As part of our dedication to supporting participation from all researchers in mathematics, we are excited to have generous donations from private funders to support child care grants to help enable participation in any of our workshops for mothers of young children. Recipients of these funds (available to female researchers with children 14 yrs old or under) can decide the best arrangement for themselves (e.g. support for companion caregivers or hired nannies here at Berkeley or to cover the costs of such help back at home) to ensure that their families are well cared for while they are able to focus on the Workshop activities.
Please note that because these funds are taxable, they are available only to US Citizens and Permanent Residents. All recipients will be required to submit a completed W9 upon their arrival at MSR
MSRI is unable to offer any onsite child care services in Berkeley, nor are we able to make recommendations for child care providers. For convenience, the following are some links that you may find useful:
Bananas offers free referrals to licensed childcare providers and provides information and resources to families with young children
Berkeley Parents Network is an iconic website where parents can look for and recommend childcare
Introductory Workshop: The idea of these workshops is to set the stage and
provide the context for the program, with the intended audience being
researchers
not in the program. This would include members
in the other programs, members of the local mathematical community, and
participants from outside the area selected especially for the workshop,
particularly from groups underrepresented in research intensive contexts:
women, minorities, mathematicians not located at research centers, and graduate
students. In selecting participants, priority is given to these latter
groups. When done well, these introductory workshops have been effective
in broadcasting the goals, ideas and techniques of a particular program to the
mathematical public at large, as well as in bringing the MSRI community together
as a whole.
Connections for Women: This is a twoday workshop held immediately preceding the week of the Introductory Workshop. While different programs have approached these workshops in diverse ways, one of the principal objectives, strongly supported by the SAC and HRAC, is to provide an enhanced opportunity for female researchers to interact with other women with similar research interests. There is considerable flexibility for the organization of this twoday event, but MSRI does require good coordination between the Connections and Introductory workshop organizers so that as many female researchers as possible are supported to stay on for the Introductory Workshop.. It is therefore customary to have one person be simultaneously on the organizing committees for both of these workshops. As is the case for all MSRI workshops, registration to attend Connections workshop lectures is open to all interested persons.
Topical
Workshop
: Also
directed toward the mathematical community at large, these workshops are designed to interest and
attract young researchers and other mathematicians active in the field.
Current all workshops

Connections for Women: Hamiltonian Systems, from topology to applications through analysis
Organizers: MarieClaude Arnaud (Université d'Avignon), LEAD Basak Gurel (University of Central Florida), Tere Seara (Universitat Politècnica de Catalunya)This workshop will feature lectures on a variety of topics in Hamiltonian dynamics given by leading researchers in the area. The talks will focus on recent developments in subjects closely related to the program such as Arnold diffusion, celestial mechanics, HamiltonJacobi equations, KAM methods, AubryMather theory and symplectic topological techniques, and on applications. The workshop is open to all mathematicians in areas related to the program.
Updated on Aug 16, 2018 03:08 PM PDT
Upcoming all workshops

Introductory Workshop: Hamiltonian systems, from topology to applications through analysis
Organizers: MarieClaude Arnaud (Université d'Avignon), Wilfrid Gangbo (University of California, Los Angeles), LEAD Vadim Kaloshin (University of Maryland), Robert Littlejohn (University of California, Berkeley)The introductory workshop will cover the large variety of topics of the semester: weak KAM theory, Mather theory, HamiltonJacobi equations, integrable systems and integrable planar billiards, instability formation for nearly integrable systems, celestial mechanics, billiards, spectral rigidity, Astrodynamics, motion of satellites, Plasma Physics, Accelerator Physics, Theoretical Chemistry, and Atomic Physics.
The workshop will consist of approximately 18 lectures to introduce the main topics relevant to the semester. That will leave time for discussions and exchange between the participants.Updated on Aug 02, 2018 09:47 AM PDT 
Hot Topics: Shape and Structure of Materials
Organizers: Myfanwy Evans (TU Berlin), LEAD Frank Lutz (TU Berlin), Dmitriy Morozov (Lawrence Berkeley National Laboratory), James Sethian (University of California, Berkeley), Ileana Streinu (Smith College)The fascinating and complicated microstructures of materials that are now visible through advanced imaging techniques challenge the frontiers of characterisation and understanding. At the same time, developments in modern geometric and topological techniques are beginning to illuminate important features of material structures, while the microstructures themselves and the analysis and prediction of their macroscopic properties are inspiring new directions in pure and applied mathematics. In a collaboration with the Lawrence Berkeley National Laboratory (LBNL), this workshop aims at intensifying the interaction of mathematicians with material scientists, physicists and chemists on the structural description and design of materials.
