2013 Summer Graduate Workshop, Cortona, Italy:
 Mathematical General Relativity
 Some Scalar Curvature Basics

Recall that for better or worse, we defined the curvature tensor as

$$
R(X, Y, Z)=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z,
$$

with $R\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right)=R_{i j k}^{\ell} \frac{\partial}{\partial x^{\ell}}$.
Also, recall that a comma in a subscript denotes partial differentiation (with respect to some coordinate), whereas a semicolon in a subscript denotes covariant differentiation. For example, if h is a (1,2)-tensor with components in a coordinate chart $h_{j k}^{i}$, then the covariant derivative ∇h is a (1,3)-tensor with components
$h_{j k ; \ell}^{i}:=\nabla h\left(d x^{i}, \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{\ell}}\right)=\left(\nabla_{\frac{\partial}{\partial x^{\ell}}} h\right)\left(d x^{i}, \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right)=h_{j k, \ell}^{i}+\Gamma_{m \ell}^{i} h_{j k}^{m}-\Gamma_{j \ell}^{m} h_{m k}^{i}-\Gamma_{k \ell}^{m} h_{j m}^{i}$.
Problem 1. Linearization of Scalar Curvature. Let $R(g)=g^{i j} R_{i j}$ be the scalar curvature of a metric (not necessarily Riemannian). Consider a variation $g(t)=g+t h$ of g in the direction of a symmetric (0,2)-tensor h (more generally, note that all you will use is that $g(t)$ is smooth in t, with $g(0)=g$ and $g^{\prime}(0)=h$. For small $t, g(t)$ is a metric. Define $L_{g}(h):=D R_{g}(h)=\left.\frac{d}{d t}\right|_{t=0} R(g(t))$.

Derive the scalar curvature formula

$$
R(g)=g^{i j} R_{i j}=g^{i j}\left(\Gamma_{i j, k}^{k}-\Gamma_{i k, j}^{k}+\Gamma_{k \ell}^{k} \Gamma_{i j}^{\ell}-\Gamma_{j \ell}^{k} \Gamma_{i k}^{\ell}\right)
$$

and use it to verify the identity

$$
L_{g}(h)=-\Delta_{g}\left(\operatorname{tr}_{g}(h)\right)+\operatorname{div}_{g}\left(\operatorname{div}_{g}(h)\right)-\langle h, \operatorname{Ric}(g)\rangle_{g} .
$$

Hints: One approach is to compute in normal coordinates at a point p, so that $g_{i j}(p)=\delta_{i j}$, as well as $\Gamma_{i j}^{k}(p)=0$, equivalently, $g_{i j, k}(p)=0$. Indicated below are some formulas to guide you, and which you should verify as you compute. We emphasize here and below that all quantities are evaluated at p. In such normal coordinates, we have at $p: h_{i j ; k \ell}=h_{i j, k \ell}-h_{m j} \Gamma_{i k, \ell}^{m}-h_{i m} \Gamma_{j k, \ell}^{m}$. From this, one shows that at p,

$$
\begin{aligned}
&-\Delta_{g}\left(\operatorname{tr}_{g}(h)\right)=-g^{k \ell} g^{i j} h_{i j ; k \ell}=-\sum_{i, k}\left(h_{i i, k k}-2 h_{k m} \Gamma_{i k, i}^{m}\right) \\
& \operatorname{div}_{g}\left(\operatorname{div}_{g}(h)\right)=g^{j \ell} g^{i k} h_{i j ; k \ell}=\sum_{i, k}\left(h_{i k, i k}-h_{k m} \Gamma_{i i, k}^{m}-h_{k m} \Gamma_{i k, i}^{m}\right) .
\end{aligned}
$$

To find the variation of the scalar curvature, express the scalar curvature in terms of Christoffel symbols, and take a time derivative, expand and turn the crank. To find the derivative of the inverse metric, note that if $A(t)$ is a smooth curve in $G L(n)$, then $\frac{d}{d t} A^{-1}(t)$ is easily computed from $A(t) A^{-1}(t)=I$ using the product rule.

Another approach is to note that $\left.\frac{d}{d t}\right|_{t=0} \Gamma_{i j}^{k}$ are the components $(\delta \Gamma)_{i j}^{k}$ of a tensor $\delta \Gamma$ (this follows from \#4 a on the earlier set on basic geometry problems), so that clearly the variation of the Ricci tensor is given by $\left.\frac{d}{d t}\right|_{t=0} R_{i j}=(\delta \Gamma)_{i j ; k}^{k}-(\delta \Gamma)_{i k ; j}^{k}$. One should now express $\delta \Gamma$ in terms of the covariant derivative of h.

