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Recall that for better or worse, we defined the curvature tensor as

R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,
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Also, recall that a comma in a subscript denotes partial differentiation (with respect to some
coordinate), whereas a semicolon in a subscript denotes covariant differentiation. For example, if
h is a (1, 2)-tensor with components in a coordinate chart hijk, then the covariant derivative ∇h is
a (1, 3)-tensor with components
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Problem 1. Linearization of Scalar Curvature. Let R(g) = gijRij be the scalar curvature
of a metric (not necessarily Riemannian). Consider a variation g(t) = g + th of g in the direction
of a symmetric (0, 2)-tensor h (more generally, note that all you will use is that g(t) is smooth in t,

with g(0) = g and g′(0) = h). For small t, g(t) is a metric. Define Lg(h) := DRg(h) = d
dt

∣∣∣
t=0

R(g(t)).

Derive the scalar curvature formula

R(g) = gijRij = gij
(

Γkij,k − Γkik,j + Γkk`Γ
`
ij − Γkj`Γ

`
ik

)
and use it to verify the identity

Lg(h) = −∆g(trg(h)) + divg(divg(h))− 〈h,Ric(g)〉g.

Hints: One approach is to compute in normal coordinates at a point p, so that gij(p) = δij , as well
as Γkij(p) = 0, equivalently, gij,k(p) = 0. Indicated below are some formulas to guide you, and which
you should verify as you compute. We emphasize here and below that all quantities are evaluated
at p. In such normal coordinates, we have at p: hij;k` = hij,k`−hmjΓmik,`−himΓmjk,`. From this, one
shows that at p,

−∆g(trg(h)) = −gk`gijhij;k` = −
∑
i,k

(hii,kk − 2hkmΓmik,i)

divg(divg(h)) = gj`gikhij;k` =
∑
i,k

(hik,ik − hkmΓmii,k − hkmΓmik,i).

To find the variation of the scalar curvature, express the scalar curvature in terms of Christoffel
symbols, and take a time derivative, expand and turn the crank. To find the derivative of the
inverse metric, note that if A(t) is a smooth curve in GL(n), then d

dtA
−1(t) is easily computed from

A(t)A−1(t) = I using the product rule.

Another approach is to note that d
dt

∣∣∣
t=0

Γkij are the components (δΓ)kij of a tensor δΓ (this fol-

lows from #4 a on the earlier set on basic geometry problems), so that clearly the variation of the

Ricci tensor is given by d
dt

∣∣∣
t=0

Rij = (δΓ)kij;k − (δΓ)kik;j . One should now express δΓ in terms of the

covariant derivative of h.



Problem 2. Conformal deformation of scalar curvature.

a. Suppose (Mn, g) is a Riemannian metric and g̃ = eϕg. Show that

R(g̃) = e−ϕ
(
R(g)− (n− 1)∆gϕ−

1

4
(n− 1)(n− 2)|∇ϕ|2g

)
.

b. In case n ≥ 3, if we write eϕ = u
4

n−2 for u > 0, then

R(g̃) = u−
n+2
n−2

(
R(g)u− 4(n− 1)

(n− 2)
∆gu

)
.

c. Let c(n) = n−2
4(n−1) and Lgu = ∆gu− c(n)R(g)u is the conformal Laplacian, show that the total

scalar curvature of g̃ = u
4

n−2 g is given by∫
M
R(g̃) dvg̃ = c(n)−1

∫
M

(
|∇u|2g + c(n)R(g)u2

)
dvg.

Hint: Show that dvg̃ = u
2n
n−2 dvg.

Problem 3. Volume expansion of geodesic balls.

a. Suppose (V, 〈 , 〉) is an n-dimensional real inner product space. Suppose that T : V → V is a
self-adjoint linear operator. If dσ is the Euclidean area measure, Bn is the unit ball, and Sn−1 ⊂ V
is the unit sphere in V , then if vol is the Euclidean volume,∫

x∈Sn−1

〈T (x), x〉 dσ = trace(T ) vol(Bn).

b. If (M, g) is Riemannian and p ∈ M , let Br(p) ⊂ M be the geodesic ball of radius r > 0 (for
sufficiently small r). Then

volg(Br(p)) = vol(Bn)rn
[
1− R(g)|p

6(n+ 2)
r2 +O(r3)

]
.

Hint: You may wish to observe and use det(I + tA) = 1 + t trace(A) +O(t2), along with Problem
#4c below.