Updated on Aug 07, 2018 09:05 AM PDT 
Hamiltonian systems, from topology to applications through analysis I
Organizers: Alessandra Celletti (University of Rome Tor Vergata), Rafael de la Llave (Georgia Institute of Technology), Diego delCastilloNegrete (Oak Ridge National Laboratory), Lawrence Evans (University of California, Berkeley), LEAD Philip Morrison (University of Texas at Austin), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)This is a main workshop of the program “Hamiltonian systems, from topology to applications through analysis” and is a companion to the workshop next month (November 2630). Both workshops will feature current developments pertaining to finite and infinitedimensional Hamiltonian systems, with a mix of rigorous theory and applications. A broad range of topics will be included, e.g., existence of and transport about invariant sets (Arnold diffusion, KAM, etc.), techniques for projection/reduction of infinite to finite systems, and the role of topological invariants in applications.
Updated on Jun 19, 2018 03:21 PM PDT 
2018 Modern Math Workshop
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), LEAD Elvan Ceyhan (SAMSI  Statistical and Applied Mathematical Sciences Institute), Leslie McClure (SAMSI  Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))The Mathematical Sciences Diversity Initiative holds a Modern Math Workshop (MMW) prior to the SACNAS National Conference each year. The 2018 MMW will be hosted by SAMSI at the Henry B. Gonzalez Convention Center, San Antonio, Texas on October 10th and 11th, 2018. This workshop is intended to encourage undergraduates, graduate students and recent PhDs from underrepresented minority groups to pursue careers in the mathematical sciences and build research and mentoring networks. The Modern Math Workshop is a preconference event at the SACNAS National Conference. The MMW includes a keynote lecture, minicourses, research talks, a question and answer session and a reception.
Updated on Mar 15, 2018 12:33 PM PDT 
2018 BlackwellTapia Conference and Award Banquet
The NSF Mathematical Sciences Institutes Diversity Committee hosts the 2018 BlackwellTapia Conference and Awards Ceremony. This is the ninth conference since 2000, held every other year, with the location rotating among NSF Mathematics Institutes. The conference and prize honors David Blackwell, the first AfricanAmerican member of the National Academy of Science, and Richard Tapia, winner of the National Medal of Science in 2010, two seminal figures who inspired a generation of AfricanAmerican, Native American and Latino/Latina students to pursue careers in mathematics. The BlackwellTapia Prize recognizes a mathematician who has contributed significantly to research in his or her area of expertise, and who has served as a role model for mathematical scientists and students from underrepresented minority groups, or has contributed in other significant ways to addressing the problem of underrepresentation of minorities in math.
The 2018 recipient of the BlackwellTapia Prize is Dr. Ronald E. Mickens, the Distinguished Fuller E. Callaway Professor in the Department of Physics at Clark Atlanta University.
The conference will include scientific talks, poster presentations, panel discussions, ample opportunities for networking, and the awarding of the BlackwellTapia Prize. Participants are invited from all career stages and will represent institutions of all sizes across the country, including Puerto Rico.
Updated on May 08, 2018 12:46 PM PDT 
Hamiltonian systems, from topology to applications through analysis II
Organizers: Alessandra Celletti (University of Rome Tor Vergata), Rafael de la Llave (Georgia Institute of Technology), Diego delCastilloNegrete (Oak Ridge National Laboratory), Lawrence Evans (University of California, Berkeley), Philip Morrison (University of Texas at Austin), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)This is a main workshop of the program “Hamiltonian systems, from topology to applications through analysis.” It will feature current developments pertaining to finite and infinitedimensional Hamiltonian systems, with a mix of rigorous theory and applications. A broad range of topics will be included, e.g., existence of and transport about invariant sets (Arnold diffusion, KAM, etc.), techniques for projection/reduction of infinite to finite systems, and the role of topological invariants in applications.
