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Riemann surfaces are among the most
studied objects in mathematics. They are
compact surfaces (like the surface of a
donut) that are endowed with a conformal
class of Riemannian metrics, which is
essentially a way to measure angles. One
can also think of them as 1-dimensional
complex manifolds.

They arise in differential
geometry, complex ana-
lysis, algebraic geometry
differential equations,
theoretical physics,
dynamical systems,
and many other fields.
Riemann surfaces can be
endowed with additional
structure, and one such
structure — holomorphic dif-
ferentials — lies at the heart
of this semester’s program on
Holomorphic Differentials in Math-
ematics and Physics.

Holomorphic differentials arise in many
different contexts, several of which
will be described below. They naturally
appear when gluing a surface out of a
regular Euclidean polygon by identifying
opposite sides; they are sections of

powers of the canonical bundle of the
Riemann surface; they can arise as

cotangent vectors to the moduli
space of Riemann surfaces.

One particularly impor-
tant occurrence of holo-

morphic differentials is
that they form the base

of the Hitchin integrable
system, as we will recall

below. This is the beginning
of a far-reaching connection

between holomorphic differ-
entials, representation varieties,

hyperKähler geometry, theoretical
physics, and more.

(continued on page 10)

A spectral network: This geometric structure on a Riemann surface X

arises naturally from consideration of the quantum field theories S(X,g).

Meet Future Mathematicians at the
National Math Festival . . . and More
The National Math Festival invites children and adults alike to experience the joy,
beauty, and relevance of mathematics. On May 4, around 12,000 people in Washington,
DC, attended this year’s festival, and a further 26,000 joined in associated activities
across the country. There’s a full report on pages 8–9.

Microlocal analysis is applied to such a vast range of problems that it can sometimes
seem more like an organizing principle than a specific area of study — read about this
semester’s program on Microlocal Analysis and its applications on page 4.

And finally, the Puzzles Column honors and remembers Elwyn Berlekamp. With
Joe Buhler, Elwyn wrote the Puzzles Column for nearly 20 years, and for this issue Joe
and Tanya Khovanova have collected a special set of problems that evoke Elwyn and
his love of puzzles (pages 14–15).
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The View from MSRI
David Eisenbud, Director

I’m now back as Director (term ending 2022), after a year during
which Hélène Barcelo was Acting Director, with Michael Singer
as part-time Associate Director. They did a great job of managing
this wonderful place! During this “sabbatical” I worked on raising
funds for the many MSRI activities that are not funded by the NSF,
and undertook two large projects: writing a strategic vision that
was adopted by the Board last fall, and writing the re-competition
proposal for the NSF, of which more later. I’m grateful for the
engagement and input from many people in these projects, greatly
strengthening the result. It warms me to interact with so many
people — mathematicians and others — who care deeply about the
direction of this institute.

Status of MSRI’s NSF Recompetition Proposal
This is a proposal for major support over the next five years — thus
of immense importance to MSRI. We started preparing in 2018,
started serious writing in January 2019, submitted the proposal in
March, got referee reports in the summer, and made a presentation
at a “reverse site visit” on September 12.

What is a reverse site visit? Instead of coming to MSRI to meet
members and staff and see the facilities for a couple of days, the
NSF invited us to come to Washington to make a three-hour presen-
tation. Hélène and I were invited to bring up to six others to help us,
and I was delighted with the people, including both distinguished
mathematicians and high-placed administrators, who were willing
to make the trek to support MSRI.

The next step in this year-long process: Wait! We were told we’d
hear something more from the NSF in December.

Statistics are byproducts of the NSF review. For example, over
the last 10 years almost 20,000 visitors participated in MSRI’s sci-
entific activities, of whom 64% were from US universities, 30%
were women, and 13% members of other underrepresented groups.
Over 500 institutions were represented at our 32 semester-long pro-
grams, and students from over 250 institutions attended our Summer
Graduate Schools.

Fundraising
A year ago MSRI hired Annie Averitt as Director of Advance-
ment and External Relations (a.k.a., chief fundraiser) and we subse-
quently added Lynda Wright as Assistant Director. The increased
staffing is beginning to pay off, with major new foundation donors
and a new corporate partner, as well as robust development income
overall.

Roughly speaking, MSRI’s budget now comes half from the NSF
and half from other sources. The flexibility granted by private
fundraising has allowed us to improve our support of research,
provide better support for members coming with families, and un-
dertake some projects for the public understanding of mathematics.
We have begun to build up an endowment, which can now contribute
about 10% of our overall budget. Building the endowment further
so that MSRI will be able to serve the math community in the long
run is a high priority.

Celebrating Maryam Mirzakhani
One of the things that private fundraising has allowed us to do is to
produce a documentary, Secrets of the Surface: The Mathematical
Vision of Maryam Mirzakhani. The film premiere will be at the Joint
Mathematics Meetings in Denver this winter (5:15 pm on Friday,
January 17, 2020 in room 207 of the Convention Center).

Directed by George Cscicsery (N is a Number and Navajo Math
Circles), the one-hour film features some extraordinary footage
from Iranian classrooms as well as commentary on Maryam’s work
by many distinguished mathematicians, including a moving piece
by Alex Eskin, one of Maryam’s closest collaborators.

Breakthrough Prizes
Congratulations to Alex Eskin on the 2019 Breakthrough Prize! It’s
fun to see how those celebrated at the Breakthrough ceremony this
year have passed through MSRI as their careers advanced: Alex
himself was a member in 2007 and then Simons Professor in 2015.
Tim Austin was a visiting graduate student in 2008 and then a mem-
ber in 2011. Emmy Murphy attended a workshop in 2018 and was
a lecturer in one of our summer graduate schools the same year.
Xinwen Zhu was a member in 2014. Congratulations to them all!

Evaluating MSRI
How expensive would it be to get a truly arm’s-length evaluation
of MSRI? We got one for free, as another byproduct of the NSF
review! Here are a some of the comments from the anonymous
reviewers of our NSF proposal who were chosen by the NSF:

“ MSRI has, over 35 years, become one of the premier math-
ematics research institutes in the world. The list of past
postdocs and other luminaries speaks volumes as does the
administration’s ability to point to a host of fundamental
developments that were sparked through their programs.

“ MSRI has been a tremendous and impactful national re-
source for research mathematicians for decades.

“ MSRI has moved beyond providing opportunities to mem-
bers of underrepresented groups and progressed in some
cases to removing obstacles, as seen for example in provid-
ing full funding for additional childcare related expenses
incurred by women program members and workshop par-
ticipants . . .

“ A forward-thinking proposal from a successful institute;
particularly notable is MSRI’s success in leveraging NSF
money with donations and other grants enabling them to
improve their facilities and offer wider ranging programs.

“ The proposal is extremely strong in mathematical content,
variety of topics and programs, broad participation and
impact, richness of opportunities and connections.

“ This proposal is superior in all possible ways.
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Public Understanding of Mathematics — Highlights
AMS/MSRI Congressional Briefing Report

MSRI and the American Mathematical Society (AMS) host two
congressional briefings on mathematical topics each year in Wash-
ington, DC, to inform members of Congress and congressional staff
about new developments made possible through federal support of
basic science research.

On June 13, 2019, Jon Kleinberg, Tisch University Professor
in the departments of computer science and information science
at Cornell University, spoke on Capitol Hill on “Addressing

Jon Kleinberg

Threats and Vulnerabilities in
Critical Interconnected Sys-
tems.” A vital feature of many
critical systems in society is
their connectivity — they are
built from large numbers of
components linked together
in a network. This struc-
ture makes it possible to build
them at large scales, but it also
puts them at risk of cascading
breakdowns, when a problem
in one component spreads to
others.

Through mathematical models originally developed for epidemic
diseases, where a small change in the connectivity of the population
or the infectiousness of the disease can lead to large changes in
the reach of the outbreak, we can consider how these models ap-
ply when developing detection techniques and countermeasures for
risks to highly interconnected systems, including malware on the
Internet and cascading failures in banking systems. A full report of

Kleinberg’s talk can be read in the October 2019 issue of the AMS
Notices.

The next congressional briefing will take place in December 2019,
featuring current AMS President Jill Pipher (Brown University)
speaking on cryptography. You can learn more and view short films
about past events: msri.org/congress.

Mathematical Circles Library: New Volume by
James Tanton
Volume 23 in the Mathematical Circles Library is here!
How Round is a Cube? And Other Curious Mathematical

Ponderings, by James Tanton (Math-
ematical Association of America), is
a collection of 34 curiosities, each a
quirky and delightful gem of mathemat-
ics and each a shining example of the
joy and surprise that mathematics can
bring.

