1
L f = i(η,−k)

(
|k|2 + |η − kt|2

)−1
f̂(k, η),

the η term is the most dangerous since there is a |k| in the denominator, so we reduce our toy model
further:

∂tf − ∂Y ∆−1
L fk 6=0∂zq = 0.

On the Fourier side this becomes the convolution:

∂tf̂(t, k, η) =
∑
6̀=0

∫
ξ(k − `)f̂(t, `, ξ)

|`|2 + |ξ − t`|2
q̂(k − `, η − ξ)dξ.

We are going to have to take absolute values since we won’t have much information about the phase
of q relative to f . Hence,

∂t

∣∣∣f̂(t, k, η)
∣∣∣ .∑

6̀=0

∫ ∣∣∣ξ(k − `)f̂(t, `, ξ)
∣∣∣

|`|2 + |ξ − t`|2
|q̂(k − `, η − ξ)| dξ.
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We want to reduce this further by eliminating the convolution and approximating q as very well
localized in Fourier transform (after all, q is supposed to be very smooth). This gives us the further
reduced system:

∂t

∣∣∣f̂(t, k, η)
∣∣∣ ≈ ∑

`6=0;`6=k

∣∣∣ηf̂(t, `, η)
∣∣∣

|`|2 + |η − t`|2
.

Now we have done something interesting, since for each t there’s at most one specific `c, if t is close
to η/`c, which is “critical”, and all others are “non-critical”. In fact, it will be sufficient to consider
just two modes, `c and `c − 1 (let us suppose ` is non-negative):

∂t

∣∣∣f̂(t, `c, η)
∣∣∣ ≈

∣∣∣ηf̂(t, `c − 1, η)
∣∣∣

|`c − 1|2 + |η − t(`c − 1)|2

∂t

∣∣∣f̂(t, `c − 1, η)
∣∣∣ ≈

∣∣∣ηf̂(t, `c, η)
∣∣∣

|`c|2 + |η − t`c|2
.

Next, we note that the most dangerous case is |η| & |`c|2, so we will further reduce ourselves to
under that condition. Finally, we note that there is a an interval of length ≈ η/`c around the critical
time over which |η − t(`c − t)| & η/`c. Therefore, we further reduce this to

∂t

∣∣∣f̂(t, `c, η)
∣∣∣ ≈

∣∣∣`2c f̂(t, `c − 1, η)
∣∣∣

|η|

∂t

∣∣∣f̂(t, `c − 1, η)
∣∣∣ ≈

∣∣∣ηf̂(t, `c, η)
∣∣∣

|`c|2 + |η − t`c|2
.

This will be our toy model, the analogue of (5.6) from the linear case. As we did above, we want
to find a Fourier multiplier which will encode an upper bound on the growth of these modes to use
as our norm. This suggests we use a weight like the following:

∂twC(t, k, η) ≈ |k|
2wNC(t, k, η)

|η|
(6.8a)

∂twNC(t, k, η) ≈ |η|wC(t, k, η)

|k|2 + |η − tk|2
, (6.8b)

where the idea is that if t ≈ η/k we will use wC as the weight for the mode (k, η) and wNC as the
weight for modes (j, η) with j 6= k. What we have to do next is to determine the wC and wNC
actually are. This ODE can actually be approximately solved; see [BM13]. However, we do not
need to solve it, we only need to find an approximate super-solution, after all, we are using it to
approximately upper bound the dynamics mode-by-mode. We can guess that the functions look
something like the following, over one critical interval, for a constant κ > 1 which depends on the
constants preferred in (6.8) (for the 2D works [BM13, BMV14] the constant is not important but
in the 3D works [BGM15a, BGM15b] it is chosen with respect to some universal constants):

wNC(t, η) ≈
( k2

|η|

(
1 +

∣∣∣η
k
− t
∣∣∣) )−1−κ

,
η

k
− η

k(k + 1)
. t ≤ η

k

wNC(t, η) ≈ wNC
(η
k
, η
)(

1 +
∣∣∣η
k
− t
∣∣∣)κ , η

k
. t ≤ η

k
+

η

k(k − 1)
.
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Of course we actually need to append this behavior together for each critical time. For technical
reasons which are a bit obscure, this is done counting “backwards” from the last echo forward.
Precisely, if we define tk,η = η

k −
|η|

|k(k−1)| and t0,η = 2η we make the definition

wNC(2 |η| , η) = 1 (6.9a)

wNC(t, η) =
(k2

η

[
1 + bk,η|t−

η

k
|
] )κ

wNC(tk−1,η, η), ∀t ∈ IRk,η =
[η
k
, tk−1,η

]
, (6.9b)

wNC(t, η) =
(

1 + ak,η|t−
η

k
|
)−1−κ

wNC

(η
k
, η
)
, ∀t ∈ ILk,η =

[
tk,η,

η

k

]
, (6.9c)

for all k2 ≤ |η|, where the constants ak,η, bk,η are chosen such that
(
k2

η

[
1 + bk,η|tk−1,η − η

k |
] )

= 1

and
(

1+ak,η|tk,η− η
k |
)

= (η/k2)1+2κw(tk−1,η). These choices ensure that the multiplier is continuous

in time (yes, the constants do go to zero as |k| gets close to
√
|η|, which will be a slight but largely

irrelevant technical difficulty). To get the critical regularity, we set

wC(t, η) =
(k2

η

[
1 + bk,η|t−

η

k
|
] )
wNC(t, η), ∀t ∈ IRk,η =

[η
k
, tk−1,η

]
,

wC(t, η) =
k2

η

(
1 + ak,η|t−

η

k
|
)
wNC (t, η) , ∀t ∈ ILk,η =

[
tk,η,

η

k

]
,

and we note that wC(tk,η, η) = wNC(tk,η, η) and wC(η/k, η) = k2

η wNC(η/k, η) so that at the critical

times, the regularity is separated by η/k2. Now define Ik,η = ILk,η∪IRk,η. To define the weight we will
use in the energy estimates, we then get (denothing E(r) to be the largest integer with E(r) ≤ r),

w(t, k, η) =


w(t

E(
√
|η|),η, k, η) t < t

E(
√
|η|),η

wNC(t, η) t ∈ [t
E(
√
|η|),η, 2 |η|] \ Ik,η

wC(t, η) t ∈ Ik,η
1 t ≥ 2 |η| .

(6.10)

By design, w(t, k, η) is Lipschitz continuous in time.

6.2.1 Analysis of w

Analyzing the properties of w defined in (6.10) is not so easy as the definition is a bit complicated.
The first question is...how big is it? First, by design w(t, k, η) ≤ 1, so actually we will care about a
lower bound. By design we note

w(tk,η, k, η)

w(tk+1,η, k, η)
=

(
|η|
k2

)1+2κ

.

Hence, the total growth is something like the following, denoting N = E(
√
|η|),

w(2 |η| , k, η)

w(1, k, η)
=

(
|η|
N2

)1+2κ( |η|
(N − 1)2

)1+2κ

. . .

(
|η|
22

)1+2κ( |η|
12

)1+2κ

.

From Stirling’s formula we can derive:

Lemma 3 (Lemma 3.1 [BM13]). Let |η| ≥ 1. Then, there is some constant µ = µ(κ) > 0 such that

1

w(1, k, η)
≈ 1

|η|µ/8
e
µ
2

√
|η|.
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Another thing we should take a close look at is how critical and non-critical modes are related
and what the time derivatives are. The most basic property is the following, which we can see from
the definition in (6.10),

Lemma 4. Let 2
√
|η| ≤ t, t ∈ Ik,η and k 6= `, then

w(t, `, η)

w(t, k, η)
≈ |η|
k2
(
1 +

∣∣t− η
k

∣∣) .
Moreover,

∂tw(t, k, η)

w(t, k, η)
≈ ∂tw(t, `, η)

w(t, `, η)
≈ 1

1 +
∣∣t− η

k

∣∣ .
We will also need various analogues of (5.8), however, clearly these will be much more difficult

here than they were in (5.8). We will not get into the very technical details here, so let me just
explain the most basic facts about them, noting that the full proof requires a bit more details.

