Initial Ideals, Veronese Subrings, and Rates of Algebras*

DAVID EISENBUD† AND ALYSON REEVES‡

Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254

AND

BURT TOTARO§

Department of Mathematics, University of Chicago, Chicago, Illinois 60637

Let S be a polynomial ring over an infinite field and let I be a homogeneous ideal of S. Let T_d be a polynomial ring whose variables correspond to the monomials of degree d in S. We study the initial ideals of the ideals $V_d(I) \subset T_d$ that define the Veronese subrings of S/I. In suitable orders, they are easily deduced from the initial ideal of I. We show that $\in(V_d(I))$ is generated in degree $\leq \max(\lceil \text{reg}(I)/d \rceil, 2)$, where reg$(I)$ is the regularity of the ideal I. (In other words, the dth Veronese subring of any commutative graded ring S/I has a Gröbner basis of degree $\leq \max(\lceil (I)/d \rceil, 2)$.) We also give bounds on the regularity of I in terms of the degrees of the generators of $\in(I)$ and some combinatorial data. This implies a version of Backelin's theorem that high Veronese subrings of any ring are homogeneous Koszul algebras in the sense of Priddy [Trans. Amer. Math. Soc. 152 (1970), 39–60]. We also give a general obstruction for a homogeneous ideal $I \subset S$ to have an initial ideal $\in(I)$ that is generated by quadrics, beyond the obvious requirement that I itself should be generated by quadrics, and the stronger statement that S/I is Koszul. We use the obstruction to show that in certain dimensions, a generic complete intersection of quadrics cannot have an initial ideal that is generated by quadrics.

For the application to Backelin's theorem, we require a result of Backelin whose proof has never appeared. We give a simple proof of a sharpened version, bounding the rate of growth of the degrees of generators for syzygies of any multihomogenous module over a polynomial ring modulo an ideal generated by monomials, following a method of Bruns and Herzog.

* The authors are grateful to the NSF for support during the preparation of this paper. The second and third authors were supported by NSF Postdoctoral Fellowships.
† E-mail: eisenbud@math.brandeis.edu.
‡ E-mail: reeves@think.com.
§ E-mail: totaro@math.uchicago.edu.

0001-8708/94 $9.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.
Notation. Throughout this paper we write $S = k[x_1, \ldots, x_r]$ for the graded polynomial ring in r variables over an infinite field k. We will generally deal with a monomial order \succ on S. We always suppose $x_1 \succ \cdots \succ x_r$; by the initial term $\text{in}_{\succ}(p)$ of a polynomial p we mean the term with the largest monomial. Similarly, by the initial ideal $\text{in}_{\succ}(I)$ of I, we mean the ideal generated by the initial terms of all polynomials in I:

$$\text{in}_{\succ}(I) = \langle \text{in}_{\succ}(p) \mid p \in I \rangle.$$

We write T_d for the polynomial ring over k whose variables correspond to the monomials of degree d in S; there is a natural map $\phi_d: T_d \rightarrow S$ sending each variable of T_d to the corresponding monomial in S. If $I \subset S$ is an ideal, we write $V_d(I)$ for the preimage of I in T_d, and $A_{(d)}(I)$ for $T_d/V_d(I)$.

Furthermore, we make the following definitions:

Definition. For a homogeneous ideal $I \subset S$, the minimal generators of I are the homogeneous elements of I not in $(x_1, \ldots, x_r)I$. Let $\delta(I)$ be the maximum of the degrees of minimal generators of I, and let $A(I)$ be the minimum, over all choices of variables and of monomial orderings of S of the maximum of the degrees of minimal generators of the initial ideal of I.

All ideals and rings that appear will be graded.

1. Introduction and Motivating Results

Given a homogeneous ideal $I \subset S$ it is a matter of both computational and theoretical interest to know how low the degree of $\text{in}_{\succ}(I)$ can be made by choosing variables and monomial order on S in an appropriate way. In particular, one may ask which ideals I admit quadratic initial ideals; that is, for which I are there choices of variables and order such that $\text{in}_{\succ}(I)$ can be generated by monomials of degree 2?

One of the theoretical reasons for interest in this question is that if I admits a quadratic initial ideal then, by a result of Fröberg and a deformation argument noticed by Kempf and others, $A := S/I$ is a (homogeneous) Koszul algebra in the sense of Priddy [Pr70]; that is, the residue field k of A admits an A-free resolution whose maps are given by matrices of linear forms. Using complex arguments about a lattice of ideals derived from a presentation of A as a quotient of a free noncommutative algebra, Backelin [Ba86] proved that for any graded ring A as above the dth Veronese subring

$$A_{(d)} := \bigoplus_{i=1}^{\infty} A_{di},$$
is Koszul for all sufficiently large d. Our work started from a request by George Kempf for a simpler proof. In this paper we shall prove the stronger result that $A_{(d)}$ admits a quadratic initial ideal for all sufficiently large d.

To make these results more quantitative, we define a measure of the rate of growth of the degrees of the syzygies in a minimal free resolution:

Definition. Let $A = k \oplus A_1 \oplus A_2 \oplus \cdots$ be a graded ring. For any finitely generated graded A-module M, set $t_i^A(M) = \max \{ j \mid \text{Tor}_j^A(k, M) \neq 0 \}$, where $\text{Tor}_j^A(k, M)$ denotes the jth graded piece of $\text{Tor}_j^A(k, M)$. The *rate* of A is defined by Backelin [Ba86] to be

$$\text{rate}(A) = \sup \{ (t_i^A(k) - 1)/(i - 1) \mid i \geq 2 \}.$$

For example, A is Koszul iff $\text{rate}(A) = 1$. It turns out that the rate of any graded algebra is finite (see for example [An86]) and Backelin actually proves

Theorem 1 ([Ba86]). $\text{rate}(A_{(d)}) \leq \max(1, \text{rate}(A)/d)$.

One should compare this with the rather trivial result (Proposition 5 below) that if a homogeneous ideal I can be generated by forms of degree m, then the ideal $V_d(I)$ defining $A_{(d)}$ can be generated by forms of degree $\leq \max(2, \lceil m/d \rceil)$. In the notation introduced above, $\delta(V_d(I)) \leq \max(2, \lceil \delta(I)/d \rceil)$. A similar result with A (the minimum, over all choices of variables and of monomial orderings $>$, of the maximum degree of a minimal generator of $in_<(I)$) would lead to a bound on the rate by virtue of Proposition 3. Unfortunately, as we show in Example 3 below, it is not true that if some initial ideal of I can be generated by monomials of degree m then $V_d(I)$ admits an initial ideal generated by forms of degree $\leq \max(2, \lceil m/d \rceil)$. But there is a replacement for m that makes such a formula true, and this is the main result of this paper. The replacement is the regularity, of which we now recall the definition:

Definition. For $I \subset S$, the (Castellnuovo–Mumford) *regularity* of I is defined as

$$\text{reg}(I) = \max \{ t_i^S(I) - i \mid i \geq 0 \}.$$

Since $t_i^S(I) = \delta(I) \leq \text{reg}(I)$, the regularity is \geq the maximal degree of the generators of I. One may think of the regularity as a more stable measure of the size of the generators of I. Our main result is that we may replace
the degree of the generators of I by the regularity and get a bound on the
degrees of the initial ideals of Veronese powers:

Theorem 2.

$$
\Delta(V_d(I)) \leq \max(2, \lceil \text{reg}(I)/d \rceil).
$$

In particular, if $d \geq \text{reg}(I)/2$ then $\Delta(V_d(I)) = 2$.