Intended for the general math enthusi-
ast, each essay begins with an intrigu-
ing puzzle, which either springboards
into or unravels to become a wondrous
piece of thinking. The essays are self-
contained and rely only on tools from

high-school mathematics (with only a few pieces that ever-so-briefly
brush up against high-school calculus).

MSRI and the AMS publish this book series as a service to young
people, their parents and teachers, and the mathematics profession.
Explore the entire collection at bookstore.ams.org/MCL.

MSRI’s New Ombuds

Catherine Glaze

Catherine Glaze joined MSRI as its inaugural Ombuds in May 2019. Catherine is a Stanford graduate
(B.A. 1980, J.D. 1985), who joined Stanford’s staff in 2000 and served for more than fifteen years as
the Associate Dean for Student Affairs in the Law School before becoming the University’s Title IX
Coordinator in October 2015 until her retirement in August 2018. She previously was an attorney in
private practice and held instructional and administration roles at Golden Gate University School of Law.

As Title IX Coordinator, Catherine oversaw the investigation and resolution of all student-related matters
involving sexual assault, sexual misconduct, sexual harassment, stalking and relationship violence. As
Dean of Students, she counseled students and served as the primary liaison between students and faculty
in addition to developing and implementing academic policies and procedures and serving as a member
of the Law School’s senior management team.

Catherine served the university through a number of other roles as well, including as chair of the Board
on Judicial Affairs, which oversees campus policies on student conduct; as a sexual harassment adviser
in the Law School; as a member of the Grievance Advisory Board that hears employee grievances; and,
as a member of the search committee for the Vice Provost of Student Affairs.
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Microlocal Analysis and its Applications
Steve Zelditch

Microlocal analysis is analysis in phase space. Phase space is a
symplectic manifold M, most often the cotangent bundle T⇤X of
a manifold, or a Kähler manifold (M,!). The geometry of phase
space is symplectic geometry and dynamics of Hamiltonian flows.
Microlocal analysis begins with the quantization of symplectic
geometry, in particular the quantization of real-valued functions
a 2C1(M) on M as self-adjoint operators Op(a), and symplectic
diffeomorphisms � :M!M as unitary operators U� on a Hilbert
space. The basic ideas of quantizing functions as self-adjoint op-
erators and symplectic transformations as unitary operators can
be found in classic books of P. Dirac and H. Weyl in the 1920s.
One might think of microlocal analysis as the application of quan-
tum mechanical ideas to a vast array of problems in geometry and
mathematical physics, often with tenuous connections to quantum
mechanics.

Microlocal means local in phase space, for example, local in T⇤X
rather than simply local in X. Symplectic diffeomorphisms can be
used to put equations into local normal forms. Quantizations of
symplectic diffeomorphisms can be used to put partial differential
operators into microlocal normal forms. Although microlocal sug-
gests “very local,” one of its fundamental strengths is that it is also
global: it allows analysts to exploit global geometry and dynamics
to study solutions of partial differential equations.

In current research (and in the MSRI program), microlocal analysis
is applied to such a vast range of problems that it seems more like
an organizing principle than a specific area of study: microlocal
analysis is applied (i) to spectral or scattering theory of Laplacians
(and more general Schrödinger operators), for example, to inverse
problems for Laplacians or to quantum chaos; (ii) to dynamical
problems such as resonances of Anosov flows; (iii) to analysis on
singular spaces; and (iv) to nonlinear stability problems in general
relativity.

We begin with the setting of linear and quadratic Hamiltonians on
Rn; it is the “linear algebra,” which is generalized to “calculus on
manifolds” by microlocalization.

Canonical Quantization: Heisenberg and
Metaplectic Groups

Canonical quantization means the Schrödinger representation of
the Heisenberg algebra and group (explaining why it is canonical).
The algebra is represented as follows: Let X = (x1, . . . ,xn) and
q ·X=

P
jqjxj. They act on L2(Rn) as multiplication operators,

q ·Xf(x) = hq,xif(x). Let Dj =
1
i

@
@xj

and p · P = 1
i

P
jpj

@
@xj

.

These operators satisfy [Xj,Dk] = i�jk, the Heisenberg commuta-
tion relations.

Weyl defined the corresponding Heisenberg group representation,
defined by

U(↵) = e
2⇡i
 h ↵P, V(�) = e

2⇡i
 h �Q.

These unitary operators act by

U(↵)f(q) = f(q+↵), V(�)f(q) = e
2⇡i
 h f(q)

and satisfy the Weyl commutation relations,

S(↵,�) = e-
i
2 h↵,�iU(↵)V(�) = e

i
2 h↵,�iV(�)U(↵).

The group algebra generated by these operators (the integrated
representation) consists of the Weyl pseudo-differential operators,

Opw
h (a)u(x) =

Z

Rd

Z

Rd
a h(

1

2
(x+y),⇠)e

i
 h hx-y,⇠iu(y)dyd⇠ .

The (Weyl) symbol is a function on T⇤Rn. If one chooses it to be
(approximately) the characteristic function 1E⇥F of a phase space
box E⇥F⇢ T⇤Rn, then Oph(1E⇥F)u “microlocalizes” u to E⇥F,
that is, Oph(1E⇥F)u(x) is small outside of E and its Fourier trans-
form is small outside of F.

Quadratic Hamiltonians: The symplectic group and its meta-
plectic representation. The Fourier transform F : L2(Rn) !
L2(Rn) acts by conjugation on the Weyl–Heisenberg represen-
tation, rotating the pair (Qj,Pj) : FQjF

⇤ = Pj,FPjF
⇤ = -Qj. In

fact, F belongs to a unitary representation of the symplectic group
Sp(n,R), or more precisely its double cover Mp(n,R), the meta-
plectic group.

A symplectic matrix has block form, A=
�
A B
C D

�
. The metaplectic

representation has the form

µ

✓
A B
C D

◆
f(x) = in/2(detB)-

1
2

Z

Rn
e2⇡iS(x,y)f(y)dy,

with

S(x,y) =-
1

2

✓
xDB-1x+yB-1x-

1

2
yB-1Ay

◆
.

One of the cornerstone results of Fourier integral operator theory is
the Egorov theorem on conjugations of pseudo-differential opera-
tors by Fourier integral operators quantizing symplectic diffeomor-
phisms. The simplest case is to conjugate a Weyl pseudo-differential
operator Opw

h (a) on L2(Rn) by a metaplectic operator µ(A). One
then has the exact formula,

µ(A)⇤Opw
h (a)µ(A) =Opw

h (a�A),

where A�a(x,⇠) = a(A(x,⇠)).

This formula, and its generalization, are the basis for semiclassical
analysis, the analysis of the semiclassical limit  h! 0 whereby quan-
tum mechanical objects (such as µ(A),Opw

h (a)) tend to classical
ones (such as A,a).

Weyl symbols and Wigner distributions. In 1932, Wigner con-
sidered the question: Can one construct from a wave function
f 2 L2(Rn) a phase space density? He answered the question
by constructing what are now called Wigner distributions. Given
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two normalized functions, f,g 2 L2(Rd), the semiclassical Wigner
distribution Wf,g; h(x,⇠) is the function on T⇤Rd ' R2d defined
by

Wf,g; h(x,⇠) :=

Z

Rd
f(x+

v

2
)g(x-

v

2
)e-

i
 hv⇠ dv

(2⇡ h)d
.

Here,  h is Planck’s constant, treated as a semiclassical parameter
in the sense that we are interested in relations to classical me-
chanics as  h ! 0. In particular, when f = g, Wigner regarded
Wf,f; h(x,⇠) as the phase space density associated to f. Roughly
speaking, Wf,f; h(x,⇠)dxd⇠ is supposed to be the probability den-
sity of finding the particle at the phase space point (x,⇠), that is, to
have position x and momentum ⇠.

Some of the key objects of study in quantum mechanics are ma-
trix elements hOpw

h (a)�j,�ki of pseudo-differential operators in
an orthonormal basis {�j}, usually an orthonormal basis of eigen-
functions on an interested quantum Hamiltonian. A key formula is
that

hOpw(a)f,fi=
Z

T⇤Rd
a(x,⇠)Wf,f(x,⇠)dxd⇠ ,

representing matrix elements by concrete integral formula.
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This image is the graph of the primitive T(b) of the boundary
value dT(b) of a Laplace eigenfunction on G/PSL(2,Z) on the
unit circle, the ideal boundary of the Poincaré disk. (Figure by
Stephen D. Miller).

Quantum Chaos on Hyperbolic Surfaces
We now turn to quantum chaos on hyperbolic surfaces X� = �\D =
�\G/K , a model example where the quantum mechanics is as
far from solvable as possible. Here, G = PSL(2,R) ' PSU(1,1),
K= SO(2) and � ⇢G is a discrete co-compact subgroup, and D is
the hyperbolic disc.

