Introduction to resolutions
Irena Swanson, MSRI, Lecture 1



dit1 d;
A complex: --- — M;,, S M, =S M, — .- -, where the M, are groups

(or left modules), the d; are group (or left module) homomorphisms, and for
all 7, d; od;;1 = 0. Abbreviate as Co, M, or (M,,d,), et cetera.

(M,,ds) is bounded below if M; = 0 for all sufficiently small (negative) ;
it is bounded above if M; = 0 for all sufficiently large (positive) ;

it is bounded if M; = 0 for all sufficiently large |¢|.

(M,,d,) is exact at the ith place if ker(d;) = im(d; ).

A complex is exact if it is exact at all places. (Also called exact sequence.)
A complex is free (resp. flat, projective, injective) if all the M; are free
(resp. flat, projective, injective).

An exact complex 0 — M’ - M -2 M” — 0 is called a short exact

sequence.
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dit1 d;
A complex: --- — M;,, 5 M 25 M — .- -, where the M, are groups

(or left modules), the d; are group (or left module) homomorphisms, and for
all 7, d; od;;1 = 0. Abbreviate as Co, M, or (M,,d,), et cetera.

(M,,ds) is bounded below if M; = 0 for all sufficiently small (negative) ;
it is bounded above if M; = 0 for all sufficiently large (positive) ;

it is bounded if M; = 0 for all sufficiently large |¢|.

(M,,ds) is exact at the ith place if ker(d;) = im(d;11).

A complex is exact if it is exact at all places. (Also called exact sequence.)
A complex is free (resp. flat, projective, injective) if all the M; are free
(resp. flat, projective, injective).

An exact complex 0 — M’ - M —> M” — 0 is called a short exact
sequence.
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A cocomplex is a complex that is numbered in the opposite order: C° :

. di—l . 7 .
s MY M — M



What do we do with complexes?

(1) Given a module, build some corresponding complexes — resolutions of
modules (free, projective, flat, injective, minimal).

(2) Applying functors to (exact) complexes — Hom, tensor products, tensor
products of two complexes.

(3) Koszul complex: as tensor product of complexes (two ways), and there

is a definition via exterior powers.

) Kernels and images in a complex — homology.

) When are resolutions finite?

) When is a complex exact?

) What invariants (ranks?) appear in exact complexes?



d; .
Suppose that --- — F;1q —+1>Fz-d—>F7;_1 — o — B i>FO — M — 0

is exact and all the F}; are free (respectively projective, flat) modules over R,

and M is an R-module. Then we call both the exact complex above, as well

dit1 d; d
as the complex -+ — Fj,1 — F; — F;_{ — -+ — I} — Fy — 0, a free

(resp. projective, flat) resolution of M.

Every R-module has a free resolution, and hence a projective resolution. If
for F,, = 0 for some/all large n, we say that M has a finite free/projective
resolution. The smallest n such that Fj,,1 = Fj,1o = - - - is called the length

of this resolution. The free/projective dimension of M is the smallest
such n (it could be oo). This is denoted as pd(M).

Minimal resolutions

Suppose that 0 — M — [° — ' — [? — [? — ... is exact, where each [; is an
injective R-module. This cocomplex, aswellas0 — [ — [1 — 2 — 3 — ...
are called an injective resolution of M.



Ways to make complexes from a given one
C, = o= O, —>C 1—>Cn2—>'°'

(1) Hom from M: Homg(M,C,), with Hom(M,d,) = d, o

Hom(M,d,,) Hom(
—

.+ — Hom(M, C,,)

Hompg (M, C,,_1) Mdn 1) Homp(M, C),—2)

(2) Hom to M: Hompg(C,, M) is a cocomplex, with Hom(d,,, M) = _od,:

Hom(d,, ,M) Hom(dp 41, M)

- — Hom(Cpy1, M)  Homp(Cy, M) Homp(Cry1, M



(3) Tensor product Cy ®p M:

dn ®1d dn—1®id

C.@RM . R n@RM —_— Cn_1®RM EE— Cn—2®RM —> ..
(We say that M is flat if Cy ® M is exact for every exact complex C,.)
(4) Tensor product of complexes: Let Ko = --- — K,, = K,_; T K, o —

