Introduction to resolutions Irena Swanson, MSRI, Lecture 1

A **complex**: $\cdots \to M_{i+1} \xrightarrow{d_{i+1}} M_i \xrightarrow{d_i} M_{i-1} \to \cdots$, where the M_i are groups (or left modules), the d_i are group (or left module) homomorphisms, and for all $i, d_i \circ d_{i+1} = 0$. Abbreviate as C_{\bullet} , M_{\bullet} or $(M_{\bullet}, d_{\bullet})$, et cetera.

 $(M_{\bullet}, d_{\bullet})$ is **bounded below** if $M_i = 0$ for all sufficiently small (negative) i;

it is **bounded above** if $M_i = 0$ for all sufficiently large (positive) i;

it is **bounded** if $M_i = 0$ for all sufficiently large |i|.

 $(M_{\bullet}, d_{\bullet})$ is exact at the ith place if $\ker(d_i) = \operatorname{im}(d_{i+1})$.

A complex is **exact** if it is exact at all places. (Also called **exact sequence**.) A complex is **free** (resp. **flat**, **projective**, **injective**) if all the M_i are free (resp. flat, projective, injective).

An exact complex $0 \to M' \xrightarrow{\imath} M \xrightarrow{p} M'' \to 0$ is called a **short exact sequence**.

http://www.reed.edu/~iswanson/MSRI11SwansonIntroResolutions.pdf

A **complex**: $\cdots \to M_{i+1} \xrightarrow{d_{i+1}} M_i \xrightarrow{d_i} M_{i-1} \to \cdots$, where the M_i are groups (or left modules), the d_i are group (or left module) homomorphisms, and for all $i, d_i \circ d_{i+1} = 0$. Abbreviate as C_{\bullet} , M_{\bullet} or $(M_{\bullet}, d_{\bullet})$, et cetera.

 $(M_{\bullet}, d_{\bullet})$ is **bounded below** if $M_i = 0$ for all sufficiently small (negative) i; it is **bounded above** if $M_i = 0$ for all sufficiently large (positive) i;

it is **bounded** if $M_i = 0$ for all sufficiently large |i|.

 $(M_{\bullet}, d_{\bullet})$ is exact at the ith place if $\ker(d_i) = \operatorname{im}(d_{i+1})$.

A complex is **exact** if it is exact at all places. (Also called **exact sequence**.) A complex is **free** (resp. **flat**, **projective**, **injective**) if all the M_i are free (resp. flat, projective, injective).

An exact complex $0 \to M' \xrightarrow{\imath} M \xrightarrow{p} M'' \to 0$ is called a **short exact sequence**.

http://www.reed.edu/~iswanson/MSRI11SwansonIntroResolutions.pdf

A cocomplex is a complex that is numbered in the opposite order: C^{\bullet} : $\cdots \to M^{i-1} \xrightarrow{d^{i-1}} M^i \xrightarrow{d^i} M^{i+1} \to \cdots$

What do we do with complexes?

- (1) Given a module, build some corresponding complexes resolutions of modules (free, projective, flat, injective, minimal).
- (2) Applying functors to (exact) complexes Hom, tensor products, tensor products of two complexes.
- (3) Koszul complex: as tensor product of complexes (two ways), and there is a definition via exterior powers.
- (4) Kernels and images in a complex \longrightarrow homology.
- (5) When are resolutions finite?
- (6) When is a complex exact?
- (7) What invariants (ranks?) appear in exact complexes?

Suppose that $\cdots \to F_{i+1} \xrightarrow{d_{i+1}} F_i \xrightarrow{d_i} F_{i-1} \to \cdots \to F_1 \xrightarrow{d_1} F_0 \to M \to 0$ is exact and all the F_j are free (respectively projective, flat) modules over R, and M is an R-module. Then we call both the exact complex above, as well as the complex $\cdots \to F_{i+1} \xrightarrow{d_{i+1}} F_i \xrightarrow{d_i} F_{i-1} \to \cdots \to F_1 \xrightarrow{d_1} F_0 \to 0$, a **free** (resp. projective, flat) resolution of M.

