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ADIC APPROXIMATION OF COMPLEXES,

AND MULTIPLICITIES

DAVID EISENBUD

1) The Theorem

In [2, Section 1.6] Peskine and Szpiro prove a theorem on adic ap-
proximations of finite free resolutions over local rings which, together
with M. Artin's Approximation Theorem [1], allows them to "descend"
modules of finite projective dimension over the completions of certain
local rings to modules of finite projective dimension over finite etale ex-
tensions of those rings. In this note we will prove a more general result,
which deals with the change in homology under an adic approximation
of any complex of finitely generated modules over a noetherian ring,
and which allows one to descend not only modules of finite projective
dimension, but also the Euler characteristic or intersection multiplicity
of two such modules.

Henceforth, R will be a commutative noetherian ring, and J will be
an ideal in the (Jacobson) radical of R. If

SΊ . p /l p /θ SΊ f-1

is a complex of finitely generated jR-modules, a /-adic approximation of
C of order d = ( , d19 d0, d_ly •) will be a complex

where

for all i. We will show that if the dt are large enough, then the
homology of C and the homology of C_ε are very much alike.

To be more precise, we note that C_ may be regarded as filtered
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complex, where the \pth submodule in the filtration of Cn is JpCn. We

will write Hn(Q)p for the pth submodule in the induced filtration of Hn(Q).

This filtration on Hn(C) is "/-bonne" in the sense of [3, Section 2A. 5]

that is, Γ)PzoHn(C)p = 0, and for large p, Hn(C)p+1 = JHn(C)p. We

let grHn(C) be the associated graded module. We will use correspond-

ing notation for the complex Ce. We are now ready to state the main

result.

THEOREM : Let R, J, Q be as above. There exists a sequence of

positive integers d = ( 9d19dQ,d_u •) such that if C_6 is a /-adic ap-

proximation of C of order d, then

1) grHn(Qe) is a subquotient of grHn(Q) for all n, and

2) if Hn(Q) and H^C) are both annihilated by some power of J,

then gYHn(C)^grHn(C,)-

It would be interesting to know whether the "gr" in the conclusion

of the theorem could be omitted.

The theorem follows from an analysis of the spectral sequence as-

sociated to a filtered complex. As with most such analysis, many vari-

ations are possible, in which conclusions slightly weaker than that of 2)

are deduced from correspondingly weakened hypotheses.

2) Corollaries

As above, we suppose that / is an ideal contained in the radical of

the noetherian ring R. Let / = (glf , gn) be an ideal of R contained

in J, and let M be a finitely generated i?-module. Recall that the I-

depth of M is the length of a maximal M-sequence contained in /. It

is natural to ask what happens to the /-depth of M if we replace / by

a Λadic approximation of / that is, if we replace I = ΣRgt by an ideal

of the form Ie = ΣR(gt + et), with ε^e/^ for large d.

COROLLARY 1: With the above notation,

/β-depth M > /-depth M

if d is sufficiently large.

It is easy to see that the inequality may be strict, even if the gt

are a minimal set of generators for /.

Proof. Let K be the Koszul complex associated to glf , gn, Kε the
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one associated to g1 + εί9 ,gn + εn. Setting s = /-depthM, it follows

from [3, Section 4A. 2] that Hn_SJrl(K®M) = 0, and it suffices to show

that Hn_s+ι(Kε (x) M) — 0. But Kε® M is an approximation of order

( d, d, d, •) of K (g) M so by the theorem, if d is large, Hn_s+1(K (g) ikf)

= 0 as required.

Now suppose that R is local, and that / is its maximal ideal. Let

M and N be two β-modules such that M®RN has finite length as an

β-module. Suppose that the projective dimension of M is t < oo. Fol-

lowing [3] we set

χ(M, N) = Σ ^ o (~ir length (Tor, (ikf, N)) ,

the Euler-Poincare characteristic of M and 2V. Suppose that

Q . A ri ri J1
 SΊ

and

are free resolutions of M and Λ7", and that C_ε and C' are approxima-

tions to C and (7 of orders d = (d£, , d^ and cf = ( , d29 dj respec-

tively. Let Mε = Coker fλ + e^ and Λ̂ β = Coker // + eί, where εx and eί

are the maps appearing in the approximations.

COROLLARY 2: There exists an integer d(M, N) such that if dj9 d] >

d(M, N) for all j < t, then

Of course a similar result can be proved for the partial Euler char-

acteristics, and, using the Koszul complex, for the multiplicity of N

with respect to an ideal of definition (see [3] for definitions).

Using this Corollary it follows, precisely as in [2, Corollary 6.3],

that questions about Euler characteristics or multiplicities can in some

cases be "descended" from the completion of a local ring to a finite

etale extension of that ring.