In Section 5 we explain how to generalize this result to Segre products of
Veronese embeddings.

To deduce a version of Backelin's Theorem, one needs a result
strengthening the theorem of Fröberg mentioned above. Such a result was
stated without proof by Backelin ([Ba86, p. 98 ff]):

Proposition 3. If $A = S/I$ with I a homogeneous ideal, then $\text{rate}(A) \leq
\Delta(I) - 1$. In particular, if $\Delta(I) = 2$ then A is Koszul.

We will give a simple proof of this proposition (and something more
general) in Section 4 following ideas of Burns, Herzog, and Vetter
[BrHeVe].

Unfortunately the converse of this result is not true: in particular, the
algebra A may be Koszul without I admitting a quadratic initial ideal. In
Section 6, Theorem 19, we formulate another obstruction for an ideal $I \subseteq S$
to have a quadratic initial ideal. An easily stated part of Theorem 19 is that
if I admits a quadratic initial ideal then I contains far more quadrics of low
rank than would a generic subspace of quadrics. We may make this quan-
titative as follows:

Corollary 4. If $I \subseteq S$ admits a quadratic initial ideal, and $\text{dim}(S/I) = n$,
then I contains an m-dimensional space of quadrics of rank
$\leq 2(n + m) - 1$ for every $m \leq \text{codim}(I)$.

The obstruction shows that in certain dimensions, a generic complete in-
tersection of quadrics has no initial ideal in(I) which is generated by quadrics,
even though every complete intersection of quadrics is a Koszul algebra.
There seems no reason to believe that this obstruction, even with the
Koszul condition, is enough to guarantee that an ideal admits a quadratic
initial ideal, so we pose as a problem the question raised at the beginning
of the introduction:

Find necessary and sufficient conditions for an ideal to admit a quadratic
initial ideal.
2. Initial Ideals for Veronese Subrings

As above, let

\[T_d = k[\{ z_m \}] \quad \text{where } m \text{ is a monomial of } S \text{ of degree } d, \]

and let \(\phi_d : T_d \to S \) be the map sending \(z_m \) to \(m \). If \(J \subset S \) is a homogeneous ideal, let \(V_d(J) \) denote the preimage of \(J \) in \(T_d \). It is easy to see that \(V_d(J) \) is generated by the kernel of \(\phi_d \) and, for each generator \(g \) of \(J \) in degree \(e \), the preimages of the elements of degree \(nd \) in \((x_1, \ldots, x_r)^{nd-e} g \), where \(nd \) is the smallest multiple of \(n \) that is \(\geq e \). These elements have degree \(n \) in \(T_d \). Since \(\ker(\phi_d) \) is generated by forms of degree 2 it follows that \(V_d(J) \) is generated by forms of degree \(\leq \max(\lceil \delta(J)/d \rceil, 2) \).

This gives a proof of the following well-known proposition.

Proposition 5.

\[\delta(V_d(I)) \leq \max(2, \lceil \delta(I)/d \rceil). \]

In particular, if \(d \geq \delta(I)/2 \) then \(V_d(I) \) is generated by quadrics.

This proposition is mentioned by Mumford in [Mu70] (in a slightly different form), though it is surely much older.

We extend the given monomial order on \(S \) to a monomial order on \(T_d \) as follows: If \(a, b \) are monomials in \(T_d \), then \(a > b \) if \(\phi(a) > \phi(b) \) or \(\phi(a) = \phi(b) \) but \(a \) is bigger than \(b \) in the reverse lexicographic order: that is, given two monomials in \(T_d \) of the same degree having the same image in \(S \) we order the factors of each in decreasing order, and take as larger the monomial with the smaller factors in the last place where the two differ. Here the order of the variables \(z_m \) is defined to be the same as the order in \(S \) on the monomials \(m \). We first compute the initial ideal of \(\ker(\phi_d) \).

Proposition 6. With notation as above, \(\in(\ker(\phi_d)) \subset T_d \) is generated by quadratic forms for every \(d \).

Remark. Barcanescu and Manolache [BaMa82] proved that the Veronese rings are Koszul, which is a corollary of Proposition 6.

Proof. The ideal \(\ker(\phi_d) \) is generated by quadratic forms, each a difference of two monomials that go to the same monomial under \(\phi_d \). Let \(J \) be the monomial ideal generated by initial terms of these quadratic elements of \(\ker(\phi_d) \). We have \(J \subset \in(\ker(\phi_d)) \), and we wish to prove
equality. We will show that distinct monomials of T_d not in J map by ϕ_d to distinct monomials of S. It will follow that, for each e,

$$
\dim S_{de} \geq \dim (T_d/J)_e \\
\geq \dim (T_d/(\text{in}(\ker(\phi_d))))_e \\
= \dim (T_d/(\ker(\phi_d)))_e \\
= \dim (S_{de}).
$$

Thus $\dim(T_d/J)_e = \dim(T_d/(\text{in}(\ker(\phi_d))))_e$, and $J = \text{in}(\ker(\phi_d))$ as desired.

Call the monomials not in J "standard," and say that a product of monomials of degree d in S is standard if its factors correspond to the factors of a standard monomial in T_d. Since $J \subset \text{in}(\ker(\phi_d))$, any monomial of S_{de} may be written as a standard product of e monomials of degree d. We must show that if $m \in S$ is a monomial of degree de, then there is a unique way of writing m as a standard product $m_1 \cdots m_e$ of monomials of degree d. We claim that this unique product is obtained by writing out the de factors of m in decreasing order

$$m = x_1 \cdots x_1 x_2 \cdots x_2 \cdots x_r \cdots x_r,$$

and taking m_1 to be the product of the first d factors, m_2 to be the product of the next d factors, and so on.

First we prove the claim for a standard product $m_1 m_2$ with just two factors. Suppose the sequences of indices of the two factors are

$$i_1 = (i_{11} \leq \cdots \leq i_{1d}), \quad i_2 = (i_{21} \leq \cdots \leq i_{2d})$$

and $m_1 > m_2$. We must show that $i_{1d} \leq i_{21}$. The product of the monomials m_1 and m_2 obtained from m_1 and m_2 by interchanging the factors x_{i_1d} and x_{i_21} represents the same element of S. The difference of these products represents a quadratic element of $\ker(\phi_d)$. If $i_{1d} > i_{21}$ then $x_{i_1d} x_{i_21}$ and thus $m_1 > m_2$. Consequently leading term of this quadratic element of $\ker(\phi_d)$ would correspond to $m_1 m_2$, and the product $m_1 m_2$ would not be standard.