Every R-module has a free resolution, and hence a projective resolution. If for $F_n = 0$ for some/all large n, we say that M has a **finite free/projective resolution**. The smallest n such that $F_{n+1} = F_{n+2} = \cdots$ is called **the length of this resolution**. The **free/projective dimension of** M is the smallest such n (it could be ∞). This is denoted as pd(M).

Minimal resolutions

Suppose that $0 \to M \to I^0 \to I^1 \to I^2 \to I^3 \to \cdots$ is exact, where each I_j is an injective R-module. This cocomplex, as well as $0 \to I^0 \to I^1 \to I^2 \to I^3 \to \cdots$ are called an **injective resolution** of M.

Ways to make complexes from a given one

$$C_{\bullet} = \cdots \rightarrow C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} C_{n-2} \rightarrow \cdots$$

(1) **Hom from** M: $\operatorname{Hom}_R(M, C_{\bullet})$, with $\operatorname{Hom}(M, d_n) = d_n \circ _$:

$$\cdots \to \operatorname{Hom}(M, C_n) \xrightarrow{\operatorname{Hom}(M, d_n)} \operatorname{Hom}_R(M, C_{n-1}) \xrightarrow{\operatorname{Hom}(M, d_{n-1})} \operatorname{Hom}_R(M, C_{n-2})$$

(2) **Hom to** M: $\operatorname{Hom}_R(C_{\bullet}, M)$ is a cocomplex, with $\operatorname{Hom}(d_n, M) = _ \circ d_n$:

$$\cdots \to \operatorname{Hom}(C_{n-1}, M) \xrightarrow{\operatorname{Hom}(d_n, M)} \operatorname{Hom}_R(C_n, M) \xrightarrow{\operatorname{Hom}(d_{n+1}, M)} \operatorname{Hom}_R(C_{n+1}, M)$$

(3) Tensor product $C_{\bullet} \otimes_R M$:

$$C_{\bullet} \otimes_R M : \cdots \to C_n \otimes_R M \xrightarrow{d_n \otimes \mathrm{id}} C_{n-1} \otimes_R M \xrightarrow{d_{n-1} \otimes \mathrm{id}} C_{n-2} \otimes_R M \to \cdots$$

(We say that M is **flat** if $C_{\bullet} \otimes M$ is exact for every exact complex C_{\bullet} .)

(4) **Tensor product of complexes:** Let $K_{\bullet} = \cdots \to K_n \xrightarrow{e_n} K_{n-1} \xrightarrow{e_{n-1}} K_{n-2} \to \cdots$ be another complex. The tensor product of complexes of C_{\bullet} and K_{\bullet} yields a kind of a bicomplex, as follows:

(Total complex along 45° angle) $G_n = \sum_i C_i \otimes K_{n-i}$, $g_n : G_n \to G_{n-1}$ defined on $C_i \otimes K_{n-i}$ as $d_i \otimes \operatorname{id}_{K_{n-i}} + (-1)^i \operatorname{id}_{C_i} \otimes e_{n-i}$, where the first summand is in $C_{i-1} \otimes K_{n-i}$ and the second in $C_i \otimes K_{n-i-1}$.

(Here we show that the total complex of the tensor product of complexes is a complex)

Recall $(C_{\bullet}, d_{\bullet}) \otimes (K_{\bullet}, e_{\bullet})$ is:

Total complex: $G_n = \sum_i C_i \otimes K_{n-i}$, $g_n : G_n \to G_{n-1}$ restricted to $C_i \otimes K_{n-i}$ is $d_i \otimes \mathrm{id}_{K_{n-i}} + (-1)^i \mathrm{id}_{C_i} \otimes e_{n-i}$.