.-+ be another complex. The tensor product of complexes of Cy and K,
yields a kind of a bicomplex, as follows:

| l l
Cn 024 Km—i—l — n—1 24 Km—|—1 — n—2 024 Km—i—l —
! | l
Cn ®Km — Cn—l ®Km — Cn—2 ®Km —
| | |
Cn QKpm—1 — n-1Q Kp_1 — n—2Q@Kpyp_1 —
|

(Total complex along 45° angle) Gy, = > . C; @ Ky i, gn : Gy, — G—1 defined
on C; @ K,,_; as d; ®idg,,_. + (—1)%dg, ® e,_;, where the first summand is
in C,_1 ® K,,_; and the second in C; @ K,,_;_1.




(Here we show that the total complex of the tensor product of complexes is a

complex)
Recall (Co,de) ® (K, €4) is:

| | !

Cn ® Km—l—l — n—1 & Km—i—l — n—2 & Km—l—l —
| | !

Cn 024 Km — C’n—l %Y Km — Cn—2 024 Km -
l | !

On QKpo1 — -1 Kpm_1 — n—2 Q@ Kp_1 —
| !

Total complex: G, =) . C; ® K,,_;, gy, : G, — G, restricted to C; ® K,,_;
Is d; @1dg, ., + (—1)iid(ji X €p—_i-
This new construction is still a complex:
CiQKn_i — gn—l(di Y idKn—i + <_1)Zldcz & en—i)
=d;—10d; @1dg, _, + (—1)i_1d7; & en—i
+ (—1)'d; @ ep—i + (—=1)"(—1)"ide, @ €n—i—1 0 €n_;
= 0.

gn—1 © gn



Koszul complexes

Let R be a commutative ring, M a left R-module, and z € R. The Koszul
complex of x and M is

Ko(x; M) : 0o - M = M — 0
T T
1 0

If z1,...,2, € R, then the Koszul complex K¢(x1,...,2,; M) of x1,..., 2,
and M is the total complex of Ke(x1,...,2n-1; M) @ K¢(xn; R), defined in-
ductively.



Ko(x1,x9; M) explicitly: From

(OHM&MHO) (()HR&RHO)
1 0 ®

we get the total complex
o]
x
0 - M@R =4 M®R@& M®R M®R —0
1 1 1 0 0 1 0 O

(21 %2




Ko(x1,x9; M) explicitly: From

(0 M2 M S 0) (0 ~~ R 2 R - 0)
1 0 ®

we get the total complex

N

0 - Moer "4 vere mer "L yeor o
1 1 1 0 0 1 0 O
The following is Ke(z1, 2, x3; R):
i I3 | _—332 —X3 0 |
—I9 I 0 —XI3
T 0 T T
O—>R'—1—'>R3 - ! 2'>R3 [xl 2 $3]>R—>O,




Towards a more functorial construction of Koszul complexes

- The n—fold tensor product: M®° = R; M®+th) = pf@n & M.
- The nth exterior power of a module M:
M

A" M = , —.
(M1 ® -+ @My :M1,...,my € M, m; =m, for some i # j)




Towards a more functorial construction of Koszul complexes

- The n—fold tensor product: M®° = R; M®+th) = pf@n & M.
- The nth exterior power of a module M:
M

A" M = , —.
(M1 ® -+ @My :M1,...,my € M, m; =m, for some i # j)

The image in A" M of m; ® --- @ m,, € M®" is written as mq A --- A m,,.
Since 0 = (m1 +m2)/\(m1 +m2) = mi/Ami+mi Amo+mo AMmi+ma /Ny =
mi A mo + mo A mq, we get that for all mq,ms € M, m1 Amg = —mmo Amy.



Towards a more functorial construction of Koszul complexes

The n—fold tensor product: M®° = R; M@+l = M@ ¢ M.
The nth exterior power of a module M:
M

A" M = , —.
(M1 ® -+ @My :M1,...,my € M, m; =m, for some i # j)

The image in A" M of m; ® --- @ m,, € M®" is written as mq A --- A m,,.
Since 0 = (m1 +m2)/\(m1 +m2) = mi/Ami+mi Amo+mo AMmi+ma /Ny =
mi A mo + mo A mq, we get that for all mq,ms € M, m1 Amg = —mmo Amy.