Quantum chaos is in part concerned with the limits of matrix el-
ements hOp(a)uirj ,uirji of zeroth-order pseudo-differential op-
erators with respect to an orthonormal basis {uirj }j=0,1,2,... of
real-valued eigenfunctions:

4uirj =-�juirj ,

where � is the Laplacian of the hyperbolic metric and where
�0 = 0 < �1 6 �2 . . . denotes the spectrum of the Laplacian on X� ,
repeated according to multiplicity.

Morally, hOp(a)uirj ,uirji =
R
S⇤X�

adWrj , where Wj is the
“Wigner distribution” in this setting. Henceforth we write
uh for uirj , where h = hj = r-1

j . A standard result is that
hOp(a)uhj

,uhj
i!

R
S⇤X�

adµL, where dµL is Liouville measure,
for “almost all” hj. A natural question is whether there exist excep-
tional sparse subsequences, and what constraints can be put on the
limits of their Wigner distributions (known as quantum limits).

Fractal uncertainty principle. A recent breakthrough on this
sparse subsequence problem for hyperbolic surfaces is the follow-
ing result due to Dyatlov–Jin (generalized to any negatively curved
surface by Dyatlov–Jin–Nonnenmacher). We use semiclassical no-
tation where hj = �-1

j and denote eigenfunctions by uhj
or more

simply uh.

Theorem. Let (M,g) be a compact hyperbolic surface. Let
a 2 C1

0 (T⇤M) with a|S⇤M not identically zero. Let uh

be an eigenfunction of eigenvalue h-2 and kuhkL2 = 1.
Then there exists a constant Ca independent of h so that,
for h6 h0(a),

kOph(a)uhkL2 > Ca.

Here, Oph(a) is the semiclassical pseudo-differential operator with
symbol a. If a(x,⇠) = V(x) is a multiplication operator, one gets
that

R
B |uh|

2dV > CB > 0, that is, a uniform lower bound (in h)
of the L2 mass on all balls.

Corollary. All quantum limits of sequences of eigenfunc-
tions on compact hyperbolic surfaces have full support in
S⇤M, that is, charge every open set.

One of the main ingredients in the proof of the theorem above
is the so-called FUP (fractal uncertainty principle). It is related
to a classical problem of Landau–Slepian–Pollak related to the
uncertainty principle of quantum mechanics: Can there exist a func-
tion f which is concentrated on an interval A, such that its Fourier
transform Ff is concentrated on an interval B? To make this pre-
cise, let PA = 1A and QB = F⇤1BF. If there exists f which is
✏-concentrated on A in the sense that

R
X\A |f|2 6 ✏2

R
X |f|2, and

such that Ff is �-concentrated on B, then 1-✏-�6 kPAQBk.

The FUP in the sense of Bourgain, Dyatlov, Jin, Zahl is a kind
of generalization where one replaces intervals by regular porous
fractal sets. Given ⌫2 (0,1) and 0 < ↵0 <↵1, say that ⌦⇢R is ⌫-
porous on scales ↵0 to ↵1 if for each interval I of size |I| 2 [↵0,↵1]
there exists a subinterval J ⇢ I with |J| = ⌫|I| such that J\⌦ = ;.
Given a set X, let X(s) = X+[-s,s] be its s-thickening. There is
an additional regularity condition called “Ahlfors–David” regular-
ity, which we won’t define. The FUP for �-regular sets states the
following:

Proposition. Let B(h) be a semiclassical Fourier integral
operator on L2(R), of the form

Bf(x) = h- 1
2

Z

R
ei�(x,y)/hb(x,y)f(y)dy ,

with b 2 C1
0 (U) and @2xy� 6= 0 on U. Suppose that

X,Y ⇢ R are Ahlfors–David �-regular. Then there exists
�> 0 so that

k1X(h)B(h)1Y(h)kL2(R)!L2(R) 6 Ch�.
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Roughly speaking, the FUP is used in the following way. Suppose
that ⌦⇢M is an open ball in which ||1⌦uh||L2 is “small,” that is,
in which u2

h does not become uniformly distributed. One can propa-
gate the inverse image ⇡-1(⌦) of this set in S⇤M under the natural
projection to obtain an invariant phase space set in which uh is mi-
crolocally small. Actually, a fundamental obstruction is that one can
only relate classical and quantum dynamics on times |t| 6 | logh|
less than the “Ehrenfest time.” Forward/backward propagation up to
the Ehrenfest time produces sets �±(| logh|) on whose intersection
uh is “micro-localized” (that is, on the complement of which it is
small), namely, �±(T) is the complement of the flowout of ⇡-1(⌦)
under the geodesic flow for 0 6 ⌥t 6 T . This complement is a
regular porous set and is very “sparse.”

Dyatlov–Jin construct rather exotic semiclassical pseudo-
differential operators A± which localize to �±(| logh|). Hence
A+A-u ' u in the sense that microlocal mass of u in the com-
plement of �+(| logh|)\ �-(| logh|) is small. Unfortunately, the
calculi to which A± belong are incompatible and the product
A+A- is not a pseudo-differential operator. At this point, the FUP
comes to the rescue: It shows that ||A+A-||L2(M)!L2(M) 6 Ch�

for some �> 0. Thus, the microlocal mass of u cannot concentrate
in �+(| logh|)\ �-(| logh|), yet it is very small outside this inter-
section. The contradiction shows that there could not exist a “hole”
in the support of the microlocal defect measure of the sequence
{uh}.

This outline hides a key problem: the FUP is a statement about op-
erators on R, while A+A- lives on a hyperbolic surface. Convert-
ing the hyperbolic setting to the Fourier transform setting requires
Fourier integral operator conjugations of the type mentioned in the
previous section, but which of course are very complicated in the
curved setting.

Inverse Problems
One of the classical problems in spectral theory of Laplacians is
the Kac problem, “Can you hear the shape of the drum?” That is,
can you determine a bounded plane domain from its Dirichlet (or
Neumann) spectrum. We will assume here that drums are convex
and smooth, so that the problem is almost entirely open. Kac him-
self proved that circular drums are “spectrally determined,” that
is, are the unique domains up to isometry with their Dirichlet (or,
Neumann) spectrum. Until recently, no other bounded smooth plane
domain was known to be spectrally determined. In recent work,
Hamid Hezari and the author proved that ellipses of small eccen-
tricity are also spectrally determined; the complete list of bounded
smooth domains for which the Kac problem has been solved now
consists exactly of these ellipses of small eccentricity.

Theorem. There exists "0 > 0 such that any ellipse with ec-
centricity less than "0 is uniquely determined by its Dirich-
let (or Neumann) Laplace spectrum, among all smooth
domains.

Henceforth, we use the term “nearly circular ellipse” as short for
“eccentricity less than "0.”

Key inputs into the proof are the recent dynamical inverse results of
Avila–De Simoi–Kaloshin and Kaloshin–Sorrentino. They prove
that if a strictly convex smooth plane domain is sufficiently close
to an ellipse and is rationally integrable, then it must be an ellipse.

Rational integrability means that for every integer q> 3, there is a
“convex caustic” of rotation number 1

q consisting of periodic orbits
with q reflections. A convex caustic is an invariant curve for the
billiard map of the domain. Our result is thus: If ⌦ is a bounded
smooth plane domain which is isospectral to a nearly circular el-
lipse of eccentricity ", then ⌦ is "-nearly circular in Cn for every
n 2 N (in particular it must be strictly convex) and ⌦ is rationally
integrable.

The microlocal part of the proof is the study of the wave trace

w⌦(t) := Tr cost
p
�⌦.

It is well known that w⌦(t) is a tempered distribution on R and that
the positive singularities of w⌦ can only occur for t 2 L(⌦), the
length spectrum (that is, the closure of the set of lengths of closed
billiard trajectories). We study the singularities at closed trajectories
of type �(1,q), that is, with winding number 1 and with q bounces
(reflections) off the boundary @⌦. We denote the set of lengths of
such closed trajectories by L1,q(⌦). For each q, the contribution
to w⌦(t) of closed trajectories �(1,q) is denoted by �̂1,q. A key
ingredient in the proof is that a special type of oscillatory integral
representation of �̂1,q, introduced by Melrose–Marvizi for general
convex domains for sufficiently large q, is in fact valid for all q> 2
for almost circular domains.

Using this representation, it is shown that the possible lengths of
closed orbits have a “band-gap” structure, consisting of a union
of bands [tq,Tq] of lengths for �(1,q) orbits, separated by much
larger gaps. The bands collapse to a single point if the domain is
an ellipse, and therefore for any isospectral domain. Hence any
domain isospectral to an ellipse of small eccentricity is rationally
integrable. Alternatively, the phase Lq(s) is constant for the el-
lipse and an analysis shows that any domain with asymptotically
equivalent Melrose–Marvizi integrals must also have a constant
phase.