This new construction is still a complex:

$$g_{n-1} \circ g_n|_{C_i \otimes K_{n-i}} = g_{n-1}(d_i \otimes id_{K_{n-i}} + (-1)^i id_{C_i} \otimes e_{n-i})$$

$$= d_{i-1} \circ d_i \otimes id_{K_{n-i}} + (-1)^{i-1} d_i \otimes e_{n-i}$$

$$+ (-1)^i d_i \otimes e_{n-i} + (-1)^i (-1)^i id_{C_i} \otimes e_{n-i-1} \circ e_{n-i}$$

$$= 0.$$

Koszul complexes

Let R be a commutative ring, M a left R-module, and $x \in R$. The **Koszul** complex of x and M is

$$K_{\bullet}(x;M):$$
 $0 \rightarrow M \xrightarrow{x} M \rightarrow 0$ $\uparrow \qquad \uparrow \qquad 0$ $1 \qquad 0$

If $x_1, \ldots, x_n \in R$, then the **Koszul complex** $K_{\bullet}(x_1, \ldots, x_n; M)$ of x_1, \ldots, x_n and M is the total complex of $K_{\bullet}(x_1, \ldots, x_{n-1}; M) \otimes K_{\bullet}(x_n; R)$, defined inductively.

 $K_{\bullet}(x_1, x_2; M)$ explicitly: From

$$\begin{pmatrix} 0 & \to & M & \xrightarrow{x_1} & M & \to & 0 \\ & 1 & & 0 & & \end{pmatrix} \otimes \begin{pmatrix} 0 & \to & R & \xrightarrow{x_2} & R & \to & 0 \\ & 1 & & 0 & & \end{pmatrix}$$

we get the total complex

$$0 \rightarrow M \otimes R \xrightarrow{\begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}} M \otimes R \oplus M \otimes R \xrightarrow{[x_1 \quad x_2]} M \otimes R \rightarrow 0$$

$$1 \quad 1 \quad 0 \quad 0 \quad 1$$

 $K_{\bullet}(x_1, x_2; M)$ explicitly: From

$$\begin{pmatrix} 0 & \to & M & \xrightarrow{x_1} & M & \to & 0 \\ & 1 & & 0 & & \end{pmatrix} \otimes \begin{pmatrix} 0 & \to & R & \xrightarrow{x_2} & R & \to & 0 \\ & 1 & & 0 & & \end{pmatrix}$$

we get the total complex

The following is $K_{\bullet}(x_1, x_2, x_3; R)$:

$$\begin{bmatrix}
x_3 \\
-x_2 \\
x_1
\end{bmatrix} \qquad R^3 \xrightarrow{\begin{bmatrix}
-x_2 & -x_3 & 0 \\
x_1 & 0 & -x_3 \\
0 & x_1 & x_2
\end{bmatrix}} R^3 \xrightarrow{[x_1 & x_2 & x_3]} R \rightarrow 0.$$

- The **n-fold tensor product**: $M^{\otimes 0} = R$; $M^{\otimes (n+1)} = M^{\otimes n} \otimes M$.
- The **nth exterior power of a module** M:

$$\wedge^n M = \frac{M^{\otimes n}}{\langle m_1 \otimes \cdots \otimes m_n : m_1, \dots, m_n \in M, m_i = m_j \text{ for some } i \neq j \rangle}.$$

- The **n-fold tensor product**: $M^{\otimes 0} = R$; $M^{\otimes (n+1)} = M^{\otimes n} \otimes M$.
- The **nth exterior power of a module** M:

$$\wedge^n M = \frac{M^{\otimes n}}{\langle m_1 \otimes \cdots \otimes m_n : m_1, \dots, m_n \in M, m_i = m_j \text{ for some } i \neq j \rangle}.$$

The image in $\wedge^n M$ of $m_1 \otimes \cdots \otimes m_n \in M^{\otimes n}$ is written as $m_1 \wedge \cdots \wedge m_n$. Since $0 = (m_1 + m_2) \wedge (m_1 + m_2) = m_1 \wedge m_1 + m_1 \wedge m_2 + m_2 \wedge m_1 + m_2 \wedge m_2 = m_1 \wedge m_2 + m_2 \wedge m_1$, we get that for all $m_1, m_2 \in M$, $m_1 \wedge m_2 = -m_2 \wedge m_1$.