Updated on Jul 13, 2018 01:45 PM PDT 
Connections for Women: Derived Algebraic Geometry, Birational Geometry and Moduli Spaces
Organizers: Julie Bergner (University of Virginia), LEAD Antonella Grassi (University of Pennsylvania), Bianca Viray (University of Washington), Kirsten Wickelgren (Georgia Institute of Technology)This workshop will be on different aspects of Algebraic Geometry relating Derived Algebraic Geometry and Birational Geometry. In particular the workshop will focus on connections to other branches of mathematics and open problems. There will be some colloquium style lectures as well as shorter research talks. The workshop is open to all.
Updated on May 30, 2018 09:30 AM PDT 
Introductory Workshop: Derived Algebraic Geometry and Birational Geometry and Moduli Spaces
Organizers: Julie Bergner (University of Virginia), Bhargav Bhatt (University of Michigan), Christopher Hacon (University of Utah), LEAD Mircea Mustaţă (University of Michigan), Gabriele Vezzosi (Università di Firenze)The workshop will survey several areas of algebraic geometry, providing an introduction to the two main programs hosted by MSRI in Spring 2019. It will consist of 7 expository minicourses and 7 separate lectures, each given by top experts in the field.
The focus of the workshop will be the recent progress in derived algebraic geometry, birational geometry and moduli spaces. The lectures will be aimed at a wide audience including advanced graduate students and postdocs with a background in algebraic geometry.Updated on Jul 25, 2018 03:02 PM PDT 
Critical Issues in Mathematics Education 2019: Mathematical Modeling in K16: Community and Cultural Context
Organizers: Julia Aguirre (University of Washington  Tacoma), LEAD Cynthia Anhalt (University of Arizona), Staffas Broussard (The Algebra Project), Ricardo Cortez (Tulane University), Michael Driskill (Math for America ), Sol Garfunkel (Consortium for Mathematics and Its Applications (COMAP)), Genetha Gray (Salesforce), Maria Hernandez (North Carolina School of Science and Mathematics), LEAD Rachel Levy (MAA  Mathematical Association of America), Javier Rojo (Oregon State)Mathematical Modeling (MM) now has increased visibility in the education system and in the public domain. It appears as a content standard for high school mathematics and a mathematical practice standard across the K12 curriculum (Common Core Standards; and other states’ standards in mathematics education). Job opportunities are increasing in business, industry and government for those trained in the mathematical sciences. Quantitative reasoning is foundational for civic engagement and decisionmaking for addressing complex social, economic, and technological issues. Therefore, we must take action to support and sustain a significant increase in the teaching and learning of mathematical modeling from Kindergarten through Graduate School.
Mathematical modeling is an iterative process by which mathematical concepts and structures are used to analyze or gain qualitative and quantitative understanding of real world situations. Through modeling students can make genuine mathematical choices and decisions that take into consideration relevant contexts and experiences.
Mathematical modeling can be a vehicle to accomplish multiple pedagogical and mathematical goals. Modeling can be used to introduce new material, solidify student understanding of previously learned concepts, connect the world to the classroom, make concrete the usefulness (maybe even the advantages) of being mathematically proficient, and provide a rich context to promote awareness of issues of equity, sociopolitical injustices, and cultural relevance in mathematics.
A critical issue in math education is that although mathematical modeling is part of the K12 curriculum, the great majority of teachers have little experience with mathematical modeling as learners of mathematics or in their teacher preparation. In some cases, mathematics teacher educators have limited experience with mathematical modeling while being largely responsible for preparing future teachers.
Currently, the knowledge in teaching and learning MM is underdeveloped and underexplored. Very few MM resources seem to reach the K16 classrooms. Collective efforts to build a cohesive curriculum in MM and exploration of effective teaching practices based on research are necessary to make mathematical modeling accessible to teacher educators, teachers and students.
At the undergraduate level, mathematical modeling has traditionally been reserved for university courses for students in STEM majors beyond their sophomore year. Many of these courses introduce models but limit the students’ experience to using models that were developed by others rather than giving students the opportunity to generate their own models as is common in everyday life, in modeling competitions and in industry.