General Relativity
Finally, we briefly describe the microlocal aspects of the Hintz–Vasy
proof of global nonlinear stability of slowly rotating Kerr–de Sitter
black holes, and the Häfner–Hintz–Vasy proof of linear stability of
slowly rotating Kerr black holes. The Kerr family gm,a of black
holes is a family of solutions of the vacuum Einstein equations
Ein(g) := Ric(g)- 1

2Rgg = 0, where g is a Lorentz metric on a
4-dimensional spacetime M'Rt⇤ ⇥ (0,1)r⇥S2 and b= (m,a)
are mass and angular momentum parameters. “Slowly rotating”
means that a is nearly 0. When a = 0, the Kerr metric is the
Schwarzschild metric. Kerr–de Sitter spacetimes are solutions of
Ein(g) =⇤g, where ⇤ is the cosmological constant.

Nonlinear stability means that if (h,k) are smooth initial data on
a spacelike (Cauchy) hypersurface ⌃0 (satisfying constraint equa-
tions), if (h,k) are close to the data (h0,k0) of a Schwarzschild–de
Sitter spacetime, then there exists a solution gb of Ein(g) = ⇤g
with the given Cauchy (initial) data (h,k) and with black hole pa-
rameter b close to b0 such that g- gb = O(e-↵t⇤): that is, g
decays exponentially fast to the Kerr–de Sitter metric gb. Linear
stability refers to the linearization �L of L of the Einstein functional
Ein(g) around the solution and means that solutions of the initial
value problem for L(�g) = 0 decay (at a rate t-2

⇤ to the sum of a
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Focus on the Scientist: Richard Melrose
Richard Melrose, a Chern Professor in the Microlocal Analysis
program, is one of the key architects of this subject, and in his dis-
tinguished career has cut a wide swath across many parts of linear
PDE, geometric analysis, differential geometry, and topology.
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Richard Melrose

Richard was born in Sydney and
grew up in Hobart, Tasmania. Af-
ter attending the University of
Tasmania, he took an honors
year at the University of New
South Wales in Canberra, and then
moved to Cambridge University,
where he completed his Ph.D. the-
sis in 1974 with Gerard Friedlan-
der. After a year visiting MIT
and another year back in Cam-
bridge, he moved permanently to
MIT. He assumed the Simons Pro-
fessorship of Mathematics from
2006–2016.

Richard’s early career coincided with the great flourishing of
microlocal analysis in the 1970s, and his first groundbreaking
work concerned the propagation of singularities of solutions of
the wave equation in the presence of boundaries. This led to his
solution of the Lax–Phillips conjecture in scattering theory and to
many other great advances in scattering and spectral theory and
other parts of PDE. One of the things for which Richard is best
known is his creation and fundamental role in the development of
a subject now called geometric microlocal analysis. In fact, the
paper that really started this field was one he wrote with Gerardo

Mendoza during his semester-long stay at MSRI in the spring of
its first year, 1983.

This set of ideas has led, in the hands of Richard and his many
students and collaborators, to comprehensive results about elliptic
and parabolic operators on stratified spaces, a very detailed and
beautiful geometric understanding of propagation phenomena
at infinity in stationary scattering on asymptotically Euclidean
spaces and their generalizations, a definitive treatment of index
theorems and families index theorems for manifolds with bound-
ary, and a systematic treatment of diffraction phenomena for
nonlinear waves, and many other topics besides.

Perhaps the cardinal feature of Richard’s mathematical work is
his thoroughly geometric vision in a wide range of problems,
and his incisive and clear-sighted ability to understand the inner
nature of the problems on which he works. His energy remains
undiminished and his recent and ongoing work includes forays
into analysis on loop spaces, Weil–Petersson geometry, and a
new theory of compactifications of Lie groups, amongst other
projects.

Richard has had 34 graduate students, many now on the faculty
of major universities around the world. Richard was awarded the
Bôcher Prize from the AMS in 1984; he was an invited speaker at
the 1978 ICM in Helsinki and delivered a plenary address at the
1990 ICM in Kyoto. Richard’s two books, The Atiyah–Patodi–
Singer Index Theorem and Geometric Scattering Theory, have
guided many, as have his copious unpublished lecture notes and
expository manuscripts.

— Rafe Mazzeo

linearized Kerr metric plus the Lie derivative of gm,a along certain
Killing vector fields. Here, t⇤ = t-r-2m logr is a time parameter
whose level sets are, roughly, outgoing light cones.

Stability problems for Minkowski, Schwarzschild, and Kerr (–de
Sitter) spacetimes have a long history in physics and mathematics,
associated with the work of Christodoulou, Klainerman, Rodnian-
ski, Dafermos, and many others. The proofs of nonlinear stability
involve an interation scheme. In the earlier, not very microlocal
work, the iteration had roughly the “bootstrap” form: Set up the
Einstein evolution problem as an ODE (choosing a gauge); solve the
initial value problem for a short time; estimate the terminal value;
iterate infinitely often.

The microlocal strategy of Vasy, Hintz–Vasy, Häfner–Hintz–Vasy is
global in time. First, they compactify the Lorentz manifold M as a
manifold with corners, in the spirit of Melrose’s b-manifold theory.
They solve the global nonlinear problems on the compactified space
using a Nash–Moser iteration scheme; they solve a linearized equa-
tion globally at each step rather than locally in time by the bootstrap
approach.

Microlocal tools for solving hyperbolic equations globally on a
background like Kerr–de Sitter space were introduced by Vasy in

a famous paper on Fredholm theory for hyperbolic equations. For
wave equations on Kerr–de Sitter spacetimes, there are additional
complications due to the trapped photon sphere, that is, lightlike
geodesics which do not tend to future infinity. A microlocal anal-
ysis of the trapped set for such spacetimes was given earlier by
Wunsch–Zworski and by Dyatlov.

The compactification of M is a more refined one than the classical
Penrose conformal compactification: the boundary hypersurfaces
of the compactification are now manifolds with corners. A gener-
alization of the Melrose b-calculus produces an algebra of pseudo-
differential operators in which one can analyze the linearized oper-
ator Lg. All nonelliptic estimates of the linearized equation have
the form: “regularity along incoming directions implies regularity
along outgoing directions,” where incoming/outgoing directions
refer to those points in the characteristic set of Lg that, in the fu-
ture/past direction along the Hamilton flow of the principal symbol
�2(Lg), tend to the subset of phase space of interest, for example,
the trapped photon sphere in the vicinity of the black hole. The
incoming regularity assumption is traced back all the way to the reg-
ularity of the initial data; it implies a global estimate for solutions
of initial value problems for Lg. Working in a compactified setting
makes it possible to prove the uniformity of such estimates.
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National Math Festival Connects
Today’s Wonder to Future Learning
The 2019 National Math Festival drew
roughly 12,000 children and adults to the
Walter E. Washington Convention Center in
Washington, DC, on Saturday, May 4, for
a joyful celebration of math, its beauty, its
playful sides, and its manifold applications
in the world.

Presentations included a world-class dance
performance by the BARKIN/SELISSEN
PROJECT of New York City, a journey
through primes with Holly Krieger, a 300-
year lightning-quick review (revue) of mu-
sical and mathematical history by Lillian
Pierce, an exploration of the mathematics
of braiding with Dance Your Ph.D. contest
winner Nancy Scherich, a dive into the hu-
manism of math with Francis Su, a modern-
ization of the stable marriage problem with
Annie Raymond, and many more. National
Science Foundation funding for basic math-
ematics research was evidenced through the
distribution of an NSF “passport” attendees
could have stamped at each talk, showing
the funding lineage of nearly all speakers!

The Alfred P. Sloan Foundation Film Room
showcased interactive math talks inter-
spersed with short film excerpts. Among
these were John Urschel’s take on the
physics of football, and the National Sci-
ence Foundation’s unveiling of the win-
ners of the We Are Mathematics short film
contest. (Winners are posted on YouTube;
search “We Are Mathematics contest.”)

School Preview Day
A School Preview Day on Friday, May 3,
immersed 850 students in interactive, hands-
on activities hosted by the National Mu-
seum of Mathematics (MoMath), the Julia

Robinson Mathematics Festival, MIND
Research, Natural Math, Math-On-A-
Stick, the Bridges Organization, and the
Young People’s Project. These ranged
from bilingual family board games in En-
glish and Spanish, to giant maze mats on the
floor, to athletic competitions (factoring!) in
the Flagway Game, to rapid Rubik’s Cube
solving, to art-making, puzzle-solving, and
much more. In addition, roughly 600 stu-
dents in class groups took advantage of the
invitation on Saturday for the public
festival.

Both the public festival and the School Pre-
view Day offered opportunities for Title I
schools to register school groups and ap-
ply for donations to underwrite transporta-
tion costs, and many of the Friday and Sat-
urday school attendees came from these
schools. Title I schools enroll a high number
or percentage of students from low-income
families.

Curiosity that Sparks
Long-Term Engagement
More than 85% of attendees were new to the
NMF. Attendees came from an estimated 22–
34 different US states. And those that came
took away a long-term perspective on their
math enjoyment.

More than 80% of attendees went on to dis-
cuss ideas from the NMF with friends or
family who were not at the festival, and
kept thinking about things they learned that
day. About three-quarters picked up re-
sources for future math enjoyment during
the NMF. About two-thirds sought out fur-
ther resources on a subject encountered at
the festival.
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Counterclockwise from page 8, top left — the Flagway™ Game; Marcus du Sautoy
with David Eisenbud; MoMath’s Tetra Truchet; climate math and ice cores; Mathical
author Richard Schwartz; Bridges Math–Art Exhibit; 2019 NMF presenters; Lillian
Pierce; the BARKIN/SELISSEN PROJECT; School Preview Day; Math Circle activities.

The Make or Take Spiral
As part of the NMF’s aim to spark curiosity
and convert that initial interest into long-
term engagement with mathematics, a spe-
cial focus of the 2019 NMF was the new
Make or Take Spiral, which featured make-
and-take activities for all ages as well as
take-home resources for families and educa-
tors, opportunities to sign up to participate
in math activities close to home, and guid-
ance on plugging into high-quality, fun on-
line clubs, activities, and other resources in
recreational mathematics. Visitors made full
use of this aspect of the festival.

We are grateful to the 23 math organi-
zations who made this area of the fes-
tival come alive, among them the As-
sociation for Women in Mathematics
(AWM), the Benjamin Banneker Associ-
ation and National Association of Mathe-
maticians (NAM), NOVA, the Mathemat-
ical Association of America (MAA), the
National Council of Teachers of Mathe-
matics (NCTM), ThinkFun Games, the
Erikson Institute Early Math Collabora-
tive, Development and Research in Early
Math Education (DREME), WGBH with
preschool games, apps, and activities, Math
Monday, several local Math Circles, and
students and faculty from Ithaca College
and Marymount University with geomet-
ric balloon bending.

Across the Country
Math play was not limited to Washington,
DC. In fact, more than 80 science centers in
more than 40 US states hosted Geometric
Bubble workshops reaching a total of more
than 26,000 persons on Saturday, May 4. We

2019 NMF Presenters —
Front row, left to right:
Annie Raymond, Nancy
Scherich, Emily Riehl,
James Tanton. Second
row: Lillian Pierce, Amelia
Taylor, Holly Krieger,
Mark Mitton. Third row:
Francis Su, John Urschel,
Suzanne Weekes, Avi
Wigderson. Not pictured:
Marcus du Sautoy, Mary
Lou Zeeman.

are grateful to the Association of Science-
Technology Centers (ASTC) and Zometool
for making this day of nationwide math
possible!

MSRI aims to keep the energy of the Na-
tional Math Festival hopping year-round.
One way we do this is to collect some of
the very best fun family math resources at
More Math! on the NMF web site. The
offerings comprise a total of 100+ posts fea-
turing 140 resources, with a few new posts
added each month. Posts can be sorted by
age band (ranging in ages from 2–18+) and
activity type (Arts & Crafts, Books, Film
& Video, Get Involved, Learn & Explore,
Puzzles & Games).

Ways to Stay Involved
We hope you’ll check out More Math!
at nationalmathfestival.org/more-math. If
you have resources to recommend, please
email mathfestival@msri.org. To receive
future National Math Festival news and
updates, subscribe to the e-newsletter at
www.tinyurl.com/nmfnews.

The 2019 National Math Festival was or-
ganized by the Mathematical Sciences Re-
search Institute in cooperation with the In-
stitute for Advanced Study and the National
Museum of Mathematics (MoMath), with the
generous support of the Simons Foundation;
the Alfred P. Sloan Foundation; Eric and
Wendy Schmidt; the National Science Foun-
dation; the Gordon and Betty Moore Foun-
dation; Irwin and Joan Jacobs; the Kavli
Foundation; the American Mathematical So-
ciety; the Charles and Lisa Simonyi Fund
for Arts and Sciences; Educational Testing
Service; and Northrop Grumman.
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Holomorphic Differentials in Mathematics and Physics
(continued from page 1)

A Kaleidoscope of Holomorphic Differentials
The program on Holomorphic Differentials in Mathematics and
Physics brings together people from many disparate areas in which
holomorphic differentials play a role. Comparing and contrasting
the different perspectives enriches our understanding and allows us
to answer old questions and formulate new directions for the future.

In the following we describe a few of the appearances of holomor-
phic differentials, focusing on the areas that are key to the program.

Billiards and Abelian Differentials
A simple way to obtain a Riemann surface is to take a Euclidean
polygon and glue opposite sides. If we start with a square, we get
a torus, and if we start with an octagon, we get a surface with two
holes, a genus 2 surface. Note that when we glue the square together,
the grid on it continues to look the same everywhere, whereas on
the genus 2 surface, twelve squares of the grid come together at one
point, giving an angle of 12⇥⇡/2= 6⇡, though every other point
looks normal.

→

Identifying opposite sides of a square to make a torus.

Since we are gluing sides by translations, maps of the form z 7! z+c
which are holomorphic maps, we get a holomorphic structure on
these surfaces — but in fact, since d(z+ c) = dz, these surfaces
come equipped with a holomorphic 1-form, which, in local coordi-
nates, is of the form f(z)dz. The zeros of this form correspond to
points with excess total angle; an angle of 2⇡(n+1) corresponds to
a zero of order n, so the genus 2 picture above has a zero of order
2. Such a holomorphic 1-form is also called an Abelian differen-
tial. They play an important role in understanding the dynamics of
billiards in rational polygons.

More generally, we can consider holomorphic k-differentials, lo-
cally of the form f(z)(dz)k, with f(z) holomorphic. These arise
naturally on surfaces obtained from polygons by gluing sides with
maps of the form z 7! ⇣kz+ c, where ⇣k is a k-th root of unity,
equivalently, with rotations of order k and translations. The case
k = 2 is of particular interest; these are known as holomorphic
quadratic differentials.

An important tool in studying Abelian and quadratic differentials is
the action of SL(2,R) on the space of Abelian differentials. This
action is easy to describe from the point of view of flat surfaces
obtained by gluing planar polygons: just let SL(2,R) act on the
plane! Nevertheless, its dynamics are surprisingly subtle; the char-
acterization of the orbit closures of this SL(2,R)-action is one of

the results for which Maryam Mirzakhani was awarded the Fields
Medal, and Alex Eskin the Breakthrough Prize in Mathematics.

Higgs Bundles, Quadratic Differentials, and
Higher Teichmüller Spaces
A holomorphic k-differential is a holomorphic section of the k-th
power of the canonical bundle K of the Riemann surface. In this
incarnation, holomorphic differentials arise in the theory of Higgs
bundles. A Higgs bundle is a pair (E,�) where E is a rank n holo-
morphic bundle and �, the Higgs field, is a holomorphic bundle
map E! E⌦K. The coefficients of the characteristic polynomial
of � are holomorphic differentials of degree k= 1, · · · ,n. The map
which takes (E,�) to this tuple of holomorphic k-differentials is
the Hitchin fibration.

In the case n= 2, Hitchin used a section of the Hitchin fibration to
provide a new parametrization of Teichmüller space by the space
of holomorphic quadratic differentials on a fixed Riemann surface
X. The construction starts with the line bundle K1/2 on a Riemann
surface X, by which we mean a line bundle whose square is isomor-
phic to K. The dual of this line bundle, K-1/2, is a square root of
K-1. Taking the rank two bundle K-1/2�K1/2 to be E, the Higgs
field � is then a map

� : K-1/2�K1/2 ! K1/2�K3/2.

One can choose � to have the off-diagonal form �=
�
0 c
q 0

�
, where

c : K1/2 ! K1/2 and q : K-1/2 ! K3/2. Holomorphic maps be-
tween line bundles over a compact manifold are constants, so c can
be normalized to be 1. Any map of line bundles from L1 to L2
yields a holomorphic section of the line bundle L-1

1 ⌦L2, so q is a
section of K2, that is, a quadratic differential.