- The **n-fold tensor product**: $M^{\otimes 0} = R$; $M^{\otimes (n+1)} = M^{\otimes n} \otimes M$.
- The **nth exterior power of a module** M:

$$\wedge^n M = \frac{M^{\otimes n}}{\langle m_1 \otimes \cdots \otimes m_n : m_1, \dots, m_n \in M, m_i = m_j \text{ for some } i \neq j \rangle}.$$

The image in $\wedge^n M$ of $m_1 \otimes \cdots \otimes m_n \in M^{\otimes n}$ is written as $m_1 \wedge \cdots \wedge m_n$. Since $0 = (m_1 + m_2) \wedge (m_1 + m_2) = m_1 \wedge m_1 + m_1 \wedge m_2 + m_2 \wedge m_1 + m_2 \wedge m_2 = m_1 \wedge m_2 + m_2 \wedge m_1$, we get that for all $m_1, m_2 \in M$, $m_1 \wedge m_2 = -m_2 \wedge m_1$.

THUS: if e_1, \ldots, e_m form a basis of R^m , then $\wedge^n R^m$ is **generated** by $B = \{e_{i_1} \wedge \cdots \wedge e_{i_n} : 1 \leq i_1 < i_2 < \cdots < e_{i_n} \leq m\}$. Actually, B is a basis for $\wedge^n R^m$.

Thus $\wedge^n R^m \cong R^{\binom{m}{n}}$.

- The **n-fold tensor product**: $M^{\otimes 0} = R$; $M^{\otimes (n+1)} = M^{\otimes n} \otimes M$.
- The **nth exterior power of a module** M:

$$\wedge^n M = \frac{M^{\otimes n}}{\langle m_1 \otimes \cdots \otimes m_n : m_1, \dots, m_n \in M, m_i = m_j \text{ for some } i \neq j \rangle}.$$

Thus $\wedge^n R^m \cong R^{\binom{m}{n}}$.

- The **n-fold tensor product**: $M^{\otimes 0} = R$; $M^{\otimes (n+1)} = M^{\otimes n} \otimes M$.
- The **nth exterior power of a module** M:

$$\wedge^n M = \frac{M^{\otimes n}}{\langle m_1 \otimes \cdots \otimes m_n : m_1, \dots, m_n \in M, m_i = m_j \text{ for some } i \neq j \rangle}.$$

Thus $\wedge^n R^m \cong R^{\binom{m}{n}}$.

For any elements $x_1, \ldots, x_m \in R$ define a complex $G_{\bullet}(x_1, \ldots, x_n; R)$ as

$$0 \to \wedge^m R^m \to \wedge^{m-1} R^m \to \wedge^{m-2} R^m \to \cdots \to \wedge^1 R^m \to \wedge^0 R^m \to 0,$$

where
$$e_{i_1} \wedge \cdots \wedge e_{i_n} \mapsto \sum_{j=1}^n (-1)^{j+1} x_j e_{i_1} \wedge \cdots \wedge \widehat{e_{i_j}} \wedge \cdots \wedge e_{i_n}$$
.

- The **n-fold tensor product**: $M^{\otimes 0} = R$; $M^{\otimes (n+1)} = M^{\otimes n} \otimes M$.
- The nth exterior power of a module M:

$$\wedge^n M = \frac{M^{\otimes n}}{\langle m_1 \otimes \cdots \otimes m_n : m_1, \dots, m_n \in M, m_i = m_j \text{ for some } i \neq j \rangle}.$$

Thus $\wedge^n R^m \cong R^{\binom{m}{n}}$.