The CIME workshop on MM will bring together mathematicians, teacher educators, K12 teachers, faculty and people in STEM disciplines. As partners we can address ways to realize mathematical modeling in the K12 classrooms, teacher preparation, and lower and upper division coursework at universities. The content and pedagogy associated with teaching mathematical modeling needs special attention due to the nature of modeling as a process and as a body of content knowledge.Updated on Jul 19, 2018 09:48 AM PDT 
Derived algebraic geometry and its applications
Organizers: Dennis Gaitsgory (Harvard University), David Nadler (University of California, Berkeley), LEAD Nikita Rozenblyum (University of Chicago), Peter Scholze (Universität Bonn), Brooke Shipley (University of Illinois at Chicago)This workshop will bring together researchers at various frontiers, including arithmetic geometry, representation theory, mathematical physics, and homotopy theory, where derived algebraic geometry has had recent impact. The aim will be to explain the ideas and tools behind recent progress and to advertise appealing questions. A focus will be on moduli spaces, for example of principal bundles with decorations as arise in many settings, and their natural structures.
Updated on Apr 25, 2018 08:53 AM PDT 
Hot Topics: Recent progress in Langlands Program
Organizers: Mark Kisin (Harvard University), Elena Mantovan (California Institute of Technology), LEAD Xinwen Zhu (California Institute of Technology)The purpose of the workshop is to explain Vincent Lafforgue's ground breaking work, constructing the automorphic to Galois direction of the Langlands correspondence for function fields. There will also be a number of talks on more recent developments and related results.
Updated on Aug 06, 2018 01:49 PM PDT 
Recent Progress in Moduli Theory
Organizers: Lucia Caporaso (University of Rome, Roma 3), LEAD Sándor Kovács (University of Washington), Martin Olsson (University of California, Berkeley)This workshop will be focused on presenting the latest developments in moduli theory, including (but not restricted to) recent advances in compactifications of moduli spaces of higher dimensional varieties, the birational geometry of moduli spaces, abstract methods including stacks, stability criteria, and applications in other disciplines.Updated on Nov 02, 2017 09:59 AM PDT 
Commutative Algebra and its Interaction with Algebraic Geometry
Organizers: Craig Huneke (University of Virginia), Sonja Mapes (University of Notre Dame), Juan Migliore (University of Notre Dame), LEAD Claudia Polini (University of Notre Dame), Claudiu Raicu (University of Notre Dame)Linkage is a method for classifying ideals in local rings. Residual intersections is a generalization of linkage to the case where the two `linked' ideals need not have the same codimension. Residual intersections are ubiquitous: they play an important role in the study of blowups, branch and multiple point loci, secant varieties, and Gauss images; they appear naturally in intersection theory; and they have close connections with integral closures of ideals.
Commutative algebraists have long used the Frobenius or pth power map to study commutative rings containing a finite field. The theory of tight closure and test ideals has widespread applications to the study of symbolic powers and to BrianconSkoda type theorems for equicharacteristic rings.
Numerical conditions for the integral dependence of ideals and modules have a wealth of applications, not the least of which is in equisingularity theory. There is a long history of generalized criteria for integral dependence of ideals and modules based on variants of the HilbertSamuel and the BuchsbaumRim multiplicity that still require some remnants of finite length assumptions.
The Rees ring and the special fiber ring of an ideal arise in the process of blowing up a variety along a subvariety. Rees rings and special fiber rings also describe, respectively, the graphs and the images of rational maps between projective spaces. A difficult open problem in commutative algebra, algebraic geometry, elimination theory, and geometric modeling is to determine explicitly the equations defining graphs and images of rational maps.