This construction requires a fixed complex structure on S, the real
surface underlying X. We can take this as a basepoint in Teich-
müller space, the space parameterizing (marked) complex structures
on S. Hitchin showed that a new hyperbolic metric on S can be
constructed from the quadratic differential q and a bundle metric on
K1/2, provided that the induced bundle metric on K-1/2�K1/2

solves a certain partial differential equation, now known as Hitchin’s
equation. In this way he obtained a new parameterization of Teich-
müller space by quadratic differentials.

Hitchin’s equation makes sense not only for the Higgs bundle we
described above, but for any Higgs bundle (E,�), and it admits
a unique solution provided that (E,�) obeys a certain algebro-
geometric stability condition. More generally, for any Lie group G,
one can define a notion of G-Higgs bundle. Solving Hitchin’s equa-
tion for such a bundle produces a flat connection with holonomies
in G. Thus one obtains a diffeomorphism between the space of
G-Higgs bundles and the space of flat G-connections, in turn
identified with the variety parameterizing reductive representa-
tions ⇡1(X) ! G. This is the celebrated non-Abelian Hodge
correspondence.

Now we can return to holomorphic differentials: For general G, one
considers not just quadratic differentials but tuples of holomorphic

10



Identifying opposite sides of an octagon to make a
genus 2 surface.

differentials of various degrees; for each such tuple one gets a Higgs
bundle; as we let the holomorphic differentials vary, these Higgs
bundles sweep out a section of the Hitchin fibration, the Hitchin
section. Via the non-Abelian Hodge correspondence, the Hitchin
section gives rise to new phenomena in the representation variety
of the fundamental group of the surface into G. The image of the
Hitchin section forms the Hitchin component, a connected compo-
nent, consisting entirely of discrete and faithful representations. In
many respects the Hitchin component resembles Teichmüller space.

The study of the Hitchin component, and of other higher (rank)
Teichmüller spaces, such as the space of maximal or positive rep-
resentations, is a very active area. So far it is mostly Thurston’s
hyperbolic point of view on Teichmüller space which has been gen-
eralized to these higher Teichmüller spaces; the complex analytic
viewpoint is still mainly obscure in these cases. Nevertheless, when
the Lie group G has rank 2, there are mapping-class-group invariant
parameterizations of the Hitchin component (and in a similar way
of the space of maximal representations) by pairs of a conformal
structure and a holomorphic k-differential. Recently flat structures
on surfaces, which are determined by Abelian differentials, also
seem to make their appearance in new compactifications of these
higher Teichmüller spaces at infinity. There are still many open
questions and relations to be discovered.

Quantum Field Theory
Recently a new role for Riemann surfaces and holomorphic differ-
entials has emerged in high energy physics. The starting point for
this story is a certain six-dimensional quantum field theory X(g),
depending on a Lie algebra g (for example, g= sl(N), the algebra
of N⇥N traceless matrices). The field theories X(g) were discov-
ered in the mid-1990s and remain rather mysterious to the present
day. In 2009 physicists proposed a thought experiment: suppose
that the universe is described by one of the field theories X(g), and
choose the spacetime to be of the form M6 =X⇥M4. If X is much
smaller than M4, observers living in this hypothetical spacetime
will not see X directly; they will perceive their universe to be M4.
Nevertheless, the laws of physics they will observe in M4, governed
by a four-dimensional field theory S(X,g), are intimately tied up
with the structure of X.

For example, one can consider the couplings in S(X,g) — funda-
mental parameters determining the strength of the various inter-

actions in the theory, analogous to the fine-structure constant in
our universe. It turns out that these couplings are most naturally
considered not as numbers, but rather as coordinates on the Teich-
müller space of X. Similarly, many other physical phenomena in
S(X,g) have translations into the geometry of X, and vice versa; a
few examples follow:

Teichmüller space of X $ Coupling space of S(X,g)

Holomorphic differentials on X $ Vacuum states in S(X,g) on
M4 = R4

g-Higgs bundles over X $ Vacuum states in S(X,g) on
M4 = R3⇥S1

Billiard trajectories between
singularities on X

$ Supersymmetric particles in
S(X,sl(2))

Webs of trajectories on X $ Supersymmetric particles in
S(X,sl(N))

Loops and spin-networks on X $ Line operators in S(X,sl(N))

Mapping class group of X $ Duality group of S(X,g)

This thought experiment is not yet rigorous mathematics; neverthe-
less, it has turned out to be a fertile source of mathematical ideas. A
few examples are unexpected connections between instanton inte-
grals on R4 and conformal field theory on surfaces, a new scheme
for understanding the hyperKähler metrics on moduli spaces of
Higgs bundles, and new insights in the theory of Donaldson–
Thomas invariants of Calabi–Yau threefolds. In the other direction,
techniques in dynamics of flat surfaces have led to the solution
of particle counting problems in the physical theories S(X,sl(2)),
and more generally, ideas from cluster algebra, higher Teichmüller
theory, dynamics and other areas have been essential inputs in the
discovery of new phenomena in the field theories S(X,g).

Named Positions, Fall 2019
MSRI is grateful for the generous support that comes from
endowments and annual gifts that support faculty and
postdoc members of its programs each semester.

Chern, Eisenbud, and Simons Professors
Pierre Albin, University of Illinois at Urbana-Champaign
Nalini Anantharaman, Université de Strasbourg
Vladimir Fock, Université de Strasbourg
Colin Guillarmou, Université de Paris XI (Paris-Sud)
Rafe Mazzeo, Stanford University
Richard Melrose, Massachusetts Institute of Technology
Andrew Neitzke, University of Texas, Austin
Andras Vasy, Stanford University
Richard Wentworth, University of Maryland
Steve Zelditch, Northwestern University
Anton Zorich, Université de Paris VII (Denis Diderot)

Named Postdoctoral Fellows
McDuff: Dylan Allegretti, University of Sheffield
V. Della Pietra: Laura Fredrickson, Stanford University
Gamelin: Katrina Morgan, Northwestern University
Viterbi: Hui Zhu, Université de Paris XI
Uhlenbeck: Xuwen Zhu, University of California, Berkeley
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Focus on the Scientist: Anna Wienhard
Anna Wienhard was born in 1977 in Giessen, Germany; at age
seven her family moved to Köln as her father, an experimen-
tal physicist, obtained a position at the Max Planck Institute.
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Anna Wienhard

Throughout her high school studies,
Anna’s interests were multifaceted:
she enjoyed history, Latin, mathe-
matics, and physics, as well as so-
cial projects in Egypt and Brazil.

Entering university, Anna was torn
between studying mathematics and
theology. Confronted with this
choice she decided — and this is a
character trait of hers — to pursue
both goals with the same energy! In
2000 she obtained her undergradu-
ate “Diplom” with a thesis on the
spectrum of the Laplacian where
she came in contact with Mike Wolf’s thesis and hence with
Teichmüller theory. At about the same time she obtained her
Diplom in theology.

She then began a Ph.D. with Werner Ballmann and developed a
strong interest in bounded cohomology. Keen to travel, she came
to spend a few months at ETH in Zurich in September 2002. The

result is that in March 2003, she coauthored a Comptes Rendus
note that essentially laid the foundations for the study of the geo-
metric aspects of maximal representations. Her thesis, defended
in 2004, introduced many new concepts like tight embeddings
and weakly maximal representations.

In 2005 as a postdoc in Basel with Alessandra Iozzi, she coor-
ganized the landmark Strasbourg–Basel conference on Bounded
Cohomology, Harmonic Maps, and Higgs Bundles during which
her collaboration with Olivier Guichard began. In a series of
very influential papers, Anna and Olivier developed a geometric
picture of Anosov representations as Kleinian groups in higher
rank.

Together with like-minded colleagues she founded the GEAR
network that grew to encompass over 80 nodes in all continents;
it had a profound impact on the subject of higher Teichmüller
theory and helped create a sense of community.

Since 2012 she has been a professor in Heidelberg, where she
lives with her husband Daniel, a physicist, and their four children.
Since 2015 she has also been group leader in the Heidelberger
Institut für Theoretische Studien. Among her current interests
is a notion of positivity that is designed to unify all phenomena
pertaining to higher Teichmüller theory.

— Marc Burger

Call for Proposals
All proposals can be submitted to the Director or Deputy Director
or any member of the Scientific Advisory Committee with a copy
to proposals@msri.org. For detailed information, please see the
website msri.org/proposals.

Thematic Programs
The Scientific Advisory Committee (SAC) of the Institute meets
in January, May, and November each year to consider letters of
intent, pre-proposals, and proposals for programs. The deadlines to
submit proposals of any kind for review by the SAC are March 1,
October 1, and December 1. Successful proposals are usually de-
veloped from the pre-proposal in a collaborative process between
the proposers, the Directorate, and the SAC, and may be considered
at more than one meeting of the SAC before selection. For complete
details, see tinyurl.com/msri-progprop.