Proof. The modules Tor, (M, N) can be computed as the homology

of the complex C_® Q, to which the complex Cs (x) C' is an approxima-

tion. If d(M, N) is chosen large enough to make Qε and the first t steps



64 DAVID EISENBUD

of Q!e exact, as is possible by the first part of the theorem, then
Torfc (Me,Nε) will vanish for k > t, and will be the homology of Ce®C'e
for k < t. But since H(Q) = Tor (M, N) has finite length, we see from
part two of the theorem that if d(M,N) is chosen sufficiently large,
length (Torfe (M, N)) = length (Tork (Mε,Ne)) for every fc, whence the Cor-
ollary.

The Spectral Sequence

For the proof of the theorem, we will employ the spectral sequence
used by Serre in [3]. We will now briefly review the facts (for details,
see [3, Section 2A]).

Let

Γϊ . SΊ J k ^ *~i

be filtered by subcomplexes:

The filtration on C_ induces a filtration on H(Q), and the usual spectral
sequence

E(C) ^ H(C)

is defined by

where

Zn

r>p(C) = {xe Cn,P\Mx) e Cn_up+r}

Bn

r,p(C) = {x e Cn,p 132/ e C n + 1 , p _ r with fn+1(y) = x]

Now consider the situation in which C is a complex of finitely gen-
erated modules over a noetherian ring J?, and the filtration on C is
given by

Qp = J»C

where / is an ideal contained in the Jacobson radical of R. In this set-
up, Serre proves that the above spectral sequence converges, in the sense
that for each n there is an integer r(n) such that

gr (Hn(C)) - LI E»r,p
P
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for any r > r(n). (The numbers r(ri) depend on the numbers obtained

from the Artin-Rees lemma).

Proof of the Theorem

Let R, J, C_ be as in the theorem, and let C_ε be a ( d19d0, •)-

order approximation to (7. Let E = E(C) and F — E(Qε) be the spectral

sequences described in the last section, for C and Cε. The proof of

the theorem depends on the following:

LEMMA: Let dn = min(dn+1,dn). We have

JPn __ fin
^r,^ — * r,p

for all r <dnJ and all p.

Proof: We must prove that if r < dn, then

and

Znr-ι.p+i(C) + B?. l f P (C) - Z»r_ltP+ι(C.) + B»r-i,p(C.) .

(Note: we will not prove Bn

r_hp(C) = Bn

r_hp(Cε)!)

To verify the first equality, we simply note that if x e Cn>p = JpCn,

then

εn\X) G J n^n~l,p — ^n-lfP + dn — ^n-l.p + r

For the second equality it suffices, by the first equality and sym-

metry, to show that

B ; _ I , P ( C ) C B»r_ltP(C.) 4- Z»r_UP+i(C) .

To this end, let xeB^_ltP(C_)7 so that there exists y eCn+hp_r+1 with

Λ+i(ί/) = %- O f course, we have (fnn + εn+1)(y) = ̂  + e ^ i W e B ^ J C J .

Thus it suffices to show that en+1(i/) e Z?_ lfP+1(C), or, equivalently, that

fn£n+i(y) € jSw-i,p+r Since Cε is a complex, we have

0 = (fn + εn)(fn + l + £π + l) ~ fnen + l + εw/n + l + ε A + l >

so it is enough to show that enfn+ι(y) — era(ίc) and ewen+1(i/) are in Cw_ l f 3,+ r;

this follows at once, since r < dn.

We now conclude the proof of the theorem. Let r(n) be the "point
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of convergence" of the spectral sequence 2£?,p(C)«=> Hn(G), described in

the last section.

For part 1) of the theorem, take

dn = max (r(w), r(n — 1))

for all n. By the definition of r(ri) we will have

gr (#«(©) = LI #?(»>.*.

By the Lemma, and the choice of dn and dn+l9 we will have

ίJr{n),p — * r(n),p >

where F = E(QS) is the spectral sequence associated to Ce. But

gvHn(Cε)= ]\Fl,p
P

is a subquotient of

i i * r(7i),p 9
P

so part 1) is established.

For part 2), let p0 be an integer such that Hn(Q)Po = 0 = Hn^1(Q)Po;

such an integer must exist, since, as we have noted, the filtrations on

H(C) are "/-bonne". We now set

dn+ι = dn = dw_! = d = max (r(n),r(n - l),p0) .

Suppose that Ce is a ( dn+19 dn> dn_u )-order approximation to

Q, and let F = E(C9). By the definitions of r(ri),r(n — 1) and the lemma,

we have

and

In particular, F^,p = 0 = F^ΓP ^ P > Po> so

(**) ^ . p = 0 = F^p1 if r >d, p > Po .

On the other hand, the differential
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of the spectral sequence F, has degree r, so if r > d,

βn + l . fin + 1 fin

and

fin. Tpn pn-l

and both zero, by (**).

Thus Fd = F^, so the proof is completed by (*).
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