Lemma 5 (From [BM13]). There is a C > 0 such that

w(t, k, η)

w(t, k, ξ)
. eC|η−ξ|

1/2

. (6.11)

For 2 max(
√
|ξ|,
√
|η|) ≤ t ≤ 2 min(|η| , |ξ|),

∂tw(t, k, η)

w(t, k, η)
.
∂tw(t, `, η)

w(t, `, η)
〈k − `, η − ξ〉2.

The key point above is that relating w at different frequencies requires losing Gevrey regularity.

6.3 The set up

Next, the idea is to define a norm which is capable of measuring the solution and the coefficients.
For important, but difficult to see, reasons we need to make our norm even more complicated than
you might be thinking. Pick s ∈ (1/2, 1) and σ � 1 fixed, a time-dependent regularity index λ(t),
and define the Fourier multiplier

A(t, k, η) = eλ(t)|k,η|s〈k, η〉σ
[
eµ|η|

1/2

w(t, k, η)
+ eµ|k|

1/2

]
. (6.12)

The norm we will use to measure the vorticity f is then

‖A(t,∇)f(t)‖L2 .

The index λ(t) is strictly decreasing and bounded below by λ(t) > (λ+λ′)/2 (from the statement of
Theorem 6.1), so in the end we retain uniform control on f in Gevrey-1/s regularity. At very high
frequencies, the multiplier is more or less the same as Gevrey-1/s since the corrections involving w
are still much smaller (as s > 1/2). There is an important reason that s < 1 which will be more
clear once one attempts to carry out energy estimates in Gevrey class – it has to do with controlling
the Gevrey errors in (6.11) (hence, if we want to keep track of analytic regularity in the proof, the

norm needs to be altered a little further; see [BM13]). The extra eµ|k|
1/2

has to do with difficulties
that arise when dealing with commutators that arise when treating transport in Gevrey regularity;
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see [BM13] for more on this important but subtle technicality. Along with the controls on the
vorticity, we will need a similar kind of control on the coefficients g and v′. A difference is that we
of course want to deduce decay on g; we eventually have a decay like ‖g‖ . tCε−2 in suitable norms
for some constant C (so for ε sufficiently small, this implies decay close to t−2). We will not get
into such technical difficulties here, however, the norms used to control g and v′ are similar to that
used to control f (a bit simpler since k = 0 for the coefficients) and so denote the combination of
these norms as Ev(t); see [BM13] for the full definition.

Once we have our norms, the idea is to use a large bootstrap argument of the form (essentially):
Let [0, T ?] be the largest interval such that

‖A(t,∇)f(t)‖22 + Ev(t) ≤ 4ε, (6.13)

then for ε ≤ ε0 chosen sufficiently small, on [0, T ?] there holds

‖A(t,∇)f(t)‖22 + Ev(t) < 2ε, (6.14)

and therefore the vorticity f and the coefficients are uniformly controlled in Gevrey-1/s regularity in
the coordinate system (X,Y ) for all t ∈ [0,∞). With a bit of effort to undo the coordinate system
and transform (6.14) into information in (x, y) variables (not a trivial step, this requires some
estimates on Gevrey regularity under compositions and a Gevrey class inverse function theorem –
see [BM13]) the uniform bound is enough to prove Theorem 6.1). The hard part is proving that
(6.13) implies (6.14).

6.4 Basic energy estimates

Let us consider how we would use (6.12) to prove that (6.13) implies (6.14) in the case of the simpler
model

∂tf +∇⊥φ · ∇f = 0

∆Lφ = 0.

Of course we start with:

1

2

d

dt
‖Af‖2L2 = (Af, ∂tAf) +

(
Af,A(∇⊥φ · ∇f)

)
.

The idea is to break the second term down into terms which can be absorbed with the first term
and errors which are small and integrable in time. As when we were deducing Hs bounds on Euler,
we want to eliminate the term where “all the derivatives” land on ∇f the second inner product.
The analogue of this is, using the divergence free condition:

1

2

d

dt
‖Af‖2L2 = (Af, ∂tAf) +

(
Af,A(∇⊥φ · ∇f)

)
−
(
Af,∇⊥φ ·A∇f

)
.

Next, we want to make more rigorous what we mean by distributing a Fourier multiplier such as
A like one would distribute derivatives. For this we use what is called a “paraproduct”, which as
far as we are concerned with here, just provides a clever technique for breaking up contributions in
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frequency using Littlewood-Paley decompositions (introduced by Bony [Bon81]),

1

2

d

dt
‖Af‖2L2 = (Af, ∂tAf) +

∑
N∈2Z

(
Af,A(∇⊥φN · ∇f<N/8)

)
−
(
Af,∇⊥φN ·A∇f<N/8

)
+
∑
N∈2Z

(
Af,A(∇⊥φ<N/8 · ∇fN )

)
−
(
Af,∇⊥φ<N/8 ·A∇fN

)
+
∑
N∈2Z

∑
N/8≤N ′≤8N

(
Af,A(∇⊥φN ′ · ∇fN )

)
−
(
Af,∇⊥φN ′ ·A∇fN

)
= CKA +R+ T +R.

The R stands for “reaction” due to the fact that it is more or less analogous to the “reaction” terms
in Mouhot and Villani’s original proof of Landau damping [MV11]. The T stands for “transport”
and R stands for “remainder”. We can think of the reaction term as the term where “all” of A
“lands” on φ and the transport term where “all” of A “lands” on ∇f . The remainder term is the
analogue of the all the cross terms in Liebniz’s rule. The commutator we introduced by using the

divergence free condition is actually only for dealing with the transport term, as is the extra eµ|k|
1/2

in (6.12).
The reaction term is the one which we used to derive the toy model in §6.2 (in fact, just one term

of it). To see exactly how to use w in this context we will need to learn how to make Littlewood-
Paley projections and Gevrey regularity play together in a nice way, which requires some concavity
estimates on xs for s < 1 which will allow us to say that in the reaction term “most of A” “lands”
on φ and vice-versa in the transport terms. That is, we need some precise equivalent of (5.8a) for
Gevrey regularity. What is used is the following: for |x− y| < |x| /2, if s ∈ (0, 1), there is a constant
c = c(s) ∈ (0, 1) such that

eλ|x|
s

≤ eλ|y|
s

ecλ|x−y|
s

. (6.15)

If one considers one of the reaction terms:∑
N∈2Z

(
Af,A(∇⊥φN · ∇f<N/8)

)
=
∑
N∈2Z

(
Âf , A(∇̂⊥φN ∗ ∇̂f<N/8)

)
then its observed that the term involving ∇⊥φN ·∇f<N/8 only concerns frequencies of approximately
N and so that contribution to the sum also only involves frequencies of Af which are comparable to
N as well. Hence (6.15) implies that “most” of the Gevrey regularity in the multiplier A becomes
associated with ∇⊥φN , rather than ∇f<N/8. Just as (5.8) allowed us to treat the linear problem in
Theorem 5.2 as a perturbation of the linear toy model in (5.6), the inequalities and properties we
have enumerated on A will allow us to treat the reaction term as a perturbation of the nonlinear
toy model we derived above in (6.8). See [BM13] for more details on exactly how to carry out this
procedure.