Hot Topics Workshops
Each year MSRI runs a week-long workshop on some area of in-
tense mathematical activity chosen the previous fall. Proposals
should be received by March 1, October 1, and December 1 for
review at the upcoming SAC meeting. See tinyurl.com/msri-htw.

Summer Graduate Schools
Every summer MSRI organizes several two-week long summer
graduate workshops, most of which are held at MSRI. Proposals
must be submitted by March 1, October 1, and December 1 for
review at the upcoming SAC meeting. See tinyurl.com/msri-sgs.

Call for Membership
MSRI invites membership applications for the 2020–21 academic
year in these positions:

Research Members by December 1, 2019
Postdoctoral Fellows by December 1, 2019

In the academic year 2020–21, the research programs are:

Random and Arithmetic Structures in Topology
Aug 17–Dec 18, 2020
Organized by Nicolas Bergeron, Jeffrey Brock, Alexander Furman,
Tsachik Gelander, Ursula Hamenstädt, Fanny Kassel, Alan Reid

Decidability, Definability, and Computability in Number
Theory
Aug 17–Dec 18, 2020
Organized by Valentina Harizanov, Maryanthe Malliaris, Barry
Mazur, Russell Miller, Jonathan Pila, Thomas Scanlon, Alexandra
Shlapentokh, Carlos Videla

Mathematical Problems in Fluid Dynamics
Jan 19–May 28, 2021
Organized by Thomas Alazard, Hajer Bahouri, Mihaela Ifrim, Igor
Kukavica, David Lannes, Daniel Tataru

MSRI uses MathJobs to process applications for its positions. In-
terested candidates must apply online at mathjobs.org. For more in-
formation about any of the programs, please see msri.org/programs.
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Named Postdocs — Fall 2019
Gamelin
Katrina Morgan is the Gamelin postdoc in this fall’s Microlocal
Analysis program. She received her Ph.D. this past spring at the
University of North Carolina at Chapel Hill under the direction of
Jason Metcalfe. Her research has concentrated on the relationship
between the long-time behavior of solutions to the wave equa-
tion and the underlying geometry in an asymptotically flat setting.
Asymptotically flat spacetimes arise in general relativity, which has
motivated many mathematical questions about such wave behavior.

Katrina Morgan

Katrina was an undergraduate at Rice
University, majoring in cognitive sci-
ence — an interdisciplinary program in
computer science, biology, psychology
and linguistics. She was interested
in math in college and high school
and decided to switch fields and pur-
sue a Ph.D. in mathematics. Another
important part of her career has been
to interest high school girls in math.
In 2016 she co-founded Girls Talk
Math, a summer day camp for high
school girls interested in math at UNC
(girlstalkmath.com). The program expanded to the University of
Maryland in 2018. After this semester’s program, Katrina will go
to Northwestern as an RTG Postdoc under the mentorship of Jared
Wunsch. The Gamelin postdoctoral fellowship was created in 2014
by Dr. Ted Gamelin, Emeritus Professor of the UCLA Department
of Mathematics. The Gamelin Fellowship emphasizes the important
role that research mathematicians play in the discourse of K-12
education.

Vincent Della Pietra
Laura Fredrickson is the Vincent Della Pietra Fellow in this
fall’s program on Holomorphic Differentials in Mathematics and
Physics. She obtained her bachelor’s degree in mathematics from
the University of California, Irvine, and her Ph.D. from The Uni-
versity of Texas at Austin under the supervision of Andy Neitzke.

Laura Fredrickson

She is currently a Szegö Assistant Pro-
fessor at Stanford. Laura’s work deals
with solutions of Hitchin’s self-duality
equations. This theory could be thought
as a far-reaching generalization of the
fact that harmonic functions are the real
part of holomorphic functions. One
of the main issues is to understand the
asymptotics of the solution (in our triv-
ial example, the harmonic function)
when the Higgs field (here the holomor-
phic function) goes to infinity. Laura
has obtained crucial results in this ex-
tremely difficult area. The Vincent Della Pietra fellowship was
established in 2017 by the Della Pietra Foundation. Vincent re-
ceived his Ph.D. in mathematical physics from Harvard University.
He is a partner at Renaissance Technologies, co-founder of the
Della Pietra Lecture Series at Stony Brook University, and a board
member of PIVOT.

Uhlenbeck
Xuwen Zhu is the Karen Uhlenbeck Postdoctoral Fellow in this
semester’s Microlocal Analysis program. In 2015 Xuwen re-
ceived her Ph.D. in mathematics from the Massachusetts Insti-
tute of Technology, under the supervision of Richard Melrose.

Xuwen Zhu

Her research interests are in partial dif-
ferential equations motivated by prob-
lems from geometry and mathemati-
cal physics, in the context of singular
spaces. She obtained, with Melrose,
a precise description of the cusp de-
generations of hyperbolic metrics on
Riemann surfaces, which led to im-
proved understanding of the bound-
ary structure of the Deligne–Mumford–
Knudsen compactification of the Rie-
mann moduli spaces. Xuwen has also
obtained new results, with Mazzeo,
about moduli spaces of constant curvature metrics with conical
singularities. The Uhlenbeck fellowship was established by an
anonymous donor in honor of Karen Uhlenbeck, a distinguished
mathematician and former MSRI trustee. She is a member of the
National Academy of Sciences and a recipient of the 2019 Abel
Prize, the AMS Leroy P. Steele Prize, and a MacArthur “Genius”
Fellowship.

McDuff
Dylan Allegretti is the McDuff Postdoctoral Fellow for the
program on Holomorphic Differentials in Mathematics and
Physics. His work focuses on cluster varieties and their re-
lationships with important ideas in mathematical physics such
as quantum Teichmüller theory, wall crossing phenomena,
and spaces of stability conditions on triangulated categories.

Dylan Allegretti

The theory of cluster varieties, intro-
duced by Fock and Goncharov, is a geo-
metric framework that uses combinato-
rial ideas from cluster algebras. It pro-
vides a powerful tool to study moduli
spaces of local systems. Dylan earned
undergraduate degrees in both mathe-
matics and physics from the University
of Chicago. In 2016, he was awarded a
Ph.D. in mathematics from Yale Univer-
sity under the supervision of Alexander
Goncharov. From 2016–19 he was a
Research Associate at the University of
Sheffield where he worked with Tom Bridgeland, and beginning
next year he will be a postdoctoral fellow at the University of British
Columbia. The McDuff fellowship was established by an anony-
mous donor in honor of Dusa McDuff. She is an internationally
renowned mathematician, a member of the National Academy of
Sciences, and a recipient of the AMS Leroy P. Steele Prize (2017).
She is also currently a trustee of MSRI.
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Puzzles Column
Joe P. Buhler and Tanya Khovanova

Many mathematicians love brain teasers. At David Eisenbud’s
strong suggestion, Elwyn Berlekamp and I (JB) started writing the
Emissary Puzzles Column when I arrived as Deputy Director in the
fall of 1999. The idea was to capture contagious bits of mathematics
brought to MSRI by its steady stream of visitors.

This has been a vivid and delightful experience for me, and I have
many fond memories of discussions, in person and in email, about
which problems to include, how to solve them, and (especially) how
to phrase them. Elwyn was never shy about criticizing anything that
he viewed as imprecise, inelegant, or unartfully phrased, but he was
also full of delight at new and interesting ideas. This interchange
continued unabated up to the very last few weeks of his life.

This column is dedicated to the memory of Elwyn, and his love of
puzzles. We include a diverse selection of puzzles that evoke Elwyn,
in one way or another. One of them is an open question, due to
Elwyn, that arose out of a “hat puzzle” in the column; Elwyn would
really like someone to solve it!

Puzzles for Elwyn

1. Prove that the order of any automorphism of a finite group of
order n > 1 has order less than n.

Comment: DO NOT WORK ON THIS PROBLEM! This was the last
problem of the Fall 1999 column. An eminent member of the
UC Berkeley mathematics department proposed it and said that it
was a bit on the harder side, despite the simplicity of the question. In
fact, it is extremely difficult; it can be done by (slightly tedious) enu-
meration of cases starting with the classification of simple groups,
but two solutions in print are both unbelievably intricate and dense
(to any non-group-theorist); asking the Emissary reader to solve
this was “cruel and unusual.” For the next twenty years, we solved
all problems before including them. (The alert reader will note that
our final problem here contravenes this stricture, albeit overtly.)

2. The decimal representation of 229 has nine distinct digits. Which
digit is missing?

Comment: This problem was proposed by the aforementioned UCB
mathematician, and we were happy that it was on the other end of
the difficulty spectrum. When it was described to Elwyn orally, he
instantly said that he didn’t like the problem because you could just
plug it into a calculator and be done with it. About 10 seconds later,
he had an “aha” moment and said that, no, he thought that it was a
great problem!