For any elements $x_1, \ldots, x_m \in R$ define a complex $G_{\bullet}(x_1, \ldots, x_n; R)$ as

$$0 \to \wedge^m R^m \to \wedge^{m-1} R^m \to \wedge^{m-2} R^m \to \cdots \to \wedge^1 R^m \to \wedge^0 R^m \to 0,$$

where
$$e_{i_1} \wedge \cdots \wedge e_{i_n} \mapsto \sum_{j=1}^n (-1)^{j+1} x_j e_{i_1} \wedge \cdots \wedge \widehat{e_{i_j}} \wedge \cdots \wedge e_{i_n}$$
.

Facts:

- $G_{\bullet}(x;R) = K(x;R).$
- $G_{\bullet}(x_1,\ldots,x_{n-1};R)\otimes_R G_{\bullet}(x_n;R)\cong G_{\bullet}(x_1,\ldots,x_n;R).$
- Thus $G_{\bullet}(x_1,\ldots,x_n;R)$ equals $K_{\bullet}(x_1,\ldots,x_m;R)$.

Homology, and special homologies

The **nth homology group (or module)** of C_{\bullet} is $H_n(C_{\bullet}) = \frac{\ker d_n}{\operatorname{im} d_{n+1}}$.

Cohomology of a cocomplex C^{\bullet} is $H^n(C^{\bullet}) = \frac{\ker d^n}{\operatorname{im} d^{n-1}}$.

- **Tor:** If M and N are R-modules, and if F_{\bullet} is a projective resolution of M, then $\operatorname{Tor}_{n}^{R}(M,N)=H_{n}(F_{\bullet}\otimes N)$. You should know/prove that $\operatorname{Tor}_{n}^{R}(M,N)\cong \operatorname{Tor}_{n}^{R}(N,M)$, or in other words, that if G_{\bullet} is a projective resolution of N, then $\operatorname{Tor}_{n}^{R}(M,N)\cong H_{n}(M\otimes G_{\bullet})$.
- **Ext:** If M and N are R-modules, and if F_{\bullet} is a projective resolution of M, then $\operatorname{Ext}_{R}^{n}(M,N)=H^{n}(\operatorname{Hom}_{R}(F_{\bullet},N))$. You should know/prove that $\operatorname{Ext}_{R}^{n}(M,N)\cong H^{n}(\operatorname{Hom}_{R}(M,I_{\bullet}))$, where I_{\bullet} is an injective resolution of N.

Homology, and special homologies

The **nth homology group (or module)** of C_{\bullet} is $H_n(C_{\bullet}) = \frac{\ker d_n}{\operatorname{im} d_{n+1}}$.

Cohomology of a cocomplex C^{\bullet} is $H^n(C^{\bullet}) = \frac{\ker d^n}{\operatorname{im} d^{n-1}}$.

- **Tor:** If M and N are R-modules, and if F_{\bullet} is a projective resolution of M, then $\operatorname{Tor}_{n}^{R}(M,N)=H_{n}(F_{\bullet}\otimes N)$. You should know/prove that $\operatorname{Tor}_{n}^{R}(M,N)\cong \operatorname{Tor}_{n}^{R}(N,M)$, or in other words, that if G_{\bullet} is a projective resolution of N, then $\operatorname{Tor}_{n}^{R}(M,N)\cong H_{n}(M\otimes G_{\bullet})$.
- **Ext:** If M and N are R-modules, and if F_{\bullet} is a projective resolution of M, then $\operatorname{Ext}_{R}^{n}(M,N)=H^{n}(\operatorname{Hom}_{R}(F_{\bullet},N))$. You should know/prove that $\operatorname{Ext}_{R}^{n}(M,N)\cong H^{n}(\operatorname{Hom}_{R}(M,I_{\bullet}))$, where I_{\bullet} is an injective resolution of N.

Determine exactness/homology of a (part of a) complex ...

Definition 1 A map of complexes is a function $f_{\bullet}: (C_{\bullet}, d) \to (C_{\bullet}', d')$, where f_{\bullet} restricted to C_n is denoted f_n , where f_n maps to C'_n , and such that for all $n, d'_n \circ f_n = f_{n-1} \circ d_n$. We can draw this as a commutative diagram:

The kernel and the image of a map of complexes are naturally complexes. Thus we can talk about **exact complexes of complexes**.