7 2D Navier-Stokes near Couette flow

Theorem 6.1 confirms that the inviscid damping predicted by Orr on the linear level persists in the
2D Euler equations. The next natural question is whether or not the enhanced dissipation predicted
by Lord Kelvin persists in the Navier-Stokes equations. The answer is indeed yes, as we verfied in
[BMV14]. In order to see this, what we need to do is to take the Navier-Stokes equations with inverse
Reynolds number ν > 0 and then study the vanishing viscosity limit ν → 0 in a way which gives us

35



information that is uniform in t. This is an important point: if one considers a finite time interval
[0, T ], then we know that Navier-Stokes simply converges to Euler as ν → 0 (because there are no
boundaries!) whereas if we fix ν and then send T →∞ we just get that the Navier-Stokes equations
behaves asymptotically like the heat equation and everything dissipates6. What we need to do
is a sort of “long-time” inviscid limit, which allows us to retain uniform control on the dynamics
at all times simultaneously as we send ν → 0, which is harder than just studying ν > 0 fixed or
setting ν = 0 as in theorem 6.1. More precisely, the theorem we prove is the following (abbreviated
and simplified for presentation), which is necessarily harder than Theorem 6.1 (basically the main
estimates in the proof of Theorem 6.1 become lemmas in the proof of Theorem 7.1):

Theorem 7.1 (Long-time inviscid limit for the 2D Navier-Stokes equations [BMV14]). Let s ∈
(1/2, 1], let λ > λ′ > 0, and α ≥ 1. There exists an ε0 = ε0(λ, λ′, s, α) such that if

‖uin‖L2 + ‖ωin‖Gλ;s = ε < ε0,

then the following holds with implicit constants that are independent of ν, ε, and t:

‖ω 6=(t, x+ ty + tφ(t, y), y)‖Gλ′;s .
ε

〈νt3〉α
(7.1)

‖ω(t, y)‖Gλ′;s .
ε

〈νt〉1/4
(7.2)

‖u1, 6=(t)‖L2 + 〈t〉 ‖u2(t)‖L2 .
ε

〈t〉〈νt3〉α
. (7.3)

Moreover, for t� ν−1/3 one can deduce qualitative behavior similar to Theorem 6.1; see [BMV14]
for more details.

Remark 12. The regularity requirement can be relaxed a tiny bit using the instant regularization
due to the viscosity. That is, we don’t really need our initial data to be literally Gevrey-1

s , it just
needs to be small in Gevrey-1

s by time t = 1 say. In [BMV14], we show that one can take initial
data which can be split into smooth and rough part: ωin = ωS + ωR with ‖ωS‖Gλ;s < ε/2 and

eKν
−p ‖ωR‖L2 < ε/2 for suitable K = K(s, λ) > 0 and p = p(s) > 0. Hence, one can have data

which is technically only L2 but which is very close to Gevrey-1
s as ν → 0. We remark that this

class of initial data is very natural for inviscid limits.

Remark 13. It is worth emphasizing again that even in Theorem 7.1, the enhanced dissipation is
not really the mechanism which is providing the stability – it is still the inviscid damping that is
really stabilizing the flow. This is because we are allowing ε, t, and ν to be totally unrelated. In
the 3D works [BGM15a, BGM15b], we will see that it is different: the enhanced dissipation plays
the role of the main stabilizing effect and ε and ν must be related.

Remark 14. We will return to this point later, but note that because we have a uniform basin of
stability as ν → 0, we can say that there is no “subcritical transition”, as described in §1.1 in the
2D Couette flow for sufficiently smooth perturbations.

6simply using the divergence free condition, one can easily prove that the solution dissipates with the same rate
as the heat equation, but we did not get so much precise information about the asymptotics to say it really behaves
exactly like the heat equation (though it does for times t� ν−1)

36



7.1 New nonlinear coordinate system

The proof of Theorem 7.1 is an amplification of the proof of Theorem 6.1 in several ways. First, we
need to find a coordinate system. As in §6.1, we look for a coordinate transform of the form

X = x− ty − th(t, y)

Y = y + h(t, y),

so that we still have the important property of how derivatives transform: if f(t,X(t, x, y), Y (t, y)) =
ω(t, x, y) and φ(t,X(t, x, y), Y (t, y)) = ψ(t, x, y), then

∂xω(t, x, y) = (∂Xf)(t,X(t, x, y), Y (t, y))

∂yω = (1 + ∂yh(t, y)) ((∂Y − t∂X)f) (t,X(t, x, y), Y (t, y)),

and similar for φ. If we derive as we did in §6.1, then we arrive at basically the same system we
had in the 2D Euler case except now with the dissipation on the RHS:

∂tf +

(
− d
dt(th) + ū1

∂th

)
·
(
∂Xf
∂Y f

)
+ (1 + ∂yh)∇⊥X,Y φk 6=0 · ∇X,Y f = ν∆tf

∆tφ = f.

It is very natural to think that we should again pick

d

dt
(th) = ū1,

however, ū1 is not the only contribution to the shear flow anymore! Indeed, recall

∂XX + (1 + ∂yh)2(∂Y − t∂X)2 + ∂yyh(∂Y − t∂X) := ∆t,

and hence the system is more naturally written as

∂tf +

(
− d
dt(th) + ū1 + t∂yyh

∂th− ∂yyh

)
·
(
∂Xf
∂Y f

)
+ (1 + ∂yh)∇⊥X,Y φk 6=0 · ∇X,Y f = ν∆̃tf

∆tφ = f,

where the operator on the RHS is given by:

∂XX + (1 + ∂yh)2(∂Y − t∂X)2 := ∆̃t.

Now, it becomes more clear that we should actually pick h to solve the parabolic equation:

d

dt
(th) = ū1 + νt∂yyh, (7.4)

as this eliminates the shear flow in the first coordinate of the velocity field. Moreover, if we again
denote C(t, Y (t, y)) = h(t, y) and U1(t, Y (t, y)) = u1(t, y), and

g =
U1 − C

t
,

then we derive

∂tf + g∂Y f + (1 + ∂yh)∇⊥X,Y φk 6=0 · ∇X,Y f = ν∆̃tf (7.5)

∆tφ = f. (7.6)
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Although in some sense we have define g in the same way as we did in the Euler case, note that
its relationship to h is a bit different (it is no longer related to ∂th but instead ∂th− ∂yyh). If one
works it out (good exercise) one derives for v′ = 1 + ∂yh and g:

∂tg + g∂Y g = −2

t
g − v′

t
(U 6= · ∇(U1) 6=) + ν∆̃tg

∂t(v
′ − 1) + g∂Y (v′ − 1) =

1

t

(
−f̄ − (v′ − 1)

)
+ ν∆̃t(v

′ − 1).

One can also check that if we did not include dissipation in the coordinate system, we would not
have nice dissipation terms in these equations (actually, this is how we first derived the coordinate
system – it was pointed out to us by Pierre Germain during the writing of [BGM15a, BGM15b]
that there was an easier but equivalent, and more systematic, way of viewing the same coordinate
system).

7.2 Enhanced dissipation estimates

Next, our main goal is to get energy estimates on f which are uniform in ν, ε, and t and also to
quantify the enhanced dissipation. Since we want estimates which basically match those made on
Euler, it makes sense to use the same A and Ev that we employed therein. To quantify the enhanced
dissipation, we use a simpler multiplier:

Aν(t, k, η) = eλ(t)|k,η|s〈k, η〉β〈D(t, η)〉α1k 6=0,

with β fixed such that σ � β + 3α and D defined via

D(t, η) =
1

3α
min

(
|η|3 , 1

8
t3
)
.

The purpose of this multiplier is to make the norm stronger as time increases for t > 2 |η|. This
time is well past all of the critical times because k ∈ Z, hence this multiplier is adapted to the Orr
mechanism. Indeed, transient un-mixing will slow down the enhanced dissipation back to regular
(slow) dissipation near t ∼ η/k. We could try to use a much more precise D which keeps track of
this in a way which is more dependent on k, however, it turns out the following is sufficient. In
particular, this definition of D is sufficient to quantify the enhanced dissipation in the sense that:∥∥∥〈∇〉βf6=∥∥∥

Gλ;s
. 〈νt3〉−α ‖Aν(t,∇)f‖L2 ,

so that control of ‖Aν(t,∇)f‖L2 implies the enhanced dissipation of f .

