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Some Basic Problems on Riemannian Geometry

Here are some basic problems from Riemannian geometry. The problems aren’t supposed to be
overly challenging, but rather a reader’s guide for self-study, if you’re trying to learn basics quickly,
or trying to brush up. We use the Einstein summation convention throughout—sum over a pair of
upper and lower repeated indices. Our convention for the Riemann curvature tensor agrees with
that of John M. Lee’s book, for instance (but is opposite in sign from that used in DoCarmo or
O’Neill)—also watch the index convention:
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From the definition of curvature, we immediately get the vector field version of the Ricci formula:
Zi;jk − Zi;kj = Z`Rikj`. The Ricci tensor in DoCarmo and Lee agree, which means the way they are
defined from the Riemann tensor is slightly different to account for sign. In our convention,
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Problems.

1. If (M, g) is a Riemannian metric with Levi-Civita connection ∇. The Hessian of u is defined by
Hessgu = ∇(du). It is a (0, 2)-tensor. The Laplacian is the trace of the Hessian: ∆gu = trg(Hessgu).

Show that Hessgu(X,Y ) = Y [X[u]]−∇YX[u], where X[u] = du(X) is the directional derivative of
u in the direction X. Conclude that the Hessian is symmetric.

2. a. If T is a (1, 2)-tensor field on (M, g). If the components of T in a coordinate system (xi) are
T ijk, i.e. T = T ijk
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⊗ dxj ⊗ dxk, then the components T ijk;` of ∇T satisfy
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b. If ∇ is the Levi-Civita connection associated to (M, g), show that gij;k = 0 and gij;k = 0.

3. Let γ : I → (M, g) be a smooth curve, and let 0 ∈ I. Let Pt : Tγ(0)M → Tγ(t)M be the par-
allel transport operator. If V is a smooth vector field along γ, show that the covariant derivative
DV
dt
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P−1t (V (t)). (Hint: use an orthonormal parallel frame field e1(t), . . . , en(t) along γ.)

4. In this problem we will be considering connections ∇ on M (i.e. on the tangent bundle of M).
The connections will not necessarily be the Levi-Civita connections coming from metrics.

a. If ∇ and ∇̂ are two connections on M . Show that S(X,Y ) = ∇XY − ∇̂XY is tensorial in both
X and Y (i.e. it is C∞-linear in X and Y ).



b. If ∇ is a connection on M , show that τ(X,Y ) = ∇XY −∇YX − [X,Y ] is tensorial in X and Y .
τ is the torsion tensor.

S and τ each determine a (1, 2)-tensor, e.g. (θ,X, Y ) 7→ θ(τ(X,Y )), where θ is a one-form.

c. For a connection ∇, we can define for any (smooth) function u on M , Hess(u) = ∇(du) = ∇2u.
Prove that ∇ is torsion-free if and only if Hess(u) is symmetric for all smooth u.

5. Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇. For any vector field X,
∇X is a (1, 1) tensor: (θ, Y ) 7→ θ(∇YX), whose components are Xi

;j . The divergence of X is

the contraction of ∇X; in coordinates: divg(X) = Xi
;i. Recall also the interior product : if ω is a

k-form and X is a vector, then ιX(ω) := ω(X, . . .) is a (k− 1)-form. Furthermore, for each p ∈M ,
there is a neighborhood U of p (e.g. a coordinate neighborhood), on which there is an n-form ω,
a local volume form, which satisfies ω(e1, . . . , en) = ±1 for any orthonormal basis {e1, . . . , en} of
TqM , q ∈ U .

a. In a coordinate neighborhood U ⊂ M , one can perform Gram-Schmidt on the coordinate basis
fields to produce a smooth orthonormal frame field {E1, . . . En} on U . If θ1, . . . , θn are the dual
frame fields, show that ω = θ1 ∧ · · · ∧ θn is a local volume form. Show furthermore that in local
coordinates, ω = ±

√
det (gij) dx

1 ∧ · · · ∧ dxn.

b. If ω is a (local) volume form on M , show that d(ιXω) = divg(X) ω.

b. Assume M is oriented with global volume form ω. If ∂M is nonempty, give it the induced
orientation with induced volume measure σ. If ν is the outward unit normal to the boundary of
M , then show