The school will consist of the following four courses with exercise sessions plus a Macaulay2 workshop
 Linkage and residual intersections
 Characteristic p methods and applications
 Blowup algebras
 Multiplicity theory
Updated on Aug 09, 2018 12:27 PM PDT 
Random and arithmetic structures in topology
Organizers: LEAD Alex Furman (University of Illinois at Chicago), Tsachik Gelander (Weizmann Institute of Science)The study of locally symmetric manifolds, such as closed hyperbolic manifolds, involves geometry of the corresponding symmetric space, topology of towers of its finite covers, and numbertheoretic aspects that are relevant to possible constructions.The workshop will provide an introduction to these and closely related topics such as lattices, invariant random subgroups, and homological methods.Updated on Apr 20, 2018 03:02 PM PDT 
MSRIUP 2019: Combinatorics and Discrete Mathematics
Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI  Mathematical Sciences Research Institute), LEAD Rebecca Garcia (Sam Houston State University), Pamela Harris (Williams College), Suzanne Weekes (Worcester Polytechnic Institute)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2019, MSRIUp will focus on the application of combinatorial arguments and techniques to enumerate, examine, and investigate the existence of discrete mathematical structures with certain properties. The areas of interest for these applications encompass a wide range of mathematical fields and will include algebra, number theory, and graph theory, through weight multiplicity computations, the study of vector partition functions, and graph domination problems, respectively. The research program will be led by Dr. Pamela E. Harris, Assistant Professor of Mathematics at Williams College.
Updated on Jul 18, 2018 09:41 AM PDT 
Representation stability
Organizers: Thomas Church (Stanford University), LEAD Andrew Snowden (University of Michigan), Jenny Wilson (Stanford University)This summer school will give an introduction to representation stability, the study of algebraic structural properties and stability phenomena exhibited by sequences of representations of finite or classical groups  including sequences arising in connection to hyperplane arrangements, configuration spaces, mapping class groups, arithmetic groups, classical representation theory, Deligne categories, and twisted commutative algebras. Representation stability incorporates tools from commutative algebra, category theory, representation theory, algebraic combinatorics, algebraic geometry, and algebraic topology. This workshop will assume minimal prerequisites, and students in varied disciplines are encouraged to apply.
Updated on Aug 03, 2018 11:17 AM PDT 
Séminaire de Mathématiques Supérieures 2019: Current trends in Symplectic Topology
Organizers: Octav Cornea (Université de Montréal), Yakov Eliashberg (Stanford University), Michael Hutchings (University of California, Berkeley), Egor Shelukhin (Université de Montréal)Symplectic topology is a fast developing branch of geometry that has seen phenomenal growth in the last twenty years. This two weeks long summer school, organized in the setting of the Séminaire de Mathématiques Supérieures, intends to survey some of the key directions of development in the subject today thus covering: advances in homological mirror symmetry; applications to hamiltonian dynamics; persistent homology phenomena; implications of flexibility and the dichotomy flexibility/rigidity; legendrian contact homology; embedded contact homology and fourdimensional holomorphic techniques and others. With the collaboration of many of the top researchers in the field today, the school intends to serve as an introduction and guideline to students and young researchers who are interested in accessing this diverse subject.
Updated on Jul 31, 2018 11:54 AM PDT 
Geometric Group Theory
Organizers: LEAD Rita Jiménez Rolland (Instituto de Matematicás, UNAMOaxaca), LEAD Pierre Py (Instituto de Matematicás, UNAMCiudad Universitaria)Geometric group theory studies discrete groups by understanding the connections between algebraic properties of these groups and topological and geometric properties of the spaces on which they act. The aim of this summer school is to introduce graduate students to specific central topics and recent developments in geometric group theory. The school will also include students presentations to give the participants an opportunity to practice their speaking skills in mathematics. Finally, we hope that this meeting will help connect Latin American students with their American and Canadian counterparts in an environment that encourages discussion and collaboration.
Updated on Aug 06, 2018 11:13 AM PDT 
Polynomial Method
Organizers: Adam Sheffer (California Institute of Technology), LEAD Joshua Zahl (University of British Columbia)In the past eight years, a number of longstanding open problems in combinatorics were resolved using a new set of algebraic techniques. In this summer school, we will discuss these new techniques as well as some exciting recent developments
Updated on Jun 19, 2018 04:57 PM PDT 
Recent topics on wellposedness and stability of incompressible fluid and related topics
Organizers: LEAD Yoshikazu Giga (University of Tokyo), Maria Schonbek (University of California, Santa Cruz), Tsuyoshi Yoneda (University of Tokyo)The purpose of the workshop is to introduce graduate students to fundamental results on the NavierStokes and the Euler equations, with special emphasis on the solvability of its initial value problem with rough initial data as well as the large time behavior of a solution. These topics have long research history. However, recent studies clarify the problems from a broad point of view, not only from analysis but also from detailed studies of orbit of the flow.