Now suppose that $m_1 \cdots m_e$ is a standard product of degree de, with e arbitrary, and $m_1 \geq \cdots \geq m_e$. Let $i_{j1} \leq \cdots \leq i_{jd}$ be the indices of the variables in m_j. If $i_{jd} > i_{j+1,1}$ for some j then the product $m_j m_{j+1}$ would not be standard, contradicting the standardness of the entire product.

Note. Even when $r = 3$ and $d = 2$, the initial terms of the minimal system of generators for the ideal $\ker(\phi_2)$ do not generate in $\geq (\ker(\phi_2))$ under all possible orders $>$. In this case, the ideal is minimally generated by the 2×2 minors of the symmetric 3×3 matrix with entries $z_{ij}, i \leq j$. There are 29 different initial ideals (depending upon the order chosen), 23
of which are generated entirely in degree 2. The other 6 each require an additional generator of degree three.

It would be interesting to characterize the orders \(> \) for which the ideal \(\binom{S}{n}(\ker(\phi_d)) \) is generated by elements of degree 2.

Following the proof of Proposition 6 we say that a monomial of \(T_d \) is \textit{standard} if it is not in \(\binom{\ker(\phi_d)}{n} \). Let \(\sigma: S \to T_d \) be the \(k \)-linear map that takes each monomial to its unique standard representative. Because of the way we have defined the order on \(T_d \) we have \(\binom{\sigma(p)}{n} = \sigma(\binom{p}{n}) \). Also, \(\sigma \) takes \(J \) into \(V_d(J) \). As a consequence we have:

Lemma 7. If \(J \) is a homogeneous ideal of \(S \), then \(\binom{V_d(J)}{n} \) is the ideal \(K \) generated by \(\binom{\ker(\phi_d)}{n} \) and the monomials \(\sigma(m) \) for \(m \in \binom{J}{n} \cap \binom{\ker(\phi_d)}{n} \).

Proof. For each degree \(e \) it is clear that \(\dim_k(\binom{T_d}{K})_e \leq \dim_k(\binom{S}{J})_{de} \), so it is enough to show that \(K \subseteq \binom{V_d(J)}{n} \). Let \(p \in J \) be a form with initial term \(m \). Clearly \(\sigma(p) \in V_d(J) \), and \(\binom{\sigma(p)}{n} = \sigma(m) \).

Definition. If \(m \in S \) is a monomial, then following Eliahou and Kervaire [ElK90] we write \(\max(m) \) for the largest index \(i \) such that \(x_i \) divides \(m \). We call a monomial ideal \(I \) (combinatorially) stable if for every monomial \(m \in I \) and \(j < \max(m) \), the monomial \((x_j/x_{\max(m)}) m \in I \).

Theorem 8. If \(J \) is a homogeneous ideal of \(S \) such that \(\binom{J}{n} \) is combinatorially stable, then \(\binom{V_d(J)}{n} \) is generated by \(\binom{\ker(\phi_d)}{n} \) and the monomials \(\sigma(m) \) where \(m \) runs over the minimal generators of \(\binom{J}{n} \cap \binom{\ker(\phi_d)}{n} \). Thus if \(\delta(\binom{J}{n}) \leq u \), then \(\delta(\binom{V_d(J)}{n}) \leq \max(2, \lceil u/d \rceil) \).

Proof. Let \(n \in \binom{J}{n} \cap \binom{\ker(\phi_d)}{n} \). By Lemma 7 it suffices to show that \(\sigma(n) \) is divisible by some \(\sigma(m) \), where \(m \) is a minimal generator of \(\binom{J}{n} \cap \binom{\ker(\phi_d)}{n} \). Let \(m' \) be an element of \(\binom{J}{n} \cap \binom{\ker(\phi_d)}{n} \) of minimal degree among those dividing \(n \), and write \(n = x_{i_1} \cdots x_{i_d} \) with \(i_1 \leq \cdots \leq i_d \). Say \(\deg m' = de \). Since \(\binom{J}{n} \) is combinatorially stable, it follows that \(m := x_{i_1} \cdots x_{i_d} \in \binom{J}{n} \), and since \(m \) has degree \(de \), we have \(m \in \binom{\ker(\phi_d)}{n} \) as well. If \(m \) were not a minimal generator of \(\binom{J}{n} \cap \binom{\ker(\phi_d)}{n} \), then some proper divisor of it would be in \(\binom{J}{n} \cap \binom{\ker(\phi_d)}{n} \) and would divide \(n \), contradicting our choice of \(m' \). As \(\sigma(m) \) divides \(\sigma(n) \), we are done.

Example 1. The hypothesis of stability cannot be dropped. For example, if \(r = 3 \) and \(J = (x_1 x_2 x_3) \), and we take the lexicographic or reverse lexicographic order on \(S \), then the initial ideal \(\binom{V_d(J)}{n} \) (defined using the order on \(T_d \) we associate to the given order on \(S \)) requires a cubic generator for all \(d \).

To obtain Theorem 2 as given in the introduction, we need to recall the notion of Castelnuovo–Mumford regularity.
DEFINITION. For $I \subseteq S$, the regularity of I is defined as

$$\text{reg}(I) = \max\{t^S_i(I) - i \mid i \geq 0\}.$$

Note. $t^S_0(I) = \delta(I) \leq \text{reg}(I)$.

Bayer and Stillman [BaSt87] give the following criterion for an ideal to be m-regular, assuming (as we do throughout this paper) that the field k is infinite.

THEOREM 9 [BaSt87]. Let $I \subseteq S$ be an ideal generated in degrees $\leq e$. The following conditions are equivalent:

1. I is e-regular,

2. (a) For some $j \geq 0$ and for some linear forms $h_1, \ldots, h_j \in S_1$ we have

 $$((I, h_1, \ldots, h_{i-1} : h_i)_e = (I, h_1, \ldots, h_{i-1})_e$$

 for $i = 1, \ldots, j$, and

 (b)

 $$(I, h_1, \ldots, h_j)_e = S_e.$$

3. Conditions 2(a) and 2(b) hold for some $j \geq 0$ and for generic linear forms $h_1, \ldots, h_j \in S_1$.

Note. Let g be generically chosen in the Borel group B, the subgroup of $GL(r)$ consisting of the upper triangular matrices. Then $\langle gx_r, \ldots, gx_{r-j+1} \rangle$ is a generic linear subspace for I. Since gx_j is a generic linear form with respect to $(I, gx_r, \ldots, gx_{j+1})$, x_j is a generic linear form with respect to $(g^{-1}I, x_r, \ldots, x_{j+1})$. If I is Borel-fixed, then $g^{-1}I = I$, and hence we can replace h_1, \ldots, h_j by x_r, \ldots, x_{r-j+1} in the statement of Theorem 9 in this case.

