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1 Toro’s problems

Problem 1 A Radon measure µ on Rn is said to be doubling, if there exists a constant
C = C(n) depending only on n, such that for every r > 0 and every x ∈ Rn

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Show that for any open set U ⊂ Rn, and ¿.0, there exists a countable collection G of disjoint
closed balls in U such that diam B ≤ δ for all B ∈ G, and

µ(U\
⋃
B∈G

B) = 0.

Problem 2.
Definition: Let S ⊂ Rn, m ≤ n− 1, and ε ∈ (0, 1

4
). Assume that 0 ∈ S. We say that S has

the weak ε- approximation property in B1(0) if ∀ρ ∈ (0, 1] and for each Q ∈ S ∩B1(0) there
exists an m plane L(ρ,Q) containing Q and such that

S ∩Bρ(Q) ⊂ (ερ)− neighborhood of L(ρ,Q) ∩Bρ(Q).

Prove that there is a function β : (0,∞) → (0,∞) with limt→0 β(t) = 0 such that if S
satisfies the weak ε- approximation property in B1(0) then

Hm+β(ε)(S ∩B1(0)) = 0.

Here Hs denotes the s dimensional Hausdorff measure.

Problem 3. Let µ be a Borel measure on Rn, and let E ⊂ Rn be a µ-measurable set with
0 < µ(E) <∞. Show that for s > 0
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• if

lim sup
r→0

µ(B(x, r) ∩ E)

rs
< c <∞ ∀x ∈ E,

then Hs(E) > 0,

• if

lim sup
r→0

µ(B(x, r) ∩ E)

rs
> c > 0 ∀x ∈ E,

then Hs(E) <∞.

Problem 4. Let µ be a Radon measure on Rn. Prove that µ << Hs if and only if
θ∗,s(µ, x) <∞ for µ almost all x ∈ Rn.

Problem 5. Let E ⊂ Rn satisfy 0 < Hs(E) <∞, for 0 < s < 1. Show that the density

θs(E, x) = lim
r→0

Hs(E ∩B(x, r))

ωsrs

fails to exit at almost every point of E (i.e. θs(E, x) exists at most in a subset of E of Hs

measure 0).

Remark: Marstrand proved this result in 1954. Later on he showed that if s > 0, and
θs(E, x) exists on a subset F ⊂ E with Hs(F ) > 0, then s must be an integer.

Problem 6. Let µj, µ be Radon measures on a metric space X. Assume that for each
x ∈ X, and each j = 1, 2, ...

θ(µj, x, r) =
µj(Br(x))

ωnrn
, and θ(µ, x, r) =

µ(Br(x))

ωnrn
,

are non-decreasing functions of r. Assume also that µj converges weakly to µ, and that
xj → x as j →∞. Prove that

lim sup
j→∞

θ(µj, xj) ≤ θ(µ, x).

Here θ(µj, x) = limr→0 θ(µj, x, r), and θ(µ, x) = limr→0 θ(µ, x, r).

Remark: Note that in particular if µj = µ for each j and θ(µ, x, r) is a non-decreasing
function of r, then the result above proves the upper semi-continuity of the density.
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Problem 7. Let M ⊂ Rm, 0 < n < m, and µ = Hn M . Assume that µ is a Radon
measure, and that for each x ∈M θ(µ, x, r) = µ(Br(x))

ωnrn
is a non-decreasing function of r. Let

λj > 0 be a sequence converging to 0 as j →∞. For x ∈M , let

Mj =
1

λj
(M − x) = {y =

1

λj
(z − x) : z ∈M},

and
µj = Hn (Mj ∩B1(0)).

Show that for each j, µj is a Radon measure. Prove that there exists a subsequence µjk of
µj that converges weakly to a Radon measure ν, and that

(∗) θ(µ, x) = θ(ν, 0).

Note that in particular (∗) asserts that limr→0 θ(ν, 0, r) exits.