THUS: if eq,...,e,, form a basis of R™, then A" R™ is generated by B =
{eq, Ao Nep 1 <dp <idg < --- < e, < m}. Actually, B is a basis for
AP R™.

m
n

Thus A"R™ =~ R(W).



Towards a more functorial construction of Koszul complexes

- The n—fold tensor product: M®° = R; M®+th) = pf@n & M.
- The nth exterior power of a module M:
M

A" M = , —.
(M1 ® -+ @My :M1,...,my € M, m; =m, for some i # j)

m
n

Thus A"R™ =~ R(%).



Towards a more functorial construction of Koszul complexes

- The n—fold tensor product: M®° = R; M®+th) = pf@n & M.
- The nth exterior power of a module M:

MEn
A" M = , —.
(M1 ® -+ @My :M1,...,my € M, m; =m, for some i # j)
Thus A"R™ = R(Tff),
For any elements z1,...,x,, € R define a complex G¢(x1,...,x,; R) as

O—>/\mRm—>/\m_1Rm—>/\m_2Rm—>°"—>/\1Rm—>/\ORm—>0,

where e;, A+ Aeg, —= > (=1 zje Ao Neg, A Ae, .



Towards a more functorial construction of Koszul complexes

- The n—fold tensor product: M®° = R; M®+th) = pf@n & M.
- The nth exterior power of a module M:

MEn
A" M = , —.
(M1 ® -+ @My :M1,...,my € M, m; =m, for some i # j)
Thus A"R™ = R(Tff),
For any elements z1,...,x,, € R define a complex G¢(x1,...,x,; R) as

O—>/\mRm—>/\m_1Rm—>/\m_2Rm—>°"—>/\1Rm—>/\ORm—>0,

n

where e;; A---ANe; — >

(—1)7 1z, e AN Nei, N Ne,.

Facts:
- Go(x;R) = K(x; R).
- Go(1,.. ., xpn_1; R) Qr Go(xpn; R) = Go(x1,...,2n; R).
- Thus Ge(x1,...,xn; R) equals Kq(1,...,2m; R).



Homology, and special homologies

The nth homology group (or module) of C, is H,(C,) = —&dn

11m dn_|_1 )

ker d"
imdrn—1-

Cohomology of a cocomplex C*® is H"(C*®) =

Tor: If M and N are R-modules, and if F, is a projective resolution of M,
then Tor;" (M, N) = H,,(Fy®N). You should know/prove that Tor:'(M, N) =
TorZ (N M ), or in other words, that if G, is a projective resolution of N, then
Tor’(M,N) = H,, (M ® G,).

Ext: It M and N are R-modules, and if F, is a projective resolution of
M, then Extz(M,N) = H"(Hompg(F,,N)). You should know/prove that
Extpr(M,N)= H"(Hompg(M, I,)), where I, is an injective resolution of V.



Homology, and special homologies

ker d,,
im dn_|_1 )

The nth homology group (or module) of C, is H,(C,) =

ker d™
imdn—1-

Cohomology of a cocomplex C*® is H"(C*®) =

Tor: If M and N are R-modules, and if F, is a projective resolution of M,
then Tor;" (M, N) = H,,(Fy®N). You should know/prove that Tor:'(M, N) =
TorZ (N M ), or in other words, that if G, is a projective resolution of N, then
Tor’(M,N) = H,, (M ® G,).

Ext: It M and N are R-modules, and if F, is a projective resolution of
M, then Extz(M,N) = H"(Hompg(F,,N)). You should know/prove that
Extpr(M,N)= H"(Hompg(M, I,)), where I, is an injective resolution of V.

Determine exactness/homology of a (part of a) complex ...



Definition 1 A map of complexes is a function f, : (Ce,d) — (C4',d’),
where f, restricted to C,, is denoted f,, where f,, maps to C!, and such that
for all n, d,, o f, = fnu_1 od,. We can draw this as a commutative diagram:

dn dn,
" n+1 _+>1 Cn — Cn—l —
lfn—i—l lfn lfn—l
dn,
= G OB Oy =

The kernel and the image of a map of complexes are naturally complexes.
Thus we can talk about exact complexes of complexes.