Updated on Jul 31, 2018 11:48 AM PDT 
Toric Varieties in Taipei
Organizers: David Cox (University of Massachusetts, Amherst), Henry Schenck (Iowa State University)Toric varieties are algebraic varieties defined by combinatorial data, and there is a wonderful interplay between algebra, combinatorics and geometry involved in their study. Many of the key concepts of abstract algebraic geometry (for example, constructing a variety by gluing affine pieces) have very concrete interpretations in the toric case, making toric varieties an ideal tool for introducing students to abstruse concepts.
Updated on Jul 30, 2018 11:01 AM PDT 
Mathematics of Machine Learning (Microsoft)
Organizers: Sebastien Bubeck (Microsoft Research), Anna Karlin (University of Washington), Yuval Peres (University of California, Berkeley), Adith Swaminathan (Microsoft Research)Learning theory is a rich field at the intersection of statistics, probability, computer science, and optimization. Over the last decades the statistical learning approach has been successfully applied to many problems of great interest, such as bioinformatics, computer vision, speech processing, robotics, and information retrieval. These impressive successes relied crucially on the mathematical foundation of statistical learning.
Recently, deep neural networks have demonstrated stunning empirical results across many applications like vision, natural language processing, and reinforcement learning. The field is now booming with new mathematical problems, and in particular, the challenge of providing theoretical foundations for deep learning techniques is still largely open. On the other hand, learning theory already has a rich history, with many beautiful connections to various areas of mathematics (e.g., probability theory, high dimensional geometry, game theory). The purpose of the summer school is to introduce graduate students (and advanced undergraduates) to these foundational results, as well as to expose them to the new and exciting modern challenges that arise in deep learning and reinforcement learning.
Updated on Jul 26, 2018 11:38 AM PDT 
HPrinciple (INdAM)
Organizers: LEAD Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)This two week summer school will introduce graduate students to the theory of hprinciples. After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, fluid dynamics, and foliation theory.
Updated on Jun 26, 2018 09:00 AM PDT 
Connections for Women: Holomorphic Differentials in Mathematics and Physics
Organizers: Laura Fredrickson (Stanford University), Lotte Hollands (HeriotWatt University, Riccarton Campus), LEAD Qiongling Li (California Institute of Technology; Aarhus University), Anna Wienhard (RuprechtKarlsUniversität Heidelberg), Grace Work (University of Illinois at UrbanaChampaign)This twoday workshop will consist of various talks given by prominent female mathematicians on topics of new developments in the role of holomorphic differentials on Riemann surfaces. These will be appropriate for graduate students, postdocs, and researchers in areas related to the program.
This workshop is open to all mathematicians.Updated on May 10, 2018 09:01 AM PDT 
Introductory Workshop: Holomorphic Differentials in Mathematics and Physics
Organizers: LEAD Jayadev Athreya (University of Washington), Sergei Gukov (California Institute of Technology), Andrew Neitzke (University of Texas, Austin), Anna Wienhard (RuprechtKarlsUniversität Heidelberg)Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In this introductory workshop, we will bring junior and senior researchers from this diverse range of subjects together in order to explore common themes and unexpected connections.
Updated on Nov 21, 2017 04:24 PM PST 
Connections for Women: Microlocal Analysis
Organizers: Tanya Christiansen (University of Missouri), LEAD Raluca Felea (Rochester Institute of Technology)This workshop will provide a gentle introduction to a selection of applications of microlocal analysis. These may be drawn from among geometric microlocal analysis, inverse problems, scattering theory, hyperbolic dynamical systems, quantum chaos and relativity. The workshop will also provide a panel discussion, a poster session and an introduction/research session.
This workshop is open to all mathematicians.
Updated on Jan 11, 2018 12:35 PM PST 
Introductory Workshop: Microlocal Analysis
Organizers: Pierre Albin (University of Illinois at UrbanaChampaign), LEAD Raluca Felea (Rochester Institute of Technology), Andras Vasy (Stanford University)Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory… This workshop will provide a comprehensive introduction to the field for postdocs and graduate students as well as specialists outside the field, building up from standard facts about the Fourier transform, distributions and basic functional analysis.