Let $f_{\bullet}: C_{\bullet} \to C_{\bullet}'$ be a map of complexes. Then we get the induced map $f_*: H(C_{\bullet}) \to H(C_{\bullet}')$ of complexes.

(Snake Lemma) Assume that the rows represent exact (parts of) complexes and the vertical maps represent a map of these two complexes. In other words, assume that the rows are exact and the squares commute:

Then

$$\ker \beta \to \ker \gamma \to \ker \delta \to \operatorname{coker} \beta \to \operatorname{coker} \gamma \to \operatorname{coker} \delta$$

is exact, where the first two maps are the restrictions of b and c, respectively, the last two maps are the natural maps induced by b' and c', respectively, and the middle map is the so-called **connecting homomorphism**. Furthermore, if b is injective, so is $\ker \beta \to \ker \gamma$; and if c' is surjective, so is $\operatorname{coker} \gamma \to \operatorname{coker} \delta$.

Theorem 2 (Short exact sequence of complexes yields a long exact sequence on homology) Let $0 \to C_{\bullet}' \xrightarrow{f_{\bullet}} C \xrightarrow{g_{\bullet}} C'' \to 0$ be a short exact sequence of complexes. Then we have a long exact sequence on homology:

$$\cdots \to H_{n+1}(C_{\bullet}'') \xrightarrow{\Delta_{n+1}} H_n(C_{\bullet}') \xrightarrow{f} H_n(C_{\bullet}) \xrightarrow{g} H_n(C_{\bullet}'') \xrightarrow{\Delta_n} H_{n-1}(C_{\bullet}') \xrightarrow{f} H_{n-1}$$

where the arrows denoted by f and g are only induced by f and g, and the Δ maps are the connecting homomorphisms.

Proof. By assumption we have the following commutative diagram with exact rows:

$$0 \to C'_n \xrightarrow{f_n} C_n \xrightarrow{g_n} C''_n \to 0$$

$$\downarrow d'_n \qquad \downarrow d_n \qquad \downarrow d''_n$$

$$0 \to C'_{n-1} \xrightarrow{f_{n-1}} C_{n-1} \xrightarrow{g_{n-1}} C''_{n-1} \to 0.$$

By the Snake Lemma, for all n, the following rows are exact, and the squares commute:

Another application of the	Snake Lemma	a yields exactly	the desired	sequence.

Yet another way of looking at Koszul complexes:

Proposition 3 Let R be a commutative ring. Let C_{\bullet} be a complex over R and let $K_{\bullet} = K_{\bullet}(x; R)$ be the Koszul complex of $x \in R$. Then we get a short exact sequence of complexes

$$0 \to C_{\bullet} \to C_{\bullet} \otimes K_{\bullet} \to C_{\bullet}[-1] \to 0,$$

with maps on the nth level as follows: $C_n \to (C_n \otimes R) \oplus (C_{n-1} \otimes R) \cong C_n \oplus C_{n-1}$ takes a to (a,0), $C_n \oplus C_{n-1} \to (C_{\bullet}[-1])_n = C_{n-1}$ takes (a,b) to b. The differential d on C_{\bullet} also yields the naturally shifted one on $C_{\bullet}[-1]$, and the differential δ on $C_{\bullet} \otimes K_{\bullet}$ is $\delta_n(a,b) = (d_n(a) + (-1)^{n-1}xb, d_{n-1}(b))$.

Yet another way of looking at Koszul complexes:

Proposition 3 Let R be a commutative ring. Let C_{\bullet} be a complex over R and let $K_{\bullet} = K_{\bullet}(x; R)$ be the Koszul complex of $x \in R$. Then we get a short exact sequence of complexes

$$0 \to C_{\bullet} \to C_{\bullet} \otimes K_{\bullet} \to C_{\bullet}[-1] \to 0,$$

with maps on the nth level as follows: $C_n \to (C_n \otimes R) \oplus (C_{n-1} \otimes R) \cong C_n \oplus C_{n-1}$ takes a to (a,0), $C_n \oplus C_{n-1} \to (C_{\bullet}[-1])_n = C_{n-1}$ takes (a,b) to b. The differential d on C_{\bullet} also yields the naturally shifted one on $C_{\bullet}[-1]$, and the differential δ on $C_{\bullet} \otimes K_{\bullet}$ is $\delta_n(a,b) = (d_n(a) + (-1)^{n-1}xb, d_{n-1}(b))$.

In particular,

$$\cdots \to H_n(C_{\bullet}) \xrightarrow{x} H_n(C_{\bullet}) \to H_n(C_{\bullet} \otimes K_{\bullet}) \to H_{n-1}(C_{\bullet}) \xrightarrow{x} H_{n-1}(C_{\bullet}) \to \cdots$$

The long exact sequence in the corollary breaks into short exact sequences:

$$0 \to \frac{H_n(C_{\bullet})}{xH_n(C_{\bullet})} \to H_n(C_{\bullet} \otimes K_{\bullet}) \to \operatorname{ann}_{H_{n-1}(C_{\bullet})}(x) \to 0$$

for all n.

Definition 4 We say that $x_1, \ldots, x_n \in R$ is a **regular sequence** on a module M, or a **M-regular sequence** if $(x_1, \ldots, x_n)M \neq M$ and if for all $i = 1, \ldots, n$, x_i is a non-zerodivisor on $M/(x_1, \ldots, x_{i-1})M$. We say that $x_1, \ldots, x_n \in R$ is a **regular sequence** if it is a regular sequence on the R-module R.

Definition 4 We say that $x_1, \ldots, x_n \in R$ is a **regular sequence** on a module M, or a **M-regular sequence** if $(x_1, \ldots, x_n)M \neq M$ and if for all $i = 1, \ldots, n$, x_i is a non-zerodivisor on $M/(x_1, \ldots, x_{i-1})M$. We say that $x_1, \ldots, x_n \in R$ is a **regular sequence** if it is a regular sequence on the R-module R.

Corollary 5 Let x_1, \ldots, x_n be a regular sequence on an R-module M. Then

$$H_i(K_{\bullet}(x_1,\ldots,x_n;M)) = \begin{cases} 0 & \text{if } i > 0; \\ \frac{M}{(x_1,\ldots,x_n)M} & \text{if } i = 0. \end{cases}$$

In particular, $K_{\bullet}(x_1, \dots, x_n; R)$ is a free resolution of $\frac{R}{(x_1, \dots, x_n)}$.

Proof. Trivial for n = 1. For n > 1, let $C_{\bullet} = K_{\bullet}(x_1, \dots, x_{n-1}; M)$, $K_{\bullet} = K_{\bullet}(x_n; R)$. By the short exact sequences from the previous page and induction on n, $H_i(K_{\bullet}(x_1, \dots, x_n; M)) = H_i(C_{\bullet} \otimes K_{\bullet}) = 0$ if i > 1, $0 \to 0 = \frac{H_1(C_{\bullet})}{x_n H_1(C_{\bullet})} \to H_1(C_{\bullet} \otimes K_{\bullet}) \to \operatorname{ann}_{H_0(C_{\bullet})}(x_n) \to 0$ gives $H_1(C_{\bullet} \otimes K_{\bullet}) \cong \operatorname{ann}_{H_0(C_{\bullet})}(x_n) = \operatorname{ann}_{M/(x_1, \dots, x_{n-1})M}(x_n) = 0$, and the exactness of $\frac{H_0(C_{\bullet})}{x_n H_0(C_{\bullet})} \cong H_0(C_{\bullet} \otimes K_{\bullet})$, and induction on n give that $H_0(K_{\bullet}(x_1, \dots, x_n; M)) = H_0(C_{\bullet} \otimes K_{\bullet}) \cong \frac{H_0(C_{\bullet})}{x_n H_0(C_{\bullet})} \cong M/(x_1, \dots, x_n)M$.