Exercise 7.1. Verify that

(Aνf, ∂tA
νf) + ν(Aνf,Aν∆Lf) ≤ λ̇

∥∥∥|∇|s/2Aνf∥∥∥2

L2
− ν

8

∥∥∥√−∆LA
νf
∥∥∥2

L2
.

Hence, we have an alternative (rather silly and inefficient) proof of the enhanced dissipation of the
PDE

∂tf = ν∆Lf,

(which of course we have already solved exactly). Note that getting enhanced dissipation estimates
using Aν(t,∇) is very precise, but it does cost regularity, and in some settings the would be consid-
ered quite high (in this particular setting of course, losing a couple hundred Sobolev derivatives is
totally irrelevant compared to the Gevrey regularity we are already condemned to lose). There are
other methods of quantifying enhanced dissipation which are less costly but less precise, however,
they can get the job done as well [CKRZ, BW13, BGM15c]...
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Also note that σ � β+3α (as well as the term involving w) ensures that A(t,∇) is much stronger
at high frequencies than Aν . This will make the energy estimate to control Aν(t,∇)f much easier
than if we had tried to make one “master” multiplier that involved A(t,∇) from Euler as well
as D, because now when we are estimating Aν , the frequencies t ≤ 2 |η| are not very relevant, as
Aν1t<2|η| . 〈t〉−γA1t<2|η| for any γ > 0, so any nonlinear effects occuring in that range of frequencies
is easily controlled by an estimate on A. This trick of coupling together a high norm estimate for a
uniform bound on regularity and a low norm estimate for decay estimates is a classical, tried and
true method in PDEs, and is very, very useful. Hence, the basic idea of the proof of Theorem 7.1
is basically the bootstrap: Let [0, T ?] be the largest interval such that, for some suitable C,

‖A(t,∇)f(t)‖2L2 + ‖Aν(t,∇)f(t)‖2L2 + Ev(t) ≤ 4Cε, (7.7)

then for ε ≤ ε0 chosen sufficiently small, on [0, T ?] there holds

‖A(t,∇)f(t)‖2L2 + ‖Aν(t,∇)f(t)‖2L2 + Ev(t) < 2Cε. (7.8)

A natural thing to expect is that the estimates on ‖Af‖L2 and Ev(t) are exactly the same as
in the proof of Theorem 6.1, after all, we only added dissipation to (7.5), so how could we make
the energy estimate worse? Well, actually we did: the point is that, unlike if we just had ∆ or

∆L, neither (f, ∆̃tf) nor
(
Af,A

(
∆̃tf

))
are obviously negative definite because of the coefficients

coming from v′. After some integration by parts this might look easier if v′ is small in a suitble
sense, but this loses too many derivatives on v′, which remember is an unknown we need to solve
for and v′ isn’t really much smoother than f (it actually turns out to be a tiny bit smoother than
f for subtle reasons; see [BM13] for more information on this). In fact, dealing with this requires
some genuine work, and in particular, one actually has to use the enhanced dissipation estimates
in order to deal with the error terms in the ‖Af‖L2 estimate. In this sense, the estimate even at
the higher norm ‖Af‖2 is not “free”. The full details however, are a bit too technical for now, see
[BMV14] for the full story...

8 Dynamics near the subcritical transition of the 3D Couette flow

Squire’s theorem is misleading because it suggests that 3D dynamics is somehow very similar to 2D
dynamics. However, this is far from correct. In this section, we will discuss how 2D and 3D differ
in the case of the Couette flow.

Recall that at the start of the course, we used the example of subcritical transition to partially
motivate the entire course. However, Theorems 6.1 and 7.1 show that for smooth enough distur-
bances, subcritical transition does not occur in 2D. This is in glaring contrast to experiments, which
suggest that basically every 3D laminar flow is practically unstable at high Reynolds number (it is
very hard to do experiments on 2D laminar flows). One could suggest that it is just a matter of reg-
ularity and that 2D flows are the same as 3D flows. While it is almost surely true that 2D flows will
experience subcritical transition at low enough regularities, this is a very unsatisfactory answer that
would completely fail to explain the 3D experiments [SH01] which clearly show that the instabilities
are fundamentally 3D and would (if it were true, which it is not) arguably emphasize fundamental
limitations of using mathematical analysis to understand subtle physical phenomena. Fortunately
for us mathematicians, this is not the case – indeed, subtle phenomena, where experiments, numer-
ics, and formal asymptotics cannot quite tread, are exactly the place where mathematical analysis
should be most useful. Instead, in this section, we will discuss a set of theorems which show that,
even for smooth, Gevery class perturbations, 3D flows are subject to 3D specific instabilities which
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result in subcritical transition (further emphasizing the limitations of Squire’s theorem and clearly
displaying the difference between 2D and 3D hydrodynamic stability).

We consider the problem in the domain (x, z) ∈ T2 and y ∈ R: if u + (y, 0, 0)t solves the
Navier-Stokes equations,

∂tu+ y∂xu+ u · ∇u+∇pNL =

−u2

0
0

−∇pL + ν∆u (8.1a)

∆pNL = −∂iuj∂jui (8.1b)

∆pL = −2∂xu2 (8.1c)

∇ · u = 0, (8.1d)

where ν = Re−1 denotes the inverse Reynolds number, pNL is the nonlinear contribution to the
pressure due to the disturbance and pL is the linear contribution to the pressure due to the inter-
action between the disturbance and the Couette flow.

It was suggested by Lord Kelvin [Kel87] (and basically Reynolds too [Rey83]) that subcritical
transition is due to the fact that while the flow may be technically stable at all finite Reynolds
number, it is progressively more unstable as ν → 0. It becomes natural to, for each norm N , try to
find a γ = γ(N) such that

‖uin‖N . νγ ⇒ stability

‖uin‖N � νγ ⇒ possible instability.

Hence, the goal is not just to determine that there is a basin of stability, but to obtain nearly
sharp estimates on the size of the basin as ν → 0 (the latter generally being much harder for
nonlinear problems). This γ (if it exists) is called the transition threshold. A lot of work has been
done attempting to estimate it for various laminar flows; see e.g. [SH01, Yag12] and the references
therein (and further references below).

8.1 Streaks

In 2D, we saw that the x-dependence of the solutions rapidly decayed via enhanced dissipation and
inviscid damping. In 3D, we have a much larger class of x-independent solutions, which are usually
referred to as streaks, due the streak-like appearance of the relatively fast fluid in experiments and
computations [TTRD93, SH01, TE05, BDDM98]. We will adopt this terminology here as well. In
particular, we have the following large class of global solutions to 3D Navier-Stokes/Euler:

Proposition 1 (Streak solutions). Let ν ∈ [0,∞), uin ∈ H5/2+ be divergence free and indepen-
dent of x, that is, uin(x, y, z) = uin(y, z), and denote by u(t) the corresponding unique strong
solution to (8.1) with initial data uin. Then u(t) is global in time and for all T > 0, u(t) ∈
L∞((0, T );H5/2+(R3)). Moreover, the pair (u2(t), u3(t)) solves the 2D Navier-Stokes/Euler equa-
tions on (y, z) ∈ R× T:

∂tui + (u2, u3) · ∇ui = −∂ip+ ν∆ui (8.2a)

∂yu2 + ∂zu3 = 0, (8.2b)

and u1 solves the (linear) forced advection-diffusion equation

∂tu1 + (u2, u3) · ∇u1 = −u2 + ν∆u1. (8.3)
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From (8.3) we see something interesting that is not present in 2D: the x-average of −u2 will
disappear in 2D due to the divergence free condition, however, this term does not vanish in 3D and
will create a large forcing on the x-average of u1. This effect is called the lift-up effect, and was first
noticed by Ellingsen and Palm in [EP75] and studied later in [Lan80] in the non-periodic setting.
One can verify that every non-trivial shear flow will have a similar effect, an instability which is
completely missed by the notion of spectral stability since it is essentially of the form (to leading
order; see below for a more careful derivation):

∂t

(
u1

u2

)
=

(
ν∆ −1
0 ν∆

)(
u1

u2

)
,

which is basically one of the canonical non-diagonalizable systems of 2x2 linear ODEs.

8.2 Linearized 3D Euler and Navier-Stokes

We will see that the streaks in Proposition 1 rapidly attract all sufficiently smooth solutions which
are not too large and hence dominate all of the dynamics. The 2D work suggests that this could
be possible via the enhanced dissipation effect, however, we will need a much more comprehensive
and clear picture of the linear dynamics.

First, let us study the linearized Navier-Stokes equations:

∂tu+ y∂xu =

−u2

0
0

−∇pL + ν∆u (8.4a)

∆pL = −2∂xu2 (8.4b)

∇ · u = 0. (8.4c)

It turns out that (8.4) can be solved analytically. The trick goes back to Lord Kelvin [Kel87]: define
a new variable q2 = ∆u2, and a computation shows that it becomes

∂tq + y∂xq = ν∆q.

The same passive scalar as the vorticity solves in the 2D case! However, note carefully that q is
NOT a direct analogue of the vorticity – it is two derivatives instead of one derivative. This will
have a number of very important implications. Therefore, if Q(t,X, y, z) = q2(t,X + ty, y, z) there
holds

Q̂(t, k, η, l) = Q̂(0, t, k, l) exp

[
−ν
∫ t

0
|k|2 + |η − kτ |2 + |l|2 dτ

]
.

As in the 2D vorticity equations, this implies the enhanced dissipation:

‖Q 6=(t)‖Hσ . ‖Q(0)‖Hσ e
−cνt3 .

If we define U2(t,X, y, z) = u(t,X + ty, y, z) then Q = ∆LU2 and hence

Û2(t, k, η, l) = − Q̂(t, k, η, l)

|k|2 + |η − kt|2 + |l|2
.

Hence we get the analogue of (5.1):

‖U2, 6=(t)‖Hσ . 〈t〉−2 ‖Q 6=(t)‖Hσ+2 .
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Hence U2, 6= still experiences inviscid damping as in the 2D case. Now consider the equations that
U1,3 satisfy

∂tU1 = −U2 − ∂XPL + ν∆LU1

∂tU3 = −∂zPL + ν∆LU3

∆LP
L = −2∂XU2.

From argument similar to (5.1) we get the very rapid decay of the pressure:∥∥PL6=∥∥Hσ . 〈t〉−2 ‖U2,6=(t)‖Hσ+3 . 〈t〉−4 ‖Q6=(t)‖Hσ+5 .

Hence U1 and U3 do not really change much between the times 1 . t . ν−1/3. This shows two
things: first, there is in general no inviscid damping on U1 and U3 (although by the divergence free
condition, there is on ∂XU1 + ∂zU3); and second, for those intermediate times, we get something
like u1,3(t, x, y, z) ≈ f1,3(t, x− ty, y, z) and so these components are being mixed similar to a passive
scalar until the enhanced dissipation kicks in. Hence, we see a cascade of kinetic energy to high
frequencies in 3D, whereas in 2D we see only a cascade of enstrophy to high frequencies. Although
inviscid damping will not occur, we still get enhanced dissipation:

‖U1, 6=‖Hσ + ‖U3,6=‖Hσ . ‖U(0)‖Hσ+5 e
−cνt3 .

If one takes x averages of the equations for ui we derive the non-normal system

∂t

u1

u2

u3

 =

ν∆ −1 0
0 ν∆ 0
0 0 ν∆

u1

u2

u3

 .

In fact we can solve it and see that u1(t) = eνt∆ (u1(0)− tu2(0)), which clearly shows the lift-up
effect.

8.3 Subcritical transition

On the linear level, the x dependence of the solution gets wiped out by the dissipation after times
t & ν−1/3. For data smaller than O(ν1/3) in size, this is sooner than the lift-up effect will dominate.
Hence, as long as the perturbations aren’t that large, we expect the streaks to attract all dynamics.
It is important to notice that, unlike in 2D, in 3D the enhanced dissipation is the primary stability
mechanism: the inviscid damping only controls one component of the solution and definitely would
not force solutions back to streaks the way inviscid damping causes convergence back to shear flows
in 2D. This is going to change the nature of the proofs a lot, as most nonlinear effects are absorbed
by the dissipation rather than dealt with using inviscid damping. Instead, the inviscid damping in
3D provides a kind of “null structure” that damps the top most dangerous leading order terms (c.f.
the null condition in quasilinear wave equations [Kla86, Chr86]).

That the dynamics of all solutions near the transition threshold (which is determined to be
γ = 1) are determined by the streaks to which they converge is the content of our main results
in [BGM15a, BGM15b] (for initial data which is sufficiently smooth). In [BGM15a] we consider
solutions below the γ = 1 threshold and prove the following. Note that the Gevrey regularity class
is the same as in 2D. This is not exactly a coincidence, but it is also by no means clear a priori. The
2D nonlinear effects are far too weak to be relevant in the proof of Theorem 8.1 (more precisely,
they are easily overpowered by the enhanced dissipation) and the 3D analogue of (6.8) is rather
different. However, in the end, both predict the same regularity class (although the 2D and 3D toy
models do not predict the same norm, though they are similar).
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Theorem 8.1 (Below threshold case from [BGM15a]). For all s ∈ (1/2, 1), all λ0 > λ′ > 0, all
integers α ≥ 10, all δ1 > 0, and all ν ∈ (0, 1], there exists constants c00 = c00(s, λ0, λ

′, α, δ1) and
K0 = K0(s, λ0, λ

′) (both independent of ν), such that for all c0 ≤ c00 and ε < c0ν, if uin ∈ L2 is a
divergence-free vector field that can be written uin = uS + uR (both also divergence-free) with

‖uS‖Gλ;s + eK0ν
− 3s

2(1−s) ‖uR‖H3 < ε, (8.5)

then the unique, classical solution u(t) to (8.1) with initial data uin is global in time and the following
estimates hold with all implicit constants independent of ν, ε, t and c0:

(i) transient growth of the streak: if t < 1
ν ,∥∥u1(t)−
(
eνt∆ (u1(0)− tu2(0))

)∥∥
Gλ′;s . c2

0 (8.6a)∥∥u2(t)− eνt∆u2(0)
∥∥
Gλ′;s +

∥∥u3(t)− eνt∆u3(0)
∥∥
Gλ′;s . c0ε (8.6b)

(ii) uniform bounds and decay of the background streak

‖u1(t)‖Gλ′;s . min (ε〈t〉, c0) (8.7a)

‖u2(t)‖Gλ′;s .
ε

〈νt〉α
(8.7b)

‖u3(t)‖Gλ′;s . ε (8.7c)

‖u1(t)‖4 .
c0

〈νt〉1/4
(8.7d)

‖u3(t)‖4 .
ε

〈νt〉1/4
; (8.7e)

(iii) the rapid convergence to a streak

‖u1, 6=(t, x+ ty + tψ(t, y, z), y, z)‖Gλ′;s .
ε〈t〉δ1
〈νt3〉α

(8.8a)

‖u2, 6=(t, x+ ty + tψ(t, y, z), y, z)‖Gλ′;s .
ε

〈t〉2−δ1〈νt3〉α
, (8.8b)

‖u3, 6=(t, x+ ty + tψ(t, y, z), y, z)‖Gλ′;s .
ε

〈νt3〉α
. (8.8c)

Here ψ(t, y, z) is an O(c0) correction to the mixing which is approximately u1(t).

Remark 15. Do not be misled: the solutions in question are O(1) solutions to the Navier-Stokes
equations, it is only that they are O(ν) away from the Couette flow. This is an important distinction.
We saw in the previous course that if solutions to Navier-Stokes are initially O(ν) (in the appropriate
norms) then they are automatically global. However, if one tries to use a similar argument here
without a very intricate analysis, it will be hard to get results which are much better than logarithmic
or a much worse power of ν! Also note that easier methods do still get you some nonlinear stability,
but remember, the main interest of Theorem 8.1 is finding the largest size that still ensures stability
(that is, we want to get an estimate of the basin of stability which is at least close to optimal in
terms of the norm of the initial data).

Remark 16. If u2(0) is such that ‖u2(0)‖Gλ′;s ≥
1
4ε = 1

16c0ν then (8.10) shows that for c0 small (but
independent of ε and ν), the streak u1(t) reaches the maximal amplitude of ‖u1(t)‖2 & c0. In this
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sense, Theorem 8.1 includes perturbations which undergo dramatic growth of kinetic energy before
decaying, so much in fact, that the solutions go from O(ε) to O(c0) before eventually decaying.
Since c0 is independent of ε, these solutions are necessarily on the edge of the weakly nonlinear
regime.

Theorem 8.1 covers only solutions which do not undergo any kind of transition, despite the fact
that they grow very large relative to ν even in L2 (in general, the growth in higher Sobolev norms
is much larger; see [BGM15a]). In the end however, they do not get quite large enough to trigger
a secondary instability. To see solutions where this kind of behavior might occur we need to look
for solutions which are larger than O(ν). This is done in [BGM15b] wherein we prove the following
theorem. We cannot quite follow our solutions all the way through a secondary instability, however,
we at least follow the solutions until they enter a fully nonlinear regime. The ν2/3 threshold is
discussed after the theorem.

Theorem 8.2 (Above threshold dynamics). For all s ∈ (1/2, 1), all λ0 > λ′ > 0, all integers
α ≥ 10 and all δ > 0, there exists a constant c00 = c00(s, λ0, λ

′, α, δ), a constant K0 = K0(s, λ0, λ
′),

and a constant ν0 = ν0(s, λ0, λ
′, α, δ) such that for all δ1 > 0 sufficiently small relative to δ, all

ν ≤ ν0, c0 ≤ c00, and ε < ν2/3+δ, if uin ∈ L2 is a divergence-free vector field that can be written
uin = uS + uR (both also divergence-free) with

‖uS‖Gλ0;s + eK0ν
− 3s

2(1−s) ‖uR‖H3 ≤ ε, (8.9)

then the unique, classical solution to (8.1) with initial data uin exists at least until time TF = c0ε
−1

and the following estimates hold with all implicit constants independent of ν, ε, c0 and t:

(i) Transient growth of the streak for t < TF :∥∥u1(t)− eνt∆ (u1(0)− tu2(0))
∥∥
Gλ′;s . c2

0 (8.10)∥∥u2(t)− eνt∆u2(0)
∥∥
Gλ′;s +

∥∥u3(t)− eνt∆u3(0)
∥∥
Gλ′;s . c0ε; (8.11)

(ii) uniform control of the background streak for t < TF :

‖u1(t)‖Gλ′;s . ε〈t〉 (8.12a)

‖u2(t)‖Gλ′;s + ‖u3(t)‖Gλ′;s . ε; (8.12b)

(iii) the rapid convergence to a streak by the mixing-enhanced dissipation and inviscid damping of
x-dependent modes:

‖u1, 6=(t, x+ ty + tψ(t, y, z), y, z)‖Gλ′;s .
εtδ1

〈νt3〉α
(8.13a)

‖u3, 6=(t, x+ ty + tψ(t, y, z), y, z)‖Gλ′;s .
ε

〈νt3〉α
(8.13b)

‖u2, 6=(t, x+ ty + tψ(t, y, z), y, z)‖Gλ′;s .
ε

〈t〉〈νt3〉α
, (8.13c)

where ψ(t, y, z) is an O(εt) correction to the mixing.

The fact that we prove results for initial data as large as ν2/3+δ shows that the streak growth
scenario for transition is generic even for initial data which is far larger than the O(ν) threshold,
at least for data which is sufficiently regular. We are not aware of the 2/3 exponent appearing
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anywhere in the applied mathematics or physics literature previously despite being a threshold of
natural interest. This is likely because it is very hard to estimate convincingly. In [BGM15b], the
3D toy model which is analogous to (6.8) is used to estimate this exponent, and to design the norm
necessary to prove it (note that these heuristics would not be very convincing without Theorem 8.2
and its proof to back it up). Basically, the toy model suggests that the natural time-scale before a
general x-dependent solution could potentially become fully nonlinear, τNL, is at least τNL & ε−1/2.
On the other hand, the enhanced dissipation occurs on time-scales like τED ∼ ν−1/3. Hence, if the
enhanced dissipation is to dominate the 3D effects and relax the solution to a streak, then we need
the latter time scale to be shorter than the former:

τED ∼ ν−1/3 � ε−1/2 . τNL. (8.14)

This is the origin of the requirement ε . ν2/3+δ (the δ > 0 is to provide a little technical room to
work with in the estimates). After t � τED the solution is very close to a streak and, due to the
lift-up effect, in general u1(t) is growing like ε〈t〉 until times t ∼ ε−1, at which point the streak will
become fully nonlinear (see [BGM15a, BGM15b, RSBH98, Cha02] and the references therein).

8.4 Brief summary of the proof

The proofs of Theorems 8.1 and 8.2 are quite intricate and depend on a lot of subtle cancellation
structures hidden in the equations. However, we can briefly outline the main ideas here.

8.4.1 New dependent variables

Although quite unusual relative to many linear and formal weakly nonlinear studies (see e.g. [Cha02,
SH01]) we found it natural to define the full set of auxillary unknowns qi = ∆ui for i = 1, 2, 3. A
computation shows that (qi) solves

∂tq
1 + y∂xq

1 + 2∂xyu1 + u · ∇q1 = −q2 + 2∂xxu2 − qj∂ju1 + ∂x (∂iuj∂jui)− 2∂iuj∂iju1 + ν∆q1

∂tq
2 + y∂xq

2 + u · ∇q2 = −qj∂ju2 + ∂y (∂iuj∂jui)− 2∂iuj∂iju2 + ν∆q2

∂tq
3 + y∂xq

3 + 2∂xyu3 + u · ∇q3 = 2∂zxu2 − qj∂ju3 + ∂z (∂iuj∂jui)− 2∂iuj∂iju3 + ν∆q3.
(8.15)

The linear terms have disappeared from the q2 equation, leaving only the nonlinear terms on the
RHS. Note that the equations on q1 and q3 are far less favorable in that they contain linear terms
which are associated with the vortex stretching. From the linear level, we expect q1,3 to grow
quadratically (as otherwise, u1,3 would experience inviscid damping!).

8.4.2 New independent variables

As in the 2D works, we need to find a good coordinate system to work in to correct for the mixing
due to the Couette flow as well as u1, which will be very large relative to ν. Moreover, we have
a much less clear view of what the change should look like, however, as in 2D where we want the
derivatives to transform well, we can start with the following ansatz:

X = x− ty − tψ(t, y, z)
Y = y + ψ(t, y, z)
Z = z,

Consider the simple convection diffusion equation on a passive scalar f(t, x, y, z)

∂tf + y∂xf + u · ∇f = ν∆f.
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Denoting F (t,X, Y, Z) = f(t, x, y, z) and U(t,X, Y, Z) = u(t, x, y, z), and ∆t and ∇t for the expres-
sions for ∆ and ∇ in the new coordinates, this simple equation becomes

∂tF +

u1 − t(1 + ∂yψ)u2 − t∂zψu3 − d
dt(tψ) + νt∆ψ

(1 + ∂yψ)u2 + ∂zψu3 + ∂tψ − ν∆ψ
u3

 · ∇X,Y,ZF = ν∆̃tF, (8.16)

where ∆̃t is a variant of ∆t without lower order terms:

∆̃tF = ∂XXF + (1 + ∂yψ)2(∂Y − t∂X)2F + 2∂zψ(∂Y − t∂X)∂ZF.

The shear flow in the first component of the velocity field is the largest and slowest decaying
contribution. Hence, just like in the 2D works, it makes sense to choose the coordinates to cancel
it:

d

dt
(tψ) + u2t∂yψ + u3t∂zψ = u1 − tu2 + νt∆ψ.

Unlike perhaps in [BM13], this change would be rather difficult to guess just based on intuition.
As in 2D, we want to express this PDE in terms of entirely (Y,Z) variables rather than (y, z).
The way this is done in 3D is analogous to, but not quite the same, as it is done in 2D. Write
U i(t,X, Y, Z) = ui(t, x, y, z) (as usual, consider X,Y, Z as functions of (x, y, z) or vice versa). We
recast this equation on ψ in terms of C(t, Y, Z) = ψ(t, y, z) and the auxillary unknown g = 1

t (U
1
0−C)

(as in 2D, this roughly measures the time-oscillations of C). A variety of cancellations which take
advantage of the precise structures give{

∂tC + Ũ0 · ∇Y,ZC = g − U2
0 + ν∆̃tC,

∂tg + Ũ0 · ∇Y,Zg = −2
t g −

1
t

(
U6= · ∇tU1

6=

)
+ ν∆̃tg,

(8.17)

where Ũ =

U1
6= − t(1 + ψy)U

2
6= − tψzU3

6=
(1 + ψy)U

2
6= + ψzU

3
6= + g

U3

. Unlike in 2D, we do estimates on the PDE for C and

then use suitable nonlinear combinations of derivatives of C to recover the coefficients ∂iψ that
appear in the PDE (see [BGM15a] or re-derive on your own for more information). This procedure
turns out to be better suited in 3D; note that in 3D the regularity gap between qi and ψ is different
than between ω and v in 2D (a small but important distinction when dealing with the coordinate
transforms).

Coming back to (8.15), we further derive in the new coordinates (Q(t,X, Y, Z) = q(t, x, y, z)).
Q1
t + Ũ · ∇X,Y,ZQ1 = −Q2 − 2∂tXY U

1 + 2∂XXU
2 −Qj∂tjU1 − 2∂tiU

j∂tijU
1 + ∂X(∂tiU

j∂tjU
i) + ν∆̃tQ

1

Q2
t + Ũ · ∇X,Y,ZQ2 = −Qj∂tjU2 − 2∂tiU

j∂tijU
2 + ∂tY (∂tiU

j∂tjU
i) + ν∆̃tQ

2

Q3
t + Ũ · ∇X,Y,ZQ3 = −2∂tXY U

3 + 2∂tXZU
2 −Qj∂tjU3 − 2∂tiU

j∂tijU
3 + ∂tZ(∂tiU

j∂tjU
i) + ν∆̃tQ

3,

(8.18)

We perform most of our estimates on the coupled systems (8.18) and (8.17), recovering U i from Qi.

8.4.3 Choice of the norms

The proofs of Theorems 8.1 and 8.2 rely on a bootstrap argument as the 2D works did. The norms
are quite complicated; we will only discuss those used in the proof of Theorem 8.1 as the norms
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used in Theorem 8.2 are even more complicated and will be too technical to motivate or explain
(although both are primarily motivated by the same 3D toy model). Each Qi is measured with a
slightly different norm, of the form

∥∥Ai(t,∇)Qi(t)
∥∥

2
where Ai(t,∇) are special Fourier multipliers.

Let us just describe the norm used to measure Q3, the rest are similar (but not quite the same):

A3
k(t, η, `) = eλ(t)|k,η,l|s〈k, η, l〉σ eµ|η|

1/2

w(t, η)wL(t, k, η, l)

(
1k 6=0 min

(
1,
〈η, l〉2

t2

)
+ 1k=0

)
.

We now comment on the different components: eλ(t)|k,η,`|s corresponds to a Gevrey-1
s norm, with

decreasing radius, while 〈k, η, σ〉σ gives a Sobolev correction (mainly for technical convenience).
The next factors correspond to important physical effects. The factor w comes from the 3D toy
model, described in [BGM15a]. Notice that, unlike in 2D, it is independent of k. Hence, unlike
the 2D works, there is no strange unbalancing between critical and non-critical modes (there is,
unfortunately, in the proof of Theorem 8.2 in [BGM15b]). The factor w is otherwise similar to the
w in the 2D works (despite the fact that the 3D toy model is different). Roughly speaking, it is
taken to satisfy the following for |k|2 . |η| (hence

√
|η| . t . |η|),

∂tw(t, η)

w(t, η)
∼ 1

1 + |t− η
k |
, when

∣∣t− η
k

∣∣ . η
k2

and w(1, η) = 1.

As in 2D, w is increasing and from Stirling’s formula this this gives a growth like w(2|η|,η)
w(1,η) ≈ e

µ
2
|η|1/2

(up to a small polynomial correction), hence the choice of the numerator in eµ|η|
1/2

w(t,η) , and the Gevrey-
2 regularity requirement. The multiplier wL is a uniformly bounded multiplier that corrects for the
anisotropy of the bounded growth experienced due to linear pressure effects (the L stands for
‘linear’); this multiplier is not quite the same as, but very similar to, the multiplier we used in the
proof of Theorem 5.2 above regarding the linearized 2D problem.

The last factor in the norm corresponds to a growth occuring for times large compared to the
frequency due to the linear vortex stretching. That Q1 and Q3 ultimately grow at least quadratically
is evident on the linear level: no inviscid damping occurs in general on u1,3. That the growth can
(and should) be taken only for frequencies small relative to time is far from clear and is predicted
by the 3D toy model; see [BGM15a] for more discussion on this.

While the norm which was just sketched corresponds to the highest regularity estimate, estimates
at lower regularity are also needed, in particular to quantify the enhanced dissipation. For this, we
use an approach similar to that employed for 2D NSE in [BMV14], and define a set of semi-norms
of the type

∥∥Aν;i(t,∇)Qi
∥∥

2
for specially designed Fourier multipliers Aν;i(t,∇). For example, for

Q3:

Aν;3 = eλ(t)|k,η,`|s〈k, η, σ〉β〈D(t, η)〉α 1

wL(t, k, η, l)
min

(
1,
〈η, l〉2

t2

)
1k 6=0,

where D(t, η) & νt3, is the same as in 2D.

8.4.4 Basic weakly nonlinear heuristics

There are several nonlinear mechanisms which have the potential to cause instabilities other than
the lift-up effect and many have been proposed as important in the applied mathematics and
physics literature for understanding transition, see e.g. [Cra71, TTRD93, RSBH98, SH01] and
the references therein. We are particularly worried mechanisms similar to the 2D echo efffect
[TTRD93, TE05, Wal95, BM13]: nonlinear interactions that repeatedly excite growing linear modes.
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We will classify the main effects by the x frequency of the interacting functions: denote for instance
0· 6=→ 6= for the interaction of a zero mode (in x) and a non-zero mode (in x) giving a non-zero
mode (in x), and similarly, with obvious notations, 0 · 0→ 0, 6= · 6=→ 6=, and 6= · 6=→ 0.

(2.5NS) (0 · 0 → 0) For 2.5D Navier-Stokes, these terms arise from the 2D nonlinear behavior of the
streaks. Since we have global regularity for 2D Navier-Stokes, we are generally not so worried
about these terms (although subtleties arise in [BGM15b]).

(SI) (0· 6=→ 6=) For secondary instability, this effect is the transfer of momentum from the large
zero-modes in x to non-zero modes in x. These involve a zero frequency and non-zero frequency
k interacting to amplify the same mode k, or the k mode of a different component, e.g. u1

0 and
u3
k together force u2

k. These interactions are those that arise when linearizing an x-dependent
perturbation of a streak and so are what ultimately give rise to the secondary instabilities
observed in larger streaks (hence the terminology) [RSBH98, Cha02].

(3DE) (6= · 6=→ 6=) For three dimensional echoes, these effects are 3D variants of the 2D hydro-
dynamic echo phenomenon: nonlinear interactions of x-dependent modes forcing unmixing
modes [Mor98, Van02, BM13]. In 3D, the range of possible interactions is much wider (see
e.g. [Cra71, SH01, BGM15a, BGM15b]). This involves two non-zero frequencies k1, k2 inter-
acting to force mode k1 + k2 with k1, k2, k1 + k2 6= 0. Since these involve the interaction of
only non-zero frequencies, they should only be problematic for short times: for t & ν−1/3, this
effect should be wiped out by the enhanced dissipation.

(F) (6= · 6=→ 0) For nonlinear forcing, this is the effect of the forcing from x-dependent modes
back into x-independent modes. This involves two non-zero frequencies k and −k interacting
to force a zero frequency (in general this could involve a variety of the components). Similar
to (3DE), this effect is over-powered by the enhanced dissipation after t & ν−1/3.

All of these are coupled to one another, and one can imagine bootstrap mechanisms involving
several of them. It is the need to consider exactly these kinds of nonlinear bootstraps, the ones
which involve all effects simultaneously, that eventually defines the toy model and precipitates the
Gevrey-2 regularity requirement. The toy model also helps to determine the design of the norms
we are using. Unfortunately, the toy model in 3D is significantly more complicated than in 2D (it is
a 6x6 ODE, though not fully coupled), and we do not have time to derive and discuss it here. In a
general sense, the derivation is analogous to how we derived (6.8) in §6.2, however, identifying which
of the plethora of nonlinear terms are really respresentative of the “worst” and which can really be
ignored is a lot trickier and requires a bit of intuition and patience. Moreover, the resulting system
cannot really be solved by hand in any approximate sense at all, and figuring out approximate super
solutions also requires a bit of intuition; in [BM13], we orginally approximately solved the 2D toy
model (6.8) first and then found the simplified super-solutions. See [BGM15a] for information on
this and all of the many details regarding the proof...
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[KŠ14] A. Kiselev and V. Šverák. Small scale creation for solutions of the incompressible
two-dimensional Euler equation. Annals of Mathematics, 180(3):1205–1220, 2014.

[Lan46] L. Landau. On the vibration of the electronic plasma. J. Phys. USSR, 10(25), 1946.

[Lan80] MT Landahl. A note on an algebraic instability of inviscid parallel shear flows. Journal
of Fluid Mechanics, 98(02):243–251, 1980.

50



[Lin88] R. Lindzen. Instability of plane parallel shear flow (toward a mechanistic picture of
how it works). PAGEOPH, 126(1), 1988.

[Mor98] P. J. Morrison. Hamiltonian description of the ideal fluid. Rev. Modern Phys.,
70(2):467–521, 1998.

[MV11] Clément Mouhot and Cédric Villani. On Landau damping. Acta Math., 207(1):29–201,
2011.

[MWGO68] J. Malmberg, C. Wharton, C. Gould, and T. O’Neil. Plasma wave echo. Phys. Rev.
Lett., 20(3):95–97, 1968.

[Orr07] W. Orr. The stability or instability of steady motions of a perfect liquid and of a
viscous liquid, Part I: a perfect liquid. Proc. Royal Irish Acad. Sec. A: Math. Phys.
Sci., 27:9–68, 1907.

[Ray80] Lord Rayleigh. On the Stability, or Instability, of certain Fluid Motions. Proc. London
Math. Soc., S1-11(1):57, 1880.

[Rey83] O Reynolds. An experimental investigation of the circumstances which determine
whether the motion of water shall be direct or sinuous, and of the law of resistance in
parallel channels. Proc. R. Soc. Lond., (35):84, 1883.

[RS79] M. Reed and B. Simon. Methods of Modern Mathematical Physics I. Academic Press,
1979.

[RSBH98] S.C. Reddy, P.J. Schmid, J.S. Baggett, and D.S. Henningson. On stability of stream-
wise streaks and transition thresholds in plane channel flows. J. of Fluid Mechanics,
365:269–303, 1998.

[SH01] Peter J. Schmid and Dan S. Henningson. Stability and transition in shear flows, volume
142 of Applied Mathematical Sciences. Springer-Verlag, New York, 2001.

[Shn12] A. Shnirelman. On the analyticity of particle trajectories in the ideal incompressible
fluid. arXiv preprint arXiv:1205.5837, 2012.

[Squ33] HB Squire. On the stability for three-dimensional disturbances of viscous fluid flow be-
tween parallel walls. Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character, pages 621–628, 1933.

[Ste93] E. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals. Princeton University Press, 1993.

[Tao06] T. Tao. Nonlinear dispersive equations, volume 106. American Mathematical Society,
Providence, RI, 2006.

[TE05] Lloyd Nicholas Trefethen and Mark Embree. Spectra and pseudospectra: the behavior
of nonnormal matrices and operators. Princeton University Press, 2005.

[TTRD93] L.N. Trefethen, A.E. Trefethen, S.C. Reddy, and T.A. Driscoll. Hydrodynamic stability
without eigenvalues. Science, 261(5121):578–584, 1993.

[Van02] J. Vanneste. Nonlinear dynamics of anisotropic disturbances in plane Couette flow.
SIAM J. Appl. Math., 62(3):924–944 (electronic), 2002.

51



[VMW98] J. Vanneste, P.J. Morrison, and T. Warn. Strong echo effect and nonlinear transient
growth in shear flows. Physics of Fluids, 10:1398, 1998.

[Wal95] Fabian Waleffe. Transition in shear flows. nonlinear normality versus non-normal lin-
earity. Physics of Fluids (1994-present), 7(12):3060–3066, 1995.

[Yag12] A.M. Yaglom. Hydrodynamic Instability and Transition to Turbulence, volume 100.
Springer, 2012.

[YD02] J.H. Yu and C.F. Driscoll. Diocotron wave echoes in a pure electron plasma. IEEE
Trans. Plasma Sci., 30(1), 2002.

[YDO05] J.H. Yu, C.F. Driscoll, and T.M. O‘Neil. Phase mixing and echoes in a pure electron
plasma. Phys. of Plasmas, 12(055701), 2005.

[Zil14a] C. Zillinger. Linear inviscid damping for monotone shear flows. arXiv:1410.7341, 2014.

[Zil14b] C. Zillinger. Linear inviscid damping for monotone shear flows in a finite periodic
channel, boundary effects, blow-up and critical Sobolev regularity. arXiv:1506.04010,
2014.

52


	Introduction
	Hydrodynamic stability: a bit of history and context
	Notions of stability

	2D inviscid planar shear flows and Rayleigh's theorem
	Arnold's nonlinear stability theorem for shear flows in a channel
	Mixing and dissipation in passive scalar flows at high Péclet number
	Passive scalar in Couette flow
	More general shear flows

	Linearized 2D Euler and Navier-Stokes equations revisited
	More general shear flows

	Nonlinear 2D Euler equations near the Couette flow
	Nonlinear coordinate transform
	Weakly nonlinear heuristics and the toy model
	The set up
	Basic energy estimates

	2D Navier-Stokes near Couette flow
	New nonlinear coordinate system
	Enhanced dissipation estimates

	Dynamics near the subcritical transition of the 3D Couette flow
	Streaks
	Linearized 3D Euler and Navier-Stokes
	Subcritical transition
	Brief summary of the proof