3. Each of the twelve faces of a dodecahedron has a light that is also
an on/off button. Pushing the light causes all five of the lights on
the adjacent faces to switch state (go from on to off, or the reverse).
Prove that any of the 212 positions can be obtained from any other
by a suitable sequence of button pushes.

Comment: Elwyn introduced the famous rectangular grid “lights out”
puzzle at Bell Labs in the 1960s. The idea has been generalized in
many directions; the dodecahedral version above was commercially
available more than 20 years ago, and other variants can be found
either in game stores, or in math papers. (For example: Martin Kreh

Mathematicians in hats, a frequent subject of the Puzzles Col-
umn. David Eisenbud with Elwyn Berlekamp in October 2015.

(2017), “‘Lights Out’ and Variants,” The American Mathematical
Monthly, 124:10, 937-950.)

4. Find three random variables each uniformly randomly distributed
on [0,1] such that their sum is constant. That is, find a probability
distribution on the intersection of x+y+z= 1 with the unit cube
in 3-space such that the three “coordinate projections” onto [0,1]
are uniform.

Comment: Numerous solutions are possible, and this question gen-
erated more correspondence and greater diversity of solutions than
any other Emissary puzzle has.

5. (i) Alice and Bob each have $100 and a biased coin that comes
up heads 51% of the time. On a signal, they each start flipping their
coins once a minute, betting $1 on the result of the flip. Alice bets
on heads; poor Bob bets on tails. As it happens, they both eventually
go broke. In that case, who is more likely to have gone broke first?

(ii) As above, but this time Alice and Bob bet on the result of the
same coin flip (say, flipped by a referee). Again, assume both
eventually go broke. Who is more likely to have gone broke first?

Comment: Elwyn was always a great fan of Peter Winkler’s work,
perhaps especially including his “recreational” mathematical prob-
lem books. This problem was contributed by Peter for the sake of
this column.

6. Let Hn be the n-dimensional hypercube graph, whose vertices
are (labeled by) the 2n binary strings of length n, with edges joining
vertices whose labels differ in exactly one coordinate. A spider in
this graph consists of a central vertex c together with n paths, called
legs, that start at c. A set of spiders covers Hn if no legs share an
edge (though they are allowed to cross at vertices) and every vertex
is either a central vertex of some spider, or an endpoint of a spider
leg. Prove that there is a collection of m spiders that cover with
exactly

m=
⌃ 2n

n+1

⌥
.
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Note that this is the minimum possible number, since each spider
accounts for n+1 points (its center and each endpoint of a leg) and
there are 2n points.

The figure shows a hypercube in five dimensions, where some edges
are omitted so as not to clutter the diagram. Namely, every vertex
has two extra edges connecting it to its sisters in the horizontally
and vertically adjacent 3-cubes. A covering by six spiders is illus-
trated — the spiders are at the upper case letters, and the endpoints

of their legs are at corresponding lower case letters. It is almost a
covering by Hamming balls (one example being spider A), except
that spider F has one leg of length two and one of length three.

Comment: The “hat problem” in the Fall 2001 column was ref-
erenced in a New York Times article (“Why Mathematicians Now
Care About Their Hat Color,” April 10, 2001) and has been cited in
several academic papers; it is due to Todd Ebert. An earlier paper
by Aspnes, Beigel, Furst, and Rudich had a “voting” problem that
has a very similar solution (using perfect Hamming codes). The
latter can be expressed as a “majority hats problem,” and the truth
of the above conjecture, which Elwyn made after he had settled
many cases, would imply that the solution to the optimal probability
for the voting problem is unexpectedly explicit whereas the size
of the solution for the original hat game seems to be unknowable
in polynomial time (except, roughly, for n= 2k). All this will be
explained in detail in the problem solutions.

Join us at the 2020 JMM in Denver!
Mathematical Institutes Open House

Wednesday, January 15 Centennial Ballroom F, G, H
5:30 – 8:00 pm Hyatt Regency Denver

MSRI Reception for Current and Future Donors
Thursday, January 16 Mineral Hall F, Level 3

6:30 – 8:00pm Hyatt Regency Denver

For more information, contact development@msri.org.

Forthcoming Workshops
Nov 18–22, 2019: Holomorphic
Differentials in Mathematics and Physics

Dec 9, 2019: Symposium in Honor of Julia
Robinson’s 100th Birthday

Jan 23–24, 2020: Connections for Women:
Quantum Symmetries

Jan 27–Jan 31, 2020: Introductory
Workshop: Quantum Symmetries

Feb 6–7, 2020: Connections for Women:
Higher Categories and Categorification

Feb 10–Feb 14, 2020: Introductory
Workshop: Higher Categories and
Categorification

Mar 11–13, 2020: CIME 2020: Today’s
Mathematics, Social Justice, and
Implications for Schools

Mar 16–20, 2020: Tensor Categories and
Topological Quantum Field Theories

Mar 23–27, 2020: (1,n)-Categories,
Factorization Homology, and Algebraic
K-theory

May 4–8, 2020: Hot Topics: Optimal
Transport and Applications to Machine
Learning and Statistics

Jun 13–Jul 26, 2020: MSRI-UP 2020:
Branched Covers of Curves

Summer Graduate Schools
Jun 8–19, 2020: Combinatorial and
DG-Algebra Techniques for Free
Resolutions (Tianjin, China)

Jun 15–26, 2020: Geometric Flows
(Athens, Greece)

Jun 15–26, 2020: Algebraic Theory of
Differential and Difference Equations,
Model Theory and their Applications

Jun 29–Jul 10, 2020: New Directions in
Representation Theory (AMSI, Brisbane,
Australia)

Jun 29–Jul 10, 2020: Random Graphs

Jun 29–Jul 10, 2020: Séminaire de
Mathématiques Supérieures 2020: Discrete

Probability, Physics and Algorithms
(Montréal, Canada)

Jun 29–Jul 10, 2020: Algebraic Curves
(Hainan, China)

Jun 29–Jul 10, 2020: Foundations and
Frontiers of Probabilistic Proofs (Zurich,
Switzerland)

Jul 6–17, 2020: Metric Geometry and
Geometric Analysis (Oxford, United
Kingdom)

Jul 13–Jul 24, 2020: Sums of Squares
Method in Geometry, Combinatorics and
Optimization

Jul 27–Aug 7, 2020: Introduction to Water
Waves

For more information about any of these
workshops, as well as a full list of all up-
coming workshops and programs, please see
msri.org/workshops.
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| Roger Strauch
Roger Strauch is co-founder
and chairman of The Roda Group,
an early stage venture capital
firm based in Berkeley. An MSRI
donor since the 1990s, he ended
a term as President of the Board
of Trustees earlier this year.
Roger’s family connections to the
Curious George books inspired
MSRI’s Mathical Book Prize.

Why is MSRI important to you?
It’s been an association with a

group of people who are natural, creative, serious, fun problem
solvers and whose devotion to mathematics is both genuine and
inspiring. I have a natural affinity to people who are
mathematicians.

Why is that?
As an electrical engineer, my original field was signal processing,
where you use mathematics to characterize signals for
communications. I had a sense of the power and beauty of
mathematics very early in my career. I’m also the son of an
academic, a physics professor.

Was that significant?
It gave me a unique perspective. When the Cold War entered it was
much more difficult for my father and his colleagues to attract
research funding in particle physics. They were ill-equipped to

justify their work to the American people. As a result, their funding
more or less collapsed. I felt this would happen to mathematicians
unless they seriously took their responsibility to learn how to
communicate with the American people who provided 100% of the
funding for the institute. I also thought it would be exciting to
attract private resources to MSRI, which is the gold standard for
how to go about conducting collaborative research in the scientific
world.

Is it important to have both public and private funding?
MSRI will remain vibrant and have longevity precisely because
there’s a public-private partnership. The public feels that the
private sector appreciates the value of MSRI and the private sector
appreciates the public investment. It feels healthy, wealthy, and
wise to have both.

But why support math research specifically?
Because math is the language used to create and communicate
knowledge. Most, if not all, scientific fields involve mathematics.
So we who appreciate that should help support it.

You’re a longtime donor, why do you continue giving to MSRI?
When you donate to MSRI the fact is that you do make a difference
practically. The management of this institute, David Eisenbud and
Hélène Barcelo, have made outstandingly effective use of the
capital that’s been available to them, to support the next generation
of talent, to support excellent research, and to support programs
that present the power and beauty of mathematics to the public.

Make a Donation to MSRI

Individuals can make a significant impact on the life of the Institute, 
on mathematics, and on scientific research by contributing to MSRI.

https://www.msri.org/web/msri/support-msri/make_a_donation
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