Exercise: (Depth sensitivity of Koszul complexes) Let R be a commutative ring and M an R-module. Let $x_1, \ldots, x_n \in R$. Assume that x_1, \ldots, x_l is a regular sequence on M for some $l \leq n$. Prove that

$$H_i(K_{\bullet}(x_1,\ldots,x_n;M))=0$$

for $i = n, n - 1, \dots, n - l + 1$.

Exercise: Let R be a commutative ring, $x_1, \ldots, x_n \in R$, and M an R-module. Prove that (x_1, \ldots, x_n) annihilates each $H_n(K_{\bullet}(x_1, \ldots, x_n; M))$.

Exercise: Let $I = (x_1, \ldots, x_n) = (y_1, \ldots, y_m)$ be an ideal contained in the Jacobson radical of a commutative ring R. Let M be a finitely generated R-module. Suppose that $H_i(K_{\bullet}(x_1, \ldots, x_n; M)) = 0$ for $i = n, n-1, \ldots, n-l+1$. Prove that $H_i(K_{\bullet}(y_1, \ldots, y_m; M)) = 0$ for $i = m, m-1, \ldots, m-l+1$.

Theorem 6 Let (R, m) be a Noetherian local ring. Then the following are equivalent:

- (1) $\operatorname{pd}_{R}(R/m) \leq n$.
- (2) $\operatorname{pd}_R(M) \leq n$ for all finitely generated R-modules M.
- (3) $\operatorname{Tor}_{i}^{R}(M, R/m) = 0$ for all i > n and all finitely generated R-modules M.

Proof. Trivially (2) implies (1) and (3). Also, (1) implies (3) if we accept that $\operatorname{Tor}_{i}^{R}(M, R/m) \cong \operatorname{Tor}_{i}^{R}(R/m, M)$.

Now let M be a finitely generated R-module. Let P_{\bullet} be its minimal free resolution. By minimality, the image of $P_i \to P_{i-1}$ for $i \geq 1$ is in mP_{i-1} . Thus all the maps in $P_{\bullet} \otimes R/m$ are 0, so that $\operatorname{Tor}_i^R(M, R/m) = P_i/mP_i$. If we assume (3), these maps are 0 for i > n, and since P_i is finitely generated, it follows by Nakayama's lemma that $P_i = 0$ for i > n, whence $\operatorname{pd}_R(M) \leq n$.

Theorem 7 Let (R, m) be a Noetherian local ring. Then the following are equivalent:

- (1) $\operatorname{pd}_R(R/m) \leq n$.
- (2) $\operatorname{pd}_R(M) \leq n$ for all finitely generated R-modules M.
- (3) $\operatorname{Tor}_{i}^{R}(M, R/m) = 0$ for all i > n and all finitely generated R-modules M.

Proof. Trivially (2) implies (1) and (3). Also, (1) implies (3) if we accept that $\operatorname{Tor}_{i}^{R}(M, R/m) \cong \operatorname{Tor}_{i}^{R}(R/m, M)$.

Now let M be a finitely generated R-module. Let P_{\bullet} be its minimal free resolution. By minimality, the image of $P_i \to P_{i-1}$ for $i \geq 1$ is in mP_{i-1} . Thus all the maps in $P_{\bullet} \otimes R/m$ are 0, so that $\operatorname{Tor}_i^R(M, R/m) = P_i/mP_i$. If we assume (3), these maps are 0 for i > n, and since P_i is finitely generated, it follows by Nakayama's lemma that $P_i = 0$ for i > n, whence $\operatorname{pd}_R(M) \leq n$.

Hilbert's Syzygy Theorem. Let M be a finitely generated module over the polynomial ring $R = k[X_1, \ldots, X_n]$ over a field k. Then $\mathrm{pd}_R(M) \leq n$. (The same proof as above shows it for graded finitely generated modules!)