∫
M

divgXω =
∫
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g(X, ν) σ. Show that the analogous formula holds in the general

case (even if M were not orientable) if the form ω is replaced by the volume measure dµg (and
induced measure dσg on the boundary), where in local coordinates dµg =

√
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dx = dx1 · · · dxn is the usual measure on Rn.

c. Let det g = det(gij). Show that ∆gu = 1√
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d. Suppose ∆gu = −λu for some nontrivial (smooth) function u on a closed Riemannian manifold
(M, g). Show that λ ≥ 0. In case λ = 0, what is u?

6. a. Prove the Ricci formula: if α is a one-form, then αi;jk − αi;kj = α`R
`
jki.

b. Use the Ricci formula to prove the following, for smooth functions u:

g(gradg(∆gu),∇u) + |Hessgu|2g + Ricg(gradgu, gradgu) =
1

2
∆g(|gradgu|2g).

7. Let E1, . . . , En be a local frame field with dual frame θ1, . . . , θn. Let ∇ be a connection on M .
Since ∇XY is tensorial in X, there is a matrix of one-forms ω j

i so that ∇XEi = ω j
i (X)Ej . Fur-

thermore, from the torsion tensor τ above, we construct torsion two-forms τ j given by τ(X,Y ) =
τ j(X,Y )Ej ; clearly τ j is alternating.



a. Prove Cartan’s first structural equation: dθj = θi ∧ ω j
i + τ j .

Remark: It might be useful to recall the following formula for the differential of a one-form α:
dα(X,Y ) = X[α[Y ]]− Y [α[X]]− α([X,Y ]).

b. Now suppose (M, g) is Riemannian, and ∇ is the Levi-Civita connection. In particular, τ = 0.
Let Ω j

i be a matrix of two-forms defined by Ω j
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8. Consider the surface of revolution in Euclidean space given by
√
x2 + y2 = cosh z. The surface

is an example of a catenoid. Compute its Gaussian curvature. Show that the mean curvature is
zero (and hence the catenoid is minimal).

9. a. Prove that Euclidean space (R3, gE) does not admit a closed immersed minimal surface. To
do this, show that there must be a point on the surface where the Gaussian curvature is strictly
positive.

b. If you followed the hint, you immediately conclude that for any embedding of a two-torus T2

into Euclidean R3 is not flat. Show that there is an embedding of a flat torus into Euclidean R4.

10. Suppose Mn ⊂ (Rn+1, gE) is an oriented hypersurface in Euclidean space, oriented with a
smooth unit normal vector field N , and with induced metric g (first fundamental form). Let
S(X) = −∇XN .

a. Show that for all p ∈M , S gives a linear operator S : TpM → TpM , the shape operator.

b. Prove (∇XS)(Y ) = (∇Y S)(X) for X and Y tangent to M , and thus divg(S) = d(trg(S)) on M .

11. Let X : U → R3 be an embedding of an open subset U of R2 onto a surface Σ = X(U). The
components of the induced metric on Σ are written g11 = E = Xu ·Xu > 0, g12 = F = Xu ·Xv = g21,
and g22 = G = Xv · Xv > 0. Let N = Xu×Xv

‖Xu×Xv‖ be a smooth unit normal field. Let S be the

corresponding shape operator (see the previous problem), represented by the matrix
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a. Relate these two matrices to the first fundamental form matrix.

b. Consider the equations Xuuv −Xuvu = 0, and Xvuv −Xvvu = 0. Decompose this into tangential
and normal components. What do you get?

12. a. Let M ⊂ (M̄, ḡ) be an embedding, with induced metric g on M . Show that the second
fundamental form II(X,Y ) = (∇XY )nor vanishes identically on M if and only if for every v tangent
to M , the ḡ-geodesic γv lies entirely in M . In this case we say M is totally geodesic in M̄ .

b. For Riemannian manifolds (M1, g1) and (M2, g2), we consider the product (M̄ = M1 ×M2, ḡ =
g1 ⊕ g2). Show that {p1} ×M2 and M1 × {p2}, for any pi ∈Mi, are totally geodesic in M̄ .


