Nov 22, 2013
Friday
|
09:30 AM - 10:30 AM
|
|
The Penrose inequality for asymptotically locally hyperbolic spaces with nonpositive mass
Dan Lee (Queens College, CUNY)
|
- Location
- MSRI: Simons Auditorium
- Video
-
- Abstract
- In the asymptotically locally hyperbolic setting it is possible to have metrics with scalar curvature at least -6 and negative mass when the genus of the conformal boundary at infinity is positive. Using inverse mean curvature flow, we prove a Penrose inequality for these negative mass metrics. The motivation comes from a previous result of P. Chrusciel and W. Simon, which states that the Penrose inequality we prove implies a static uniqueness theorem for negative mass Kottler metrics
- Supplements
-
Lee
194 KB application/pdf
|
|
|