PROPOSITION 10. Let $I \subseteq S$ be a Borel-fixed monomial ideal generated in degrees $\leq e$. Then I is e-regular if and only if I_e is combinatorially stable.

Proof. By the note following the statement of Theorem 9, we may replace h_1, \ldots, h_j by x_r, \ldots, x_{r-j+1} in the statement of the theorem.

Suppose I is e-regular. Then 2(b) of Theorem 9 implies that I includes all monomials in x_1, \ldots, x_{r-j} of degree e. And 2(a) of the same theorem implies that for every monomial $m \in I$ of degree e with $\max(m) > r-j$, I also contains $x_k/x_{\max(m)} \cdot m$ for every k with $1 \leq k \leq \max(m)$. Taken together, these two statements imply I_e is combinatorially stable.

Conversely, suppose I_e is combinatorially stable, and let j be the smallest integer such that I contains a power of x_{r-j}. It follows that $x_{r-j} \in I_e$.
and by stability, \((x_1, \ldots, x_{r-j}') \in I\), and hence 2(b) holds. Let \(m \in ((I, x_r, \ldots, x_{r+1}) : x_i)\) for some \(r-j+1 \leq i \leq r\); since \(I\) is a monomial ideal, we can assume that \(m\) is a monomial in proving 2(a). If \(m\) is divisible by \(x_k\) for some \(i+1 \leq k \leq r\), then it is clear that \(m \in (I, x_r, \ldots, x_{i+1})\). Thus we may assume \(m\) is not divisible by \(x_{i+1}, \ldots, x_r\). Since the monomial \(m x_i\) belongs to \((I, x_r, \ldots, x_{i+1})\), it must belong to \(I\). Since it has degree \(e+1\), there must be a monomial \(m' \in I_e\) and an \(l\) such that \(m x_i = m' x_l\). Clearly \(l \leq i\). Since \(m = (x_l/x_i) m'\), combinatorial stability of \(I_e\) implies that \(m \in I_e\). Thus 2(a) of Theorem 9 holds as well, and \(I\) is e-regular.

Proof of Theorem 3. If \(I\) is an ideal in generic coordinates which is e-regular, then by Theorem 9, \(\text{in}_> (I)\) is generated in degrees \(\leq e\), where < is the reverse lexicographic order. By the above proposition, \(\text{in}(I_e)\) with respect to reverse lexicographic order is combinatorially stable, and hence by Theorem 8 we have

\[
\Delta(V_d(I)) \leq \delta(\text{in}_>(V_d(gI))) \\
\leq \max(2, \lceil \text{reg}(gI)/d' \rceil) \\
= \max(2, \lceil \text{reg}(I)/d' \rceil)
\]

(where \(g\) is a "general" choice of coordinates, > is reverse lexicographic order, and >' is the induced order), proving Theorem 3.

3. COMMENTS ON THE MAIN THEOREM

We have proved that for any homogeneous ideal \(I \subset S\), we have \(\Delta(V_d(I)) \leq \max(2, \lceil \text{reg}(I)/d' \rceil)\). In particular, for suitable coordinates and order on \(T_d\), the Veronese ideal \(V_d(I)\) has quadratic initial ideal for \(d \geq \text{reg}(I)/2\), and it follows that the Veronese subring \(T_d/V_d(I) \subset S/I\) is Koszul for \(d \geq \text{reg}(I)/2\). In this section we will estimate the regularity of \(I\) in order to bound \(\Delta(V_d(I))\) in terms of other invariants of \(I\) such as \(\Delta(I)\). These results can probably be improved, but we will give an example to show that the most optimistic hopes are false.

Theorem 11. Let \(r\) be the number of generators of the polynomial ring \(S\). For any homogeneous ideal \(I \subset S\), \(\Delta(V_d(I)) \leq \max(2, \lceil (r \Delta(I) - r + 1)/d' \rceil)\). In particular, for suitable coordinates and order on \(T_d\), the Veronese ideal \(V_d(I)\) has quadratic initial ideal for \(d \geq (r \Delta(I) - r + 1)/2\).

Proof. The Taylor resolution \([Ta60]\) gives an upper bound on \(\text{reg}(I)\), specifically:

\[
\text{reg}(I) \leq r \Delta(I) - r + 1.
\]
With Theorem 2, this gives the result. It is worth mentioning that, by Bayer and Stillman's Theorem 9, there are actually upper and lower bounds relating $\text{reg}(I)$ and $\Delta(I)$:

$$\Delta(I) \leq \text{reg}(I) \leq r\Delta(I) - r + 1.$$

The assumption $d \geq \Delta(I)/2$ is not enough to imply that $V_d(I)$ has quadratic initial ideal, by the example at the end of this section. We do not know the best estimate for $\Delta(V_d(I))$ in terms of $\Delta(I)$. The problem is combinatorial in the sense that it suffices to consider monomial ideals I.

We have been assuming that the field k is infinite. For arbitrary (in particular, finite) fields k, we have a slightly weaker version of Theorem 11: there is an order on T_d such that $V_d(I)$ has quadratic initial ideal for $d \geq \lceil \Delta(I)/2 \rceil$. We omit the proof, which is not too difficult given a definition of the correct order. The ordering which yields this result is defined as follows:

Definition. For each monomial m in S of degree d, we produce a vector

$$v(m) = (v_{11}(m), v_{12}(m), ..., v_{1r}(m), v_{21}(m), ..., v_{2r}(m), v_{31}(m) \cdots)$$

where

$$v_{ij}(m) = \begin{cases} 0 & \text{if } x_j^i \mid m \\ 1 & \text{else.} \end{cases}$$

The order on monomials in S of degree d is then defined by $m > n$ if $v(m) > v(n)$ in lexicographic order. We define the order of the variables in T_d using the above order on S. Specifically, $z_m > z_n$ if $m > n$ in the order on S defined above. Given this ordering on the variables in T_d, let the order on the monomials in T_d be reverse lexicographic order.

For some monomial ideals I, we can improve the Taylor bound on the regularity of I. First, since one direction of the proof of Proposition 10 does not use the Borel-fixed hypothesis, we have:

Proposition 12. If in(I) is generated in degrees $\leq u$ and in(I)$_u$ is combinatorially stable then

$$\text{reg}(I) \leq u.$$

Next we generalize the definition of combinatorial stability.

Definition. Let q be an integer. A monomial ideal I is q-combinatorially stable, if for every $m \in I$ and for each $j < \max(m)$ there exists an integer s with $1 \leq s \leq q$ such that $x_j^s/x_{\max(m)}^s, m \in I$.

PROPOSITION 13. Let \(I \) be an ideal in generic coordinates, and let
\[e = \delta(\text{in}_\succ(I)) \], where \(\succ \) is the reverse lexicographic order. If \(I \) is \(q \)-combinatorially stable, then \(\text{reg}(I) \leq e + (r - 1)(q - 1) \).

Proof. Let \(t = e + (r - 1)(q - 1) \). By Proposition 12, we need only show
that \(J := \text{in}(I) \), is combinatorially stable. Let \(m \in J \). Write \(m = x_1^{b_1 + c_1} \cdots x_r^{b_r + c_r} \),
where \(l := x_1^{b_1} \cdots x_r^{b_r} \in \text{in}(I) \), and set \(n := x_1^{c_1} \cdots x_r^{c_r} \). We have \(\sum_{i=1}^r c_i = (r - 1)(q - 1) \). If \(\max(m) = \max(n) \), then \((x_i/x_{\text{max}(m)}) m \in I \), for all \(i \) with \(1 \leq i \leq \text{max}(m) \) because \(n \) is divisible by \(x_{\text{max}(m)} \). If \(\max(m) > \max(n) \), then \(\max(m) = \max(l) \), and either there exists some index \(k \) such that \(c_k \geq q \), or else \(c_j = q - 1 \) for all \(j = 1, ..., n \). In the first case, we can rewrite \(m \) as \(l'n' \),
where \(l' = (x_k^{c_k}/x_{\text{max}(l)}^{c_k}) l \) and \(n' = (x_{\text{max}(l)}/x_k^{c_k}) n \), for some \(1 \leq s \leq q \). After doing so, \(\max(m) = \max(n) \) and we conclude as before. In the second case, the
degree of \(x_i \) in \(x_i/x_{\text{max}(m)} m \) is \(b_i + c_i + 1 \), and \(c_j + 1 = q \). We may rewrite \((x_i/x_{\text{max}(m)}) \) as \((x_i^{c_i}/x_{\text{max}(l)}^{c_i}) l' n' \), where \(n' = (x_{\text{max}(l)}/x_i^{c_i - 1}) n \), and \(1 \leq s \leq q \) is chosen so that \((x_i^{c_i}/x_{\text{max}(l)}) l \in I \). Thus \((x_i/x_{\text{max}(m)} m \) is in \(I \).

If \(k = 0 \), then every ideal \(I \) in generic coordinates is Borel-fixed and hence 1-combinatorially stable. In this case, the proposition above yields \(\text{reg}(I) \leq e \), and in fact, equality holds, as Bayer and Stillman proved in [BaSt87]. In char \(k = p \), every ideal \(I \) in generic coordinates has a \(q \)-combinatorially stable initial ideal for some \(q \) that is a power of \(p \leq \delta(\text{in}(I)) \) [Pa], but even if \(q \) is chosen to be as small as possible, \(\text{reg}(I) \) can be strictly less than \(e + (r - 1)(q - 1) \). An example is the ideal
\[I = \{a^b, a^2b^c, b^a, c^b, c^8 \} \],
which is 8-combinatorially stable (implying a bound of 22 on the regularity), but has regularity 16. Also, \(I \) has a quadratic initial ideal in the Veronese embedding of degree 5, which is strictly less than the degree of 7 given by Theorem 8.

As noted above, in characteristic 0 and generic coordinates, the regularity of \(I \) is equal to \(\delta(\text{in}(I)) \), where the initial deal is with respect to reverse lexicographic order. In characteristic \(p \), we cannot replace \(\text{reg}(I) \) with \(\delta(\text{in}(I)) \) in the statement of Theorem 2, as the following example illustrates.

EXAMPLE 2. A Borel-fixed ideal \(I \subset k[a, b] \), with \(\text{char} k = 2, e := \delta(I) = 6 \), such that the algebra \(T_3/V_3(I) \) is not Koszul. It follows that the initial ideal of the Veronese embedding of degree \(\lceil e/2 \rceil = 3 \) is not generated in degree 2 under any order and with any generators for the graded algebra \(T_3 \). In fact the ideal defined below has the same properties for \(k \) of characteristic 0, except that it is not Borel-fixed in characteristic 0.

Let \(I = \{a^b, a^2b^a\} \), and consider the embedding in degree \(3 = \lceil 6/2 \rceil \). Let \(A = T_3/V_3(I) \). Thus, in the obvious coordinates \(y_j = a^{3-j} b^j \),
\[A = k[y_0, y_1, y_2, y_3]/(y_0^2 = 0, y_0 y_2 = y_1^2, y_0 y_3 = y_1 y_2, y_1 y_3 = y_2^2 = 0) \].
The graded vector space $\text{Tor}_i^A(k, k)$ is not entirely in degree 3; it has
dimension 26 in degree 3 and dimension 2 in degree 4. So A is not Koszul.

In fact, under the induced order used throughout this paper, $\text{in}(V_3(I))$
requires 2 cubic generators. However, $\text{in}(V_4(I))$ is generated in degree 2.
The regularity of I is 9.

4. Resolution of Multihomogeneous Modules

Fundamental to the discussion of rates above is the estimate of the rate
for a monomial ideal given (without proof) by Backelin in [Ba86]. The
case of quadratic monomials follows at once from the more precise result
of Fröberg in [Fr75]. Fröberg's result was recently reexamined and
reproved by Bruns, Herzog and Vetter [BrHeVe] using a different method.
Jürgen Herzog has pointed out to us that their method actually proves the
entire result claimed by Backelin, in a somewhat strengthened form, and
we now present this argument.

Let $S = k[x_1, \ldots, x_r]$ be a polynomial ring over a field k. We will regard
S as a Z^r-graded ring, graded by the monomials. Suppose that I is a
monomial ideal of S, and set $A := S/I$; the ring A is again Z^r-graded.
If M is a finitely generated Z^r-graded module over A, then M has a Z^r-graded
minimal free resolution over A. The vector spaces $\text{Tor}_i^A(k, M)$ are Z^r-
graded.

For the purpose of bounding degrees it is convenient to turn these multi-
gradings into single gradings. Rather than simply using the total degree, we
get a more refined result by defining weights, as follows: Let w_1, \ldots, w_r be
nonnegative real numbers. For any monomial $m = x_1^{z_1} \cdots x_r^{z_r}$ define the
weight of m to be $w(m) = \sum w_i z_i$. Generalizing the definition of $t_i^A(M)$ used
above we define $t_i^A(w, M)$ to be the maximal weight, with respect to w, of
a nonzero vector in $\text{Tor}_i^A(w, M)$.