Remark: The situation described in Problem 3 occurs when M is a minimal n-dimensional
submanifold of Rm. In that case ν = Hn C, where C is a cone of vertex 0. C is a tangent
cone of M at x. As defined this cone depends on the subsequence λjk . One of the big
open questions in the subject is whether there is a unique tangent cone. Moreover the set
{x ∈ M : θ(µ, x) = 1} is open and smooth. The set {x ∈ M : θ(µ, x) > 1} is a closed set of
Hausdorff dimension at most n− 1.

Problem 8.
Definition: Let µ be a Radon measure in Rn. Set, for x ∈ Rn,

Mµf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f | dµ,

if f is a µ-measurable function, and

Mµν(x) = sup
r>0

ν(B(x, r))

µ(B(x, r))
,

if ν is a Radon measure in Rn.

• Show that there exists a constant C < ∞ depending only on n, with the following
property: if µ and ν are Radon measures in Rn, then

µ ({x ∈ Rn : Mµν(x) > t}) ≤ Ct−1ν(Rn).

• Show that for 1 < p <∞ there exists a constant Cp <∞, depending only on n and p
with the following property: if µ is a Radon measure in Rn, then∫

(Mµf)p dµ ≤ Cp

∫
|f |p dµ,

for all µ-measurable functions f .
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Problem 9. Let f : Rn → Rm be a Lipschitz map, and A ⊂ Rn be an Hn-measurable set.
Show that Θn

∗ (f(A), x) > 0 for Hn almost every x ∈ f(A).

Problem 10.
Definition 1: A map f : A→ B, A ⊂ Rn, B ⊂ Rm is said to be bi-Lipschitz if f is Lipschitz
and it has a Lipschitz inverse f−1 : B → A.
Definition 2: A set E ⊂ Rn is said to be an Ahlfors s-regular set for some 0 < s ≤ n, if
there exists a constant C > 1 so that for every r > 0 and each x ∈ E,

C−1rs ≤ Hs(E ∩B(x, r)) ≤ Crs.

Show that the image of an Ahlfors s-regular set by a bi-Lipschitz map is an Ahlfors s-regular
set.

Problem 11. Let S ⊂ Rn, m ≤ n− 1, and ε ∈ (0, 1
2
). Let 0 ∈ S. Assume that there exists

an m plane L containing the origin, such that ∀ρ ∈ (0, 1] and for each x ∈ S ∩B(0, 1)

S ∩B(x, ρ) ⊂ (ερ)− neighborhood of (L+ x) ∩B(x, ρ).

Prove that S ∩B(0, 1
4
) is contained in a Lipschitz graph. Give an estimate for the Lipschitz

constant of the corresponding function.

Problem 12. Let f : Rn → Rm be Lipschitz, n ≥ m. Let g : Rn → R be an Hn-
summable function. Assume that supx∈Rn |f(x)| ≤ R, and that g ≥ 0. Show that for each
Hn-measurable set A ⊂ Rn, there exists a set S ⊂ B(0, R) ⊂ Rm (S = S(g, f, A)), such that
Hm(S) ≥ 1

2
Hm(B(0, R)), and for each y ∈ S∫

f−1(y)∩A
g dHn−m ≤ 2

Hm(B(0, R))

∫
A

g Jf dHn.

Problem 13.. Let U ⊂ Rn be an open set, let u ∈ BV (U) and f ∈ C∞C (U). Then
fu ∈ BV (U) and ∀ϕ ∈ C1

c (U,Rn),∫
U

ϕd[D(fu)] =

∫
U

ϕf d[Du] +

∫
U

uϕ ·Df dx,

i.e. D(fu) = uDf + fDu in the distribution sense. Here if u ∈ BV (U), d[Du] = σd‖Du‖,
where ‖Du‖ is the variation measure of u, and σ is the ‖Du‖-measurable function that
appears in the structure theorem for BV functions.
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Problem 14. Let N be a C1 n-submanifold in Rn+k. Let θ : N → R be an Hn measurable
function. Let ηx,rN = 1

r
(M − x). Prove for Hn − a.e. x ∈ N and all f ∈ Cc(Rn+k)

lim
r→0

∫
ηx,rN

f(y)θ(ry + x) dHn(y) = θ(x)

∫
TxN

f(y) dHn(y).

Here TxN denotes the tangent plane to N at x.

Problem 15. Let µ be a Radon measure on Rn. Assume that for a ∈ supportµ = Σ

(1) 1 ≤ lim sup
µ(B(a, 2r))

µ(B(a, r))
<∞.

1. Show that for τ ≥ 1 and a ∈ Σ

1 ≤ lim sup
µ(B(a, τr))

µ(B(a, r))
<∞.

2. Prove that if there exit κ > 1 and R > 0 such that for r ∈ (0, R) and all a ∈ Σ

(2)
µ(B(a, 2r))

µ(B(a, r))
≤ κ

then for any measure ν obtained as a weak limit of a sequence

(µ(B(a, ri)))
−1Ta,ri#µ where Ta,ri#µ(E) = µ(riE + a) for E ⊂ Rn Borel

the following statement holds: x ∈ support ν if and only if there exists a sequence
xi ∈ Ta,ri(Σ) such that xi → x.

2 DeLellis’s problems

Problem 1. U ⊂ Rn is a convex open set.

W 1,∞(U) = {u ∈ L∞loc : Du ∈ L∞} ;

Lip (U) = {u ∈ C(U) : ∃L with |u(x)− u(y)| ≤ L|x− y|∀x, y ∈ U} .

Show that W 1,∞(U) = Lip (U).

Problem 2. Let U ⊂ Rn be open and u ∈ W 1,p(U), with p > n. Prove that u is differentialbe
a.e.. Show a map u ∈ W 1,n(U) which is not differentiable a.e..
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Problem 3. Prove the Cauchy-Binet formula: if m ≥ n and M is an m× n matrix, then

det (Lt · L) =
∑

n× n submatrices M of L

(detM)2 .

Problem 4. Prove the area and coarea formulas for linear maps.

Problem 5. Prove that BV (U) is a Banach space.

Problem 6. Prove that for every u ∈ BV (U) there exists a sequence {uk} ⊂ BV (U)∩C∞(U)
such that uk → u strongly in L1 and ‖Duk‖(U)→ ‖Du‖(U).

Problem 7. Let U = {x ∈ Rn : xn > 0}. For f ∈ BV (U) define

1

ε

∫ ε

0

f(x′, xn) dxn .

Prove that {fε} is Cauchy in L1.

Problem 8. Let f ∈ BV (U). Prove

‖Df‖(A) =

∫ ∞
−∞
‖∂{f > t}‖(A) dt

for every Borel set A ⊂ U .

Problem 9. I ⊂ R interval, (E, d) separable metric space. Define BV (I, E) following
Ambrosio (see lecture). Define TV (I, E) as the set of measurable functions u : I → E such
that

TV (u) := sup
N∈N,x0<x1<...<xN∈I

N∑
i=1

d(u(xi, u(xi−1) <∞ .

Prove that BV (I, E) = TV (I, E) (i.e. that every u ∈ TV (I, E) belongs to BV (I, E) and
for every u ∈ BV (I, E) there is ũ ∈ TV (I, E) such that ũ = u a.e.).

Problem 10 When E = R prove that ‖Du‖(I) = TV (ũ) where ũ is the precise representative
(see lecture).
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Problem 11. Assume {µi}i∈I is a (not necessarily countable!) collection of nonnegative
measures on a Borel set E ⊂ Rn with the property that there is a measure µ with µi ≤ µ
∀i ∈ I. For every Borel set F ⊂ E define

ν(F ) = sup

{
∞∑
n=0

µin(Fn) : {Fn} is a Borel partition of F , {in} ⊂ I

}
.

Show that ν is a measure. Show that ν is the smallest measure with the property that µi ≤ ν
∀i ∈ I.

Problem 12. Let Cα ⊂ R2 be the cone

{(x1, x2) : |x2| ≥ α|x1|} .

Prove the existence of a Borel set K ⊂ R2 such that

• 0 < H1(K) <∞;

•
lim
r↓0

H1(K ∩Br(x) ∩ (Cα + x))

r
= 0 for all α and H1–a.e. x.

• K is not rectifiable.

Hint: look at graphs of suitable functions.
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