Mathematical Sciences Research Institute

Home » GFA Main Seminar: On polynomially integrable convex bodies


GFA Main Seminar: On polynomially integrable convex bodies August 28, 2017 (11:30 AM PDT - 12:30 PM PDT)
Parent Program:
Location: MSRI: Simons Auditorium
Speaker(s) Vladyslav Yaskin (University of Alberta)
Description No Description
No Video Uploaded

 Let $K$ be a convex body in $\mathbb R^n$. The parallel section function of $K$ in the direction $\xi\in S^{n-1}$ is defined by $$A_{K,\xi}(t)=\mathrm{vol}_{n-1}(K\cap \{\langle x,\xi\rangle =t\}),\quad t\in \R.$$$K$ is called polynomially integrable (of degree $N$) if its parallel section function in every direction is a polynomial of degree $N$. We prove that the only smooth origin-symmetric convex bodies with this property in odd dimensions are ellipsoids, if $N\ge n-1$.  This is in contrast with the case of even dimensions and the case of odd dimensions with $N<n-1$, where such bodies do not exist, as it was recently shown by Agranovsky. Joint work with A. Koldobsky and A. Merkurjev.


No Notes/Supplements Uploaded No Video Files Uploaded