We can estimate the $t_i^A(w, M)$ as follows. Given an ordered set
$\{g_1, \ldots, g_s\}$ of generators of M we get a filtration

$$Ag_1 \subset Ag_1 + Ag_2 \subset \cdots \subset Ag_1 + \cdots + Ag_s = M$$

of M with quotients the cyclic modules A/J_i where $J_i = ((g_1, \ldots, g_{i-1}) : g_i)$.
The set of generators $\{g_i\}$ also gives rise to a surjection ϕ of a free
A-module A^s to M sending the ith basis element to g_i. It is easy to show
that the kernel of ϕ has a filtration whose successive quotients are the
ideals J_i (see the proof of Theorem 15). Thus the weights of the generators
of the J_i, added to the weights of the g_i give a bound for $t_i^A(w, M)$ (we get
a bound and not an exact result because the set of generators for the first
syzygy of M produced from sets of generators for the J_i may not be
minimal). Moreover, if we have a method for bounding the weights of syzygies of the \(J_i \), we may continue this process. The following lemma provides what we require:

Lemma 14. Let \(S = k[x_1, \ldots, x_r] \) be a polynomial ring over a field \(k \). Suppose that \(I \) is an ideal of \(S \), generated by monomials \(n_1, \ldots, n_r \), and set \(A := S/I \).

If \(J = (m_1, \ldots, m_r) \subset A \) is an ideal generated by the images \(m_i \) of monomials \(m'_i \) of \(S \), then the quotient \((m_1, \ldots, m_{r-1} :_A m_r)\) is generated by the images in \(A \) of divisors of the monomials \(m'_1, \ldots, m'_{r-1} \), and proper divisors of the monomials \(n_1, \ldots, n_r \).

Proof. The quotient is the image in \(A \) of \((n_1, \ldots, n_r, m_1, \ldots, m_{r-1}) : x m_r)\) and is thus generated by divisors of the monomials \(n_1, \ldots, n_r, m_1, \ldots, m_{r-1} \). The divisors of the \(n_i \) that are not proper go to zero in \(A \). □

Using Lemma 14 with the idea above we obtain:

Theorem 15. Let \(S = k[x_1, \ldots, x_r] \) be a polynomial ring over a field \(k \), and let \(w \) be a weight function on \(S \) as above. Suppose that \(I \) is an ideal of \(S \), generated by monomials, and set \(A := S/I \). Let \(M \) be a \(Z' \)-graded \(A \)-module with \(Z' \)-homogeneous generators \(\{g_1, \ldots, g_s\} \), of weights \(\leq d \), and set \(J_i = (A g_1 + \cdots + A g_{i-1} : A g_i) \). If the \(J_i \) are generated by elements of weight \(\leq e \), and both these elements and the proper divisors of the generators of \(I \) have weights \(\leq f \), then for each integer \(i \geq 1 \) we have

\[t^i(w, M) \leq d + e + (i - 1)f. \]

Proof. We will inductively construct a (not necessarily minimal) free resolution

\[\cdots \to F_2 \to F_1 \to F_0 \to M \to 0 \]

such that the generators of \(F_0 \) have weights \(\leq d \), the generators of \(F_1 \) have weights \(\leq d + e \), and for \(i \geq 2 \) the weights of the generators of \(F_i \) are \(\leq d + e + (i - 1)f \). Since the minimal (multigraded) free resolution is a summand of any free resolution, it follows that the weights of the \(i \)th free module in the minimal resolution are also \(\leq d + e + (i - 1)f \), proving the desired inequality.

Let \(F_0 \) be \(Z' \)-graded free \(A \)-module with \(s \) generators whose degrees match those of the \(g_i \), so that the surjection \(\phi_0 : F_0 \to M \) sending the \(i \)th basis vector of \(F_0 \) to \(g_i \) is multihomogeneous. The weights of the generators of \(F_0 \) are \(\leq d \).

We will prove by induction on \(s \) that the module \(\ker(\phi_0) \) admits a filtration with successive quotients isomorphic, up to a shift in multidegree, to
the ideals J_i, and that the weight of the generators of this kernel are $\leq d + e$. If we define F'_0 to be F_0 modulo the first basis element, and define M' by the short exact sequence

$$0 \to A_{g_1} \to M \to M' \to 0$$

then by the snake lemma we get a short exact sequence

$$0 \to J_1 \to \ker(\phi_0) \to \ker(\phi'_0) \to 0,$$

where $\phi'_0 : F'_0 \to M'$ is the induced map. By induction $\ker(\phi'_0)$ has a filtration with quotients J_2, \ldots, J_n, and generators of weights $\leq d + e$. This gives the desired filtration of $\ker(\phi_0)$. The weight of the generators of the copy of J_1 in the kernel are the weights of the monomials generating the ideal J_1 plus the weight of g_1, so they are also $\leq d + e$, and we are done.

Using this filtration of $\ker(\phi_0)$, we define a free module F_1 whose generators have weights $\leq d + e$ and a map $\phi_1 : F_1 \to F_0$ sending the generators of F_1 to representatives h_i in $\ker(\phi_0)$ of the generators of the successive quotients J_i.

We now repeat the argument, replacing M by $\ker(\phi_0)$ and ϕ_0 by ϕ_1. Lemma 14 applied to the ideals J_i implies that the argument works as before if we replace e by f: that is, $\ker(\phi_1)$ has a filtration with successive quotients isomorphic (up to a shift in multidegree) to ideals with generators of weight $\leq f$. This allows us to construct F_2 with generators of degrees $\leq d + e + f$ that map onto generators h_i of $\ker(\phi_0)$ such that the ideals $(Ah_1 + \cdots + Ag_1 : g_1)$ have generators of weight $\leq f$.

We may continue to repeat the argument, using the bound f from the second step on, and constructing the desired resolution.

In the special case of the resolution of the residue class field k, we may take J_1 to be the maximal ideal, and we get Backelin's result referred to above:

Corollary 16. Let $S = k[x_1, \ldots, x_r]$ be a polynomial ring over a field k. Suppose that I is an ideal of S, generated by monomials of degree $\leq f$, and set $A := S/I$. We have

$$t^A_i(k) \leq 1 + (i - 1)(f - 1).$$

Note that Theorem 15 does not prove much about the entries of the matrices in even a non-minimal resolution.

With the ring A as in the Theorem, it would be interesting to know whether there is a minimal free resolution (say of the residue class field), with bases for the free modules occurring, such that the entries of the matrices representing the maps of the resolution with respect to the given bases all have low multidegree (or low weight). The rate bound given in the
above theorem, together with the requirement that the resolution be minimal (so that each syzygy has weight at least 1) implies that the individual entries of the ith syzygy matrix must have weights bounded by $d + e + (i - 1) f - 1 + 1$. We do not know whether there always exists a free resolution with bases, even nonminimal, such that the entries appearing in the matrices are all proper divisors of the generators of I, or even of the least common multiple of the generators of I.

5. Segre Products of Veronese Embeddings

The proofs of Proposition 6 and Theorem 8 can be easily generalized to the Segre–Veronese case. Below are the definitions and statements we can make in this case.

Let

$$S := k[x_{11}, \ldots, x_{1r_1}, \ldots, x_{1r_s}, x_{21}, \ldots, x_{2r_s}, \ldots, x_{nr_s},]$$

be the coordinate ring of $P^r_1 \times \cdots \times P^r_s$, where $x_i = (x_{i1}, \ldots, x_{ir_s})$ are the homogeneous coordinates on P^r_i. And let

$$T := k[\{ z_m \}, m \text{ is a monomial of } S \text{ of multidegree } (d_1, \ldots, d_s)]$$

be the coordinate ring of P^N.

Definition. Let $\phi: T \to S$ be given by $\phi(z_m) = m = m_1 \cdots m_s$, where $m_i = x_{1i}^{a_{i1}} \cdots x_{ri}^{a_{ri}}$.

The ideal $\ker(\phi)$ is generated by the quadratic binomials of the form $z_m z_n - z_m z_n'$, where $m \cdot n = m' \cdot n'$ in S. As in Section 2, if a, b are monomials in T, $a > b$ if $\phi(a) > \phi(b)$, or $\phi(a) = \phi(b)$ and $a > b$ in reverse lexicographic order.

Proposition 17. In reverse lexicographic order, the initial terms of the binomials $z_m z_n - z_m z_n'$ generate $\text{in}(\ker(\phi))$.

Definition. The stabilization $\{ I \}$ of an ideal I is defined to be the ideal generated by

$$\{ (x_i/x_{j\max(m)}) m | m \in I, j = 1, \ldots, \max(m) \}.$$

Definition. Call a multi-homogeneous monomial ideal I combinatorially stable if it is combinatorially stable in each set of variables independently. That is, given

$$x_1^{a_1} \cdots x_s^{a_s} \in I,$$
we must have
\[\{x_1^{x_1}\} \cdot \{x_2^{x_2}\} \cdots \{x_s^{x_s}\} \subseteq I, \]
where \(\{x_i^{x_i}\} \) is the set of all monomials necessary for an ideal in
\(k[x_0, \ldots, x_n] \) containing \(x_i^{x_i} \) to be combinatorially stable, and where the
above product is the outer product, i.e., all possible products of elements
taken one from each set.

Theorem 18. If \(I \) is a multihomogeneous ideal whose initial ideal is com-
bbinatorially stable, then \(\text{in}(\sigma(I)) = \sigma(\text{in}(I)) \) (where the initial terms on the
left are computed with respect to the induced order with ties broken by reverse
lex). Thus if \(\text{in}(I) \) is generated in degrees \(\leq (u_1, \ldots, u_s) \) \((u_i = \text{maximum}
dergree of any generator with respect to the \(i \)th set of variables), then
\(\text{in}(V(I)) \) is generated in degrees \(\leq \max(2, \lceil u_1/d_1 \rceil, \ldots, \lceil u_s/d_s \rceil) \).

6. **Another Obstruction to Having a Quadratic Initial Ideal**

In this section, we formulate a general obstruction to the existence of a
quadratic initial ideal for a given polynomial ideal, beyond the obvious
requirement that the ideal must be generated by quadratic polynomials,
and even beyond the stronger requirement that the quotient ring must be
a Koszul algebra. We use the obstruction to show that in certain
dimensions, the ideal of a generic complete intersection of quadrics has no
quadratic initial ideal, although every complete intersection of quadrics is
a Koszul algebra [BaFr85].

Note. In discussing the existence of a quadratic initial ideal for a
homogeneous ideal \(I \) in a polynomial ring \(S = k[x_1, \ldots, x_r] \), we are asking
whether there exists a set of coordinates \(x'_1, \ldots, x'_r \) (linear combinations of
\(x_1, \ldots, x_r \in S_1 \)) and a monomial order with respect to which \(\text{in}(I) \) is
generated by quadratic polynomials.

Theorem 19. Let \(I \) be a homogeneous ideal in a polynomial ring \(S \).
Consider the Krull dimensions \(r = \dim(S), \ n = \dim(S/I), \ e = r - n \). (Thus, if
\(n \geq 1 \), \(n \) is one more than the dimension of the projective variety defined
by \(I \).) If there are coordinates and a monomial order such that the initial
ideal \(\text{in}(I) \) has quadratic generators, then the ideal \(I \) contains \(e \) linearly
independent quadratic elements of the form:
\[
\begin{align*}
c_1x_1^2 &= x_2L_{1,2} + \cdots + x_{e+n}L_{1,e+n} \\
\vdots \\
c_e x_e^2 &= x_{e+1}L_{e,e+1} + \cdots + x_{e+n}L_{e,e+n}
\end{align*}
\]
for some basis \(x_1, \ldots, x_{e+n} \) for \(S_1 \) and some \(c_i \in k \) and linear forms \(L_y \in S_1 \).
In particular, I contains an m-dimensional space of quadrics of rank
\[\leq 2(n + m) - 1 \] for every $m \leq \text{codim}(I)$.

We recall that the rank of a quadratic form Q over a field k is the rank
of a symmetric matrix representing the form.

Proof. We are given that there is a basis x_1, \ldots, x_{e+n} for the vector
space S_1 and an ordering of the x-monomials, such that the resulting initial
ideal in(I) is generated by in(I)$_2$. We can assume that $x_1 > \cdots > x_{e+n}$ in
the monomial ordering.

We observe that for $i = 1, \ldots, e$, there must be at least i quadratic
monomials x_jx_k with $e - i + 1 \leq j, k \leq e + n$ which are not allowable.
Otherwise the Hilbert series of S/I would be at least equal to the Hilbert
series of an algebra $k[x_{e-i+1}, \ldots, x_{e+n}]/(<i \text{ relations})$, so the dimension
of S/I would be at least that of the latter ring, which is greater than n; this
contradicts $\dim(S/I) = n$.

Thus, for $i = 1, \ldots, e$, there are i monomials x_1x_k, $e - i + 1 \leq j, k \leq e + n$,
which are linear combinations of earlier monomials x_jx_1. No matter what
monomial ordering we are using, at least one of l and m must be
$> e - i + 1$ in this situation. So, for all $1 \leq i \leq e$, R satisfies i independent
relations of the form
\begin{align*}
&hX_{e-i+1}^2 + (a_{e-i+2,1}X_{e-i+2}X_1 + \cdots + a_{e-i+2,e+n}X_{e-i+2}X_{e+n}) \\
&+ (a_{e-i+3,1}X_{e-i+3}X_1 + \cdots + a_{e-i+3,e+n}X_{e-i+3}X_{e+n}) + \cdots \\
&+ (a_{e+n,1}X_{e+n}X_1 + \cdots + a_{e+n,e+n}X_{e+n}^2) = 0.
\end{align*}

This implies the statement of the lemma.

Corollary 20. Let k be an infinite field, and let I be an ideal in
$S = k[x_1, \ldots, x_{e+n}]$ generated by e generic quadratic forms defined over k.
We assume that $n \geq 0$. (If $n \geq 1$, S/I is the homogeneous coordinate ring of an
$(n-1)$-dimensional complete intersection of quadrics in \mathbb{P}^{e+n-1}.) If
\[n < \frac{(e-1)(e-2)}{6} \]
then generic complete intersection ideals I as above do not admit any
quadratic initial ideal.

Proof. Any n-dimensional complete intersection of homogeneous
quadrics in affine $(e+n)$-space can be described by a point of the
Grassmannian of e-dimensional subspaces of S^2V, $\text{Gr}(X_e \subset S^2V)$, where
we let $V = S_1$, a vector space of dimension $e+n$ over k; conversely, a
nonempty open subset of this Grassmannian corresponds to complete
intersections.
Those e-dimensional linear spaces of quadrics which generate an ideal which admits a quadratic initial ideal can, by Lemma 19, be written in the form:

\[c_1 x_1^2 = x_2 L_{1,2} + \cdots + x_{e+n} L_{1,e+n} \]
\[
\vdots
\]
\[c_e x_e^2 = x_{e+1} L_{e,e+1} + \cdots + x_{e+n} L_{e,e+n} \]

for some basis x_1, \ldots, x_{e+n} for V and some $c_i \in k$ and linear forms $L_i \in V$. We want an upper bound for the dimension of the space of e-dimensional linear subspaces of $S^2 V$ which can be written in this form. If our bound is less than the dimension of the whole Grassmannian $\text{Gr}(X_e \subset S^2 V)$, then we will know that generic complete intersections of quadrics in this dimension do not have any quadratic initial ideal.

Our dimension estimate (which is not always sharp) is based on the following observation. The basis x_1, \ldots, x_{e+n} for V is not important, only the flag $\langle x_{e+n}, \ldots, x_{e+1} \rangle \subset \langle x_{e+n}, \ldots, x_e \rangle \subset \cdots \subset \langle x_{e+n}, \ldots, x_1 \rangle = V$. That is, if a linear system of quadrics has the form (*) for a basis x_1, \ldots, x_{e+n} of V, then it has the same form for any basis which gives the same flag $\langle x_{e+1}, \ldots, x_{e+n} \rangle \subset \cdots$.

For any flag $V_n \subset V_{n+1} \subset \cdots \subset V_{e+n} = V$, we consider an associated flag $W_{a_1} \subset W_{a_2} \subset \cdots \subset W_{a_e} = S^2 V$ defined by

\[W_{a_i} = (V_{n+i-1} \cdot V) + (V_{n+1} \cdot V_{n+1}) \subset S^2 V. \]

(That is, in terms of any basis x_1, \ldots, x_{e+n} adapted to the flag $V_n \subset \cdots, W_{a_e}$ is the space of quadrics of the form $c_{e-i+1} x_{e-i+1}^2 + \cdots + x_{e+n} L_{e+n}, L_i \in V$.)

We always use the notation V_i, W_i, etc. to denote i-dimensional vector spaces.

Also associated to any flag $V_n \subset V_{n+1} \subset \cdots \subset V_{e+n} = V$, we can consider the space of flags $X_1 \subset \cdots \subset X_e \subset V$ such that $X_i \subset W_{a_i}$ for $i = 1, \ldots, e$. Let $Q_{a,e}$ be the space of flags $V_n \subset V_{n+1} \subset \cdots \subset V_{e+n} = V$ and $X_1 \subset \cdots \subset X_e \subset S^2 V$ such that $X_i \subset W_{a_i}$ for $i = 1, \ldots, e$. The image of the map

\[Q_{a,e} \to \text{Gr}(X_e \subset S^2 V) \]
\[(V_i, X_i) \mapsto X_e \]

contains the set of complete intersections of e homogeneous quadrics in $(e+n)$-space which have a quadratic initial ideal.
Moreover, it is easy to compute the dimension of $Q_{n,e}$, which is an iterated projective bundle over the flag manifold $\text{Fl}(V_n \subset V_{n+1} \subset \cdots \subset V_{e+n} = V)$: given a flag $V_n \subset \cdots$ and hence the associated subspaces W_{a_i}, we first choose the line $X_1 \subset W_{a_i}$, then a line $X_2/X_1 \subset W_{a_i}/X_1$, and so on.

The dimension of the vector space W_{a_i}, for $i = 1, \ldots, e$, is

$$a_i = (e + n) + (e + n - 1) + \cdots + (e - i - 2) + 1$$

$$= (e + n)(e + n + 1)/2 - (e - i + 1)(e - i + 2)/2 + 1.$$

Using this, we compute the dimension of the variety $Q_{n,e}$:

$$\dim Q_{n,e} = \dim \text{Fl}(V_n \subset \cdots \subset V_{e+n} = V) + \sum_{i=1}^{e} \dim \mathbf{P}(W_{a_i}/X_{i-1})$$

$$= en + \frac{e(e-1)}{2} + \sum_{i=1}^{e} \left[\frac{(e+n)(e+n+1)}{2} - \frac{(e-i+1)(e-i+2)}{2} + 1 - i \right]$$

$$= en + \frac{e(e-1)}{2} + \frac{e(e+n)(e+n+1)}{2} - \left(\sum_{j=1}^{e} j(j+1) \right) - e - \frac{e(e+1)}{2}$$

$$= e \left(n + \frac{(e+n)(e+n+1)}{2} - \frac{(e+1)(e+2)}{6} \right).$$

So

$$\dim Q_{n,e} < \dim \text{Gr}(X_e \subset S^2 V)$$

$$\Leftrightarrow e(n + (e+n)(e+n+1)/2 - (e+1)(e+2)/6) < e((e+n)(e+n+1)/2 - e)$$

$$\Leftrightarrow n < (e+1)(e+2)/6 - e$$

$$\Leftrightarrow n < (e-1)(e-2)/6$$

Thus, if $n < (e-1)(e-2)/6$, then the image of the map $Q_{n,e} \to \text{Gr}(X_e \subset S^2 V)$ has dimension less than the dimension of $\text{Gr}(X_e \subset S^2 V)$. Thus for $n < (e-1)(e-2)/6$, the ideal generated by e generic quadratic forms in $e+n$ variables has no quadratic initial ideal.

For example, the ideal generated by 3 generic quadratic forms in 3 variables has no quadratic initial ideal. Similarly for a generic complete intersection of 5 quadrics in \mathbf{P}^5, or a generic complete intersection of 6 quadrics in \mathbf{P}^7. (The last example gives smooth curves of genus 129.)
Explicitly, say over a field k of characteristic 0, the ideal

$$I = \langle x(x + y), y(y + z), z(z + x) \rangle \subseteq k[x, y, z] = S$$

is a complete intersection of quadrics, and so S/I is a Koszul algebra [BaFr85], but one can check using Lemma 19 that it has no quadratic initial ideal, for any coordinates and any monomial order. (One has to check that no nonzero linear combination of the relations $x(x + y)$, $y(y + z)$, $z(z + x)$ is the square of a linear form, which is easy.)

REFERENCES