Let fo : Co — Co' be a map of complexes. Then we get the induced map
f« : H(Co) — H(C,') of complexes.



(Snake Lemma) Assume that the rows represent exact (parts of) complexes
and the vertical maps represent a map of these two complexes. In other words,
assume that the rows are exact and the squares commute:

B X ¢ & D = 0

NG Ly 1o

/ /

0 - B 5L o 5 Dp.

Then
ker 5 — kery — ker 0 — coker 3 — cokery — coker o0

is exact, where the first two maps are the restrictions of b and c, respectively,
the last two maps are the natural maps induced by b’ and ¢, respectively, and
the middle map is the so-called connecting homomorphism. Furthermore,
if b is injective, so is ker 8 — ker~; and if ¢ is surjective, so is cokery —
coker 9.



Theorem 2 (Short exact sequence of complexes yields a long exact sequence

on homology) Let 0 — C,’ o, 0 92, 0" — 0 be a short exact sequence of
complexes. Then we have a long exact sequence on homology:

A

/! An 1 / /! /
T n—l—l(Co ) —+> H’n(Co ) i) Hn<Co) i) Hn(Co ) — Hn—1<Co ) L n—1

where the arrows denoted by f and g are only induced by f and g, and the A
maps are the connecting homomorphisms.

Proof. By assumption we have the following commutative diagram with exact

Trows:
0— C In C, Iny "’ 50

ld, Ldy ldy
0— C/_, fncy o1l 5 n-1 —0

By the Snake Lemma, for all n, the following rows are exact, and the squares
commute:

coker d, I, cokerd, 2% coker d’ —0
Ld, Ldn Ldy,
fn —1 dn—1 17;

0 — kerd

w1 — kerd,_; — kerd

n—1-



Another application of the Snake Lemma yields exactly the desired sequence.
[]



Yet another way of looking at Koszul complexes:

Proposition 3 Let R be a commutative ring. Let Cy be a complex over R

and let Ko = Ko(x; R) be the Koszul complex of x € R. Then we get a short
exact sequence of complexes

0= Co — Co ® K¢ — Co|[—1] — 0,

with maps on the nth level as follows: C,, — (C,@R)B(Cp,_1®R) = C,,dCh_1
takes a to (a,0), C, ® C,,_1 — (Ce|—1]), = Cp,_1 takes (a,b) to b.

The differential d on C4 also yields the naturally shifted one on C4|—1]|, and
the differential § on Cy @ K, is 6, (a,b) = (d,(a) + (=1)""tzb,d, _1())



Yet another way of looking at Koszul complexes:

Proposition 3 Let R be a commutative ring. Let Cy be a complex over R
and let Ko = Ko(x; R) be the Koszul complex of x € R. Then we get a short
exact sequence of complexes

0= Co = Coe ® Kg — Co|—1] — 0,

with maps on the nth level as follows: C,, — (C,,QR)®(C,,_1®R) = C,,®C,,_1
takes a to (a,0), C, & C,p_1 — (Ce|—1]), = Cp,—1 takes (a,b) to b.

The differential d on C4 also yields the naturally shifted one on Cq|—1]|, and
the differential 6 on Cy @ K, is 6, (a,b) = (d,(a) + (=1)""1xb,d,,_1()).

In particular,
T Hn(Co) = Hn(Co) — Hn(Co X Ko) — n—l(Co) 5 n—l(Co> —

The long exact sequence in the corollary breaks into short exact sequences:

- H,(C,)
cH,(C,)

0 — H,(Ce ® Kq) — anan_l(C.)(a:) — 0

for all n.



Definition 4 We say that x1,...,x, € R is a regular sequence on a
module M, or a M-regular sequence if (z1,...,x,)M # M and if for all
i = 1,...,n, x; is a non-zerodivisor on M /(x1,...,x;_1)M. We say that
x1,...,T, € R is a regular sequence if it is a regular sequence on the R-
module R.



Definition 4 We say that x1,...,x, € R is a regular sequence on a
module M, or a M-regular sequence if (z1,...,x,)M # M and if for all

i = 1,...,n, x; is a non-zerodivisor on M /(x1,...,x;_1)M. We say that
x1,...,T, € R is a regular sequence if it is a regular sequence on the R-
module R.
Corollary 5 Let x1,...,x, be a regular sequence on an R-module M. Then
0 if1 > 0;
Hi(Ke(z1,.. ;00 M)) = M ifi =0
(CEl,...,xn)M ’
In particular, Ko(x1,...,x,; R) is a free resolution of @ R ok

Proof. Trivial for n = 1. For n > 1, let Cy = Ko¢(x1,...,2p_1; M), K¢ =
Ko(x,; R). By the short exact sequences from the previous page and in-
duction on n, H;(Ke(x1,...,2,;M)) = H;(Ce @ Kq) = 0if i > 1, 0 —

0= xfﬁg((jé).) » H1(Co ® Ko) — anng,(c,)(Tn) — 0 gives Hi(Co ® K,) =
Ho(Co)  ~

annp, (c.)(Tn) = anas /(... 2, )M (Tn) = 0, and the exactness of — (G
Hy(Ce® K,), and induction on n give that Hy(Ke(x1,...,2n; M)) = Hop(Ce ®

aY H CO Y
K,) = 2k o M/(xy, ... x0) M. O




Exercise: (Depth sensitivity of Koszul complexes) Let R be a commu-
tative ring and M an R-module. Let z1,...,x, € R. Assume that x,..., 2
is a regular sequence on M for some [ < n. Prove that

Hi(K.($1,...,$n;M)) =0
foreo=nn—-1,...,.n—1+1.

Exercise: Let R be a commutative ring, x1,...,x, € R, and M an R-module.
Prove that (x1,...,z,) annihilates each H,(Ke(x1,...,Tn; M)).

Exercise: Let I = (z1,...,2,) = (y1,...,%m) be an ideal contained in the
Jacobson radical of a commutative ring R. Let M be a finitely generated R-
module. Suppose that H;(Ke¢(z1,...,2,;M)) =0fori=n,n—1,...,n—10+1.
Prove that H;(Ke(y1,...,ym; M)) =0fori=m,m—1,...,m —1+ 1.



Theorem 6 Let (R, m) be a Noetherian local ring. Then the following are
equivalent:

(1) pdp(R/m) <n.

(2) pdgr(M) <n for all finitely generated R-modules M.

(3) Tori*(M,R/m) =0 for all i > n and all finitely generated R-modules M.

Proof. Trivially (2) implies (1) and (3). Also, (1) implies (3) if we accept that
Tori*(M, R/m) = Tor;"(R/m, M).

Now let M be a finitely generated R-module. Let P, be its minimal free
resolution. By minimality, the image of P, — P;,_; for ¢« > 1 is in mP;_;.
Thus all the maps in Py ® R/m are 0, so that Tor;" (M, R/m) = P;/mP;. If
we assume (3), these maps are 0 for ¢ > n, and since P; is finitely generated,
it follows by Nakayama’s lemma that P; = 0 for ¢ > n, whence pdg(M) < n.
(]



Theorem 7 Let (R, m) be a Noetherian local ring. Then the following are
equivalent:

(1) pdp(R/m) <n.

(2) pdgr(M) <n for all finitely generated R-modules M.

(3) Tori*(M,R/m) =0 for all i > n and all finitely generated R-modules M.

Proof. Trivially (2) implies (1) and (3). Also, (1) implies (3) if we accept that
Tori*(M, R/m) = Tor;"(R/m, M).

Now let M be a finitely generated R-module. Let P, be its minimal free
resolution. By minimality, the image of P, — P;,_; for ¢« > 1 is in mP;_;.
Thus all the maps in Py ® R/m are 0, so that Tor;" (M, R/m) = P;/mP;. If
we assume (3), these maps are 0 for ¢ > n, and since P; is finitely generated,
it follows by Nakayama’s lemma that P; = 0 for ¢ > n, whence pdg(M) < n.
(]

Hilbert’s Syzygy Theorem. Let M be a finitely generated module over
the polynomial ring R = k| X1,...,X,]| over a field k. Then pdz(M) < n.
(The same proof as above shows it for graded finitely generated modules!)