Updated on Jan 11, 2018 01:28 PM PST 
Recent developments in microlocal analysis
Organizers: LEAD Pierre Albin (University of Illinois at UrbanaChampaign), Colin Guillarmou (École Normale Supérieure), Andras Vasy (Stanford University)Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory, hyperbolic dynamical systems, probability… As this description shows microlocal analysis has become a very broad area. Due to its breadth, it is a challenge for researchers to be aware of what is happening in other parts of the field, and the impact this may have in their own research area. The purpose of this workshop is thus to bring together researchers from different parts of microlocal analysis and its applications to facilitate the transfer of new ideas.
Updated on May 08, 2018 03:21 PM PDT 
Holomorphic Differentials in Mathematics and Physics
Organizers: LEAD Jayadev Athreya (University of Washington), Steven Bradlow (University of Illinois at UrbanaChampaign), Sergei Gukov (California Institute of Technology), Andrew Neitzke (University of Texas, Austin), Anton Zorich (Institut de Mathematiques de Jussieu)Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In some cases the areas themselves (such as stability conditions on Fukayatype categories, links to quantum integrable systems, or the physically derived construction of socalled spectral networks) are new, while in others the novelty lies more in the role of the holomorphic differentials (for example in the study of billiards in polygons, special  Hitchin or higher Teichmuller  components of representation varieties, asymptotic properties of Higgs bundle moduli spaces, or in new interactions with algebraic geometry).
It is remarkable how widely scattered are the motivating questions in these areas, and how diverse are the backgrounds of the researchers pursuing them. Bringing together experts in this wide variety of fields to explore common interests and discover unexpected connections is the main goal of our program. Our workshop will be of interest to those working in many different fields, including lowdimensional dynamical systems (via the connection to billiards); differential geometry (Higgs bundles and related moduli spaces); and different types of theoretical physics (electron transport and supersymmetric quantum field theory).
Updated on May 14, 2018 02:00 PM PDT 
Connections for Women: Quantum Symmetries
Organizers: Emily Peters (Loyola University), LEAD Chelsea Walton (University of Illinois at UrbanaChampaign)This workshop will feature several talks by experts, along with numerous 5minute presentations by junior mathematicians, on topics related to Quantum Symmetry. Such topics will include tensor categories, subfactors, Hopf algebras, topological quantum field theory and more. There will also be a panel discussion on professional development. The majority of the speakers and panelists for this event will be women and gender minorities, and members of these groups and of other underrepresented groups are especially encouraged to attend. This workshop is open to all mathematicians.
Updated on Mar 26, 2018 12:18 PM PDT 
Introductory Workshop: Quantum Symmetries
Organizers: Vaughan Jones (Vanderbilt University), Victor Ostrik (University of Oregon), Emily Peters (Loyola University), LEAD Noah Snyder (Indiana University)This workshop will consist of introductory minicourses on key topics in Quantum Symmetry: fusion categories, modular tensor categories, Hopf algebras, subfactors and planar algebras, topological field theories, conformal nets, and topological phases of matter. These minicourses will be introductory and are aimed at giving semester participants exposure to the main ideas of subfields other than their own.
Updated on Apr 09, 2018 02:20 PM PDT 
Connections for Women: Higher Categories and Categorification
Organizers: Emily Riehl (Johns Hopkins University), LEAD Marcy Robertson (University of Melbourne)This twoday workshop will survey notable developments in the foundations and applications of higher category theory. It will consist of two minicourses given by emerging female leaders in the subject: Claudia Scheimbauer and Nathalie Wahl. This will be paired with a problem sessions lead by selected "TA's", themselves experts in higher structures. Each lecture series will be tailored to a diverse audience, accessible to graduate students and nonexpert researchers with some background in homological algebra.
The majority of the speakers and panelists for this event will be women and gender minorities, and members of these groups and of other underrepresented groups are especially encouraged to attend. This workshop is open to all mathematicians.
Updated on Jun 20, 2018 01:46 PM PDT 
Introductory Workshop: Higher Categories and Categorification
Organizers: LEAD David Ayala (Montana State University), Emily Riehl (Johns Hopkins University), Christopher SchommerPries (MaxPlanckInstitut für Mathematik), Peter Teichner (MaxