--file to verify in Macaulay2 (http://www.math.uiuc.edu/Macaulay2/) --computation in Theorem 1.17 and Appendix, --C. Hillar L.H. Lim, Most tensor problems are NP-hard, JACM, 2013. R = QQ[a_1,a_2,a_3,b_1,b_2,b_3,c_1,c_2,c_3,d_1,d_2,d_3] F1 = a_1*a_2*a_3+c_1*c_2*c_3-2 F2 = a_1*a_3*b_2+c_1*c_3*d_2 F3 = a_2*a_3*b_1+c_2*c_3*d_1 F4 = a_3*b_1*b_2+c_3*d_1*d_2+4 F5 = a_1*a_2*b_3+c_1*c_2*d_3 F6 = a_1*b_2*b_3+c_1*d_2*d_3+4 F7 = a_2*b_1*b_3+c_2*d_1*d_3-4 F8 = b_1*b_2*b_3+d_1*d_2*d_3 I = ideal(F1,F2,F3,F4,F5,F6,F7,F8) g = 2*c_2^2 - d_2^2 h = c_1*d_2*d_3 + 2 --Should both be zero thus in the ideal g % I h % I --we will now show how to express g = 2*c_2^2 - d_2^2 and --h = c_1*d_2*d_3 + 2 as a rational integer polynomial linear combination of --polynomials in F. Thus g,h are consequences of F. G1 = -1/8*b_1*b_2*b_3*c_2*d_2+1/8*a_2*b_1*b_3*d_2^2 G2 = 1/8*b_1*b_2*b_3*c_2^2-1/8*a_2*b_1*b_3*c_2*d_2 G3 = -1/2*c_2*d_2 G4 = 1/2*c_2^2 G5 = 1/8*a_3*b_1*b_2*c_2*d_2-1/8*a_2*a_3*b_1*d_2^2 G6 = -1/8*a_3*b_1*b_2*c_2^2+1/8*a_2*a_3*b_1*c_2*d_2 G7 = 1/4*d_2^2 G8 = -1/4*c_2*d_2 --should show up as 2*c_2^2 - d_2^2 F1*G1 + F2*G2 + F3*G3 + F4*G4 + F5*G5 + F6*G6 + F7*G7 + F8*G8 H1 = 0 H2 = (1/32)*b_1*b_2*b_3*c_2*d_1*d_3-(1/32)*a_2*b_1*b_3*d_1*d_2*d_3 H3 = -(1/32)*b_1*b_2*b_3*c_1*d_2*d_3+(1/32)*a_1*b_2*b_3*d_1*d_2*d_3 H4 = -(1/32)*a_1*b_2*b_3*c_2*d_1*d_3+(1/32)*a_2*b_1*b_3*c_1*d_2*d_3 H5 = -(1/8)*b_1*b_2*b_3 H6 = 1/2 H7 = (1/8)*a_1*b_2*b_3-(1/8)*c_1*d_2*d_3 H8 = (1/8)*c_1*c_2*d_3 --should show up as h = c_1*d_2*d_3 + 2 F1*H1 + F2*H2 + F3*H3 + F4*H4 + F5*H5 + F6*H6 + F7*H7 + F8*H8