Problem 2. Conformal deformation of scalar curvature.

a. Suppose $\left(M^{n}, g\right)$ is a Riemannian metric and $\tilde{g}=e^{\varphi} g$. Show that

$$
R(\tilde{g})=e^{-\varphi}\left(R(g)-(n-1) \Delta_{g} \varphi-\frac{1}{4}(n-1)(n-2)|\nabla \varphi|_{g}^{2}\right) .
$$

b. In case $n \geq 3$, if we write $e^{\varphi}=u^{\frac{4}{n-2}}$ for $u>0$, then

$$
R(\tilde{g})=u^{-\frac{n+2}{n-2}}\left(R(g) u-\frac{4(n-1)}{(n-2)} \Delta_{g} u\right)
$$

c. Let $c(n)=\frac{n-2}{4(n-1)}$ and $L_{g} u=\Delta_{g} u-c(n) R(g) u$ is the conformal Laplacian, show that the total scalar curvature of $\tilde{g}=u^{\frac{4}{n-2}} g$ is given by

$$
\int_{M} R(\tilde{g}) d v_{\tilde{g}}=c(n)^{-1} \int_{M}\left(|\nabla u|_{g}^{2}+c(n) R(g) u^{2}\right) d v_{g}
$$

Hint: Show that $d v_{\tilde{g}}=u^{\frac{2 n}{n-2}} d v_{g}$.

Problem 3. Volume expansion of geodesic balls.

a. Suppose $(V,\langle\rangle$,$) is an n$-dimensional real inner product space. Suppose that $T: V \rightarrow V$ is a self-adjoint linear operator. If $d \sigma$ is the Euclidean area measure, \mathbb{B}^{n} is the unit ball, and $\mathbb{S}^{n-1} \subset V$ is the unit sphere in V, then if vol is the Euclidean volume,

$$
\int_{x \in \mathbb{S}^{n-1}}\langle T(x), x\rangle d \sigma=\operatorname{trace}(T) \operatorname{vol}\left(\mathbb{B}^{n}\right) .
$$

b. If (M, g) is Riemannian and $p \in M$, let $B_{r}(p) \subset M$ be the geodesic ball of radius $r>0$ (for sufficiently small r). Then

$$
\operatorname{vol}_{g}\left(B_{r}(p)\right)=\operatorname{vol}\left(\mathbb{B}^{n}\right) r^{n}\left[1-\frac{\left.R(g)\right|_{p}}{6(n+2)} r^{2}+O\left(r^{3}\right)\right] .
$$

Hint: You may wish to observe and use $\operatorname{det}(I+t A)=1+t \operatorname{trace}(A)+O\left(t^{2}\right)$, along with Problem \#4c below.

Problem 4. Metric expansion in normal coordinates. Suppose that $\gamma(t)$ is a unit-speed geodesic, and that $J(t)$ is a Jacobi field along $\gamma: J^{\prime \prime}(t)=R\left(\gamma^{\prime}(t), J(t), \gamma^{\prime}(t)\right)$.
a. If R is the Riemann curvature tensor, show that

$$
J^{\prime \prime \prime}(t)=\left(\nabla_{\gamma^{\prime}(t)} R\right)\left(\gamma^{\prime}(t), J(t), \gamma^{\prime}(t)\right)+R\left(\gamma^{\prime}(t), J^{\prime}(t), \gamma^{\prime}(t)\right) .
$$

b. Suppose $J(0)=0$. Let $\chi(t)=\langle J(t), J(t)\rangle$. Derive the fourth-order Taylor expansion

$$
\chi(t)=\sum_{k=0}^{4} \frac{\chi^{(k)}(0)}{k!} t^{k}+\mathcal{E}(t)=\left|J^{\prime}(0)\right|^{2} t^{2}-\frac{1}{3}\left\langle R\left(\gamma^{\prime}(0), J^{\prime}(0), J^{\prime}(0), \gamma^{\prime}(0)\right)\right\rangle t^{4}+O\left(t^{5}\right) .
$$

c. Suppose (M, g) is a Riemannian manifold and $p \in M$. Show that in normal coordinates centered at p (so $\left.x^{i}(p)=0\right)$

$$
g_{i j}(x)=\delta_{i j}-\frac{1}{3} R_{k i j \ell} x^{k} x^{\ell}+O\left(|x|^{3}\right) .
$$

Hint: In normal coordinates $\left(x^{i}\right)$ centered at p, consider a unit speed radial geodesic $\gamma(t)$ and the vector field $W(t)=t W^{i} \frac{\partial}{\partial x^{i}}$ along γ, where W^{i} are constants. Show that $W(t)$ is a Jacobi field along γ with $W^{\prime}(0)=\left.W^{i} \frac{\partial}{\partial x^{i}}\right|_{p}$. One way to do this is to build a variation $\Gamma(s, t)$ of $\gamma=\Gamma(0, \cdot)$ through geodesics. In any case, you might first observe that in normal coordinates, the curve β with components $\beta^{i}(t)=t V^{i}$ is a geodesic with $\beta(0)=p$ and $\beta^{\prime}(0)=\left.V^{i} \frac{\partial}{\partial x^{i}}\right|_{p}$.
Problem 5. Geometric formula for Gaussian curvature. Let (M, g) be a surface with a Riemannian metric g. Consider an orthonormal basis $\mathbf{e}_{1}, \mathbf{e}_{2}$ of $T_{p} M$. Note that the Gauss curvature at p is just $K(p)=R\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{2}, \mathbf{e}_{1}\right)$, where R is the Riemann tensor. Consider a normal neighborhood of radius $a>0$ about p, with normal coordinates (x, y) built off of the orthonormal basis $\mathbf{e}_{1}, \mathbf{e}_{2}$ of $T_{p} M: \quad(x, y) \mapsto \exp _{p}\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}\right)$. Define geodesic polar coordinates by $(r, \theta) \mapsto f(r, \theta)=\exp _{p}\left(r \cos \theta \mathbf{e}_{1}+r \sin \theta \mathbf{e}_{2}\right)$. Note that the change of coordinates map is just $(r, \theta) \mapsto(x, y)=(r \cos \theta, r \sin \theta)$, which shows that the map f, which is clearly smooth for $r<a$ and all θ, is a diffeomorphism for $0<r<a$ and $\theta \in I$, where I in any open interval of length at most 2π. Note that by the Gauss' Lemma, the metric components in geodesic polar coordinates are $g_{r r}=1, g_{r \theta}=0$ and $g_{\theta \theta}=\left|\frac{\partial f}{\partial \theta}\right|^{2}$. Since the radial curves of constant θ on M are geodesics, for any $\theta_{0}, J(r)=\frac{\partial f}{\partial \theta}\left(r, \theta_{0}\right)$ is a Jacobi field along the radial geodesic $r \mapsto \gamma(r)=f\left(r, \theta_{0}\right)$.
a. For any θ_{0}, show that $J^{\prime}(0) \perp \gamma^{\prime}(0)$.
b. Use Problem 4 to show that $g_{\theta \theta}(r, \theta)=r^{2}-\frac{K(p)}{3} r^{4}+\mathcal{E}(r, \theta)$, where $\mathcal{E}(r, \theta)=O\left(r^{5}\right)$ uniformly in θ, i.e. $R(r, \theta) \leq C r^{5}, C$ can be chosen independent of r and θ. Use the Taylor expansion $(1+x)^{\alpha}=1+\alpha x+O\left(x^{2}\right)$ to derive

$$
\sqrt{g_{\theta \theta}}(r, \theta)=r-\frac{K(p)}{3!} r^{3}+O\left(r^{4}\right) .
$$

c. Let $L(r)$ be the length of a geodesic circle of radius r about p, and let $A(r)$ be the area enclosed by this circle, both computed using the metric g. Show that

$$
\lim _{r \rightarrow 0^{+}} \frac{3}{\pi} \frac{2 \pi r-L(r)}{r^{3}}=K(p)=\lim _{r \rightarrow 0^{+}} \frac{12}{\pi} \frac{\pi r^{2}-A(r)}{r^{4}} .
$$

d. Let D be the unit disk in the plane: $D=\left\{(x, y): x^{2}+y^{2}<1\right\}$. Consider the hyperbolic metric

$$
g_{H}=\frac{4}{\left(1-\left(x^{2}+y^{2}\right)\right)^{2}}\left(d x^{2}+d y^{2}\right)=\frac{4}{\left(1-\rho^{2}\right)^{2}}\left(d \rho^{2}+\rho^{2} d \theta^{2}\right)
$$

where (ρ, θ) are standard polar coordinates on D. By solving the differential equation $\frac{2 d \rho}{1-\rho^{2}}=d r$, show how to re-write the hyperbolic metric as $g_{H}=d r^{2}+\sinh ^{2} r d \theta^{2}$. Use this along with the formulas above to show $K=-1$ at the origin of coordinates (of course, $K=-1$ everywhere). (Recall that $d r^{2}=d r \otimes d r$.)