Problem 4. Metric expansion in normal coordinates. Suppose that γ(t) is a unit-speed
geodesic, and that J(t) is a Jacobi field along γ: J ′′(t) = R(γ′(t), J(t), γ′(t)).

a. If R is the Riemann curvature tensor, show that

J ′′′(t) = (∇γ′(t)R)(γ′(t), J(t), γ′(t)) +R(γ′(t), J ′(t), γ′(t)).

b. Suppose J(0) = 0. Let χ(t) = 〈J(t), J(t)〉. Derive the fourth-order Taylor expansion

χ(t) =
4∑

k=0

χ(k)(0)

k!
tk + E(t) = |J ′(0)|2t2 − 1

3
〈R(γ′(0), J ′(0), J ′(0), γ′(0))〉t4 +O(t5).



c. Suppose (M, g) is a Riemannian manifold and p ∈M . Show that in normal coordinates centered
at p (so xi(p) = 0)

gij(x) = δij −
1

3
Rkij`x

kx` +O(|x|3).

Hint: In normal coordinates (xi) centered at p, consider a unit speed radial geodesic γ(t) and the
vector field W (t) = tW i ∂

∂xi
along γ, where W i are constants. Show that W (t) is a Jacobi field

along γ with W ′(0) = W i ∂
∂xi

∣∣∣
p
. One way to do this is to build a variation Γ(s, t) of γ = Γ(0, ·)

through geodesics. In any case, you might first observe that in normal coordinates, the curve β

with components βi(t) = tV i is a geodesic with β(0) = p and β′(0) = V i ∂
∂xi

∣∣∣
p
.

Problem 5. Geometric formula for Gaussian curvature. Let (M, g) be a surface with
a Riemannian metric g. Consider an orthonormal basis e1, e2 of TpM . Note that the Gauss
curvature at p is just K(p) = R(e1, e2, e2, e1), where R is the Riemann tensor. Consider a nor-
mal neighborhood of radius a > 0 about p, with normal coordinates (x, y) built off of the or-
thonormal basis e1, e2 of TpM : (x, y) 7→ expp(xe1 + ye2). Define geodesic polar coordinates
by (r, θ) 7→ f(r, θ) = expp(r cos θ e1 + r sin θ e2). Note that the change of coordinates map is
just (r, θ) 7→ (x, y) = (r cos θ, r sin θ), which shows that the map f , which is clearly smooth for
r < a and all θ, is a diffeomorphism for 0 < r < a and θ ∈ I, where I in any open interval of
length at most 2π. Note that by the Gauss’ Lemma, the metric components in geodesic polar

coordinates are grr = 1, grθ = 0 and gθθ =
∣∣∣∂f∂θ ∣∣∣2. Since the radial curves of constant θ on M are

geodesics, for any θ0, J(r) = ∂f
∂θ (r, θ0) is a Jacobi field along the radial geodesic r 7→ γ(r) = f(r, θ0).

a. For any θ0, show that J ′(0) ⊥ γ′(0).

b. Use Problem 4 to show that gθθ(r, θ) = r2 − K(p)
3 r4 + E(r, θ), where E(r, θ) = O(r5) uniformly

in θ, i.e. R(r, θ) ≤ Cr5, C can be chosen independent of r and θ. Use the Taylor expansion
(1 + x)α = 1 + αx+O(x2) to derive

√
gθθ(r, θ) = r − K(p)

3!
r3 +O(r4).

c. Let L(r) be the length of a geodesic circle of radius r about p, and let A(r) be the area enclosed
by this circle, both computed using the metric g. Show that

lim
r→0+

3

π

2πr − L(r)

r3
= K(p) = lim

r→0+

12

π

πr2 −A(r)

r4
.

d. Let D be the unit disk in the plane: D = {(x, y) : x2 + y2 < 1}. Consider the hyperbolic metric

gH =
4

(1− (x2 + y2))2
(dx2 + dy2) =

4

(1− ρ2)2
(dρ2 + ρ2dθ2)

where (ρ, θ) are standard polar coordinates on D. By solving the differential equation 2dρ
1−ρ2 = dr,

show how to re-write the hyperbolic metric as gH = dr2 + sinh2 r dθ2. Use this along with the
formulas above to show K = −1 at the origin of coordinates (of course, K = −1 everywhere).
(Recall that dr2 = dr ⊗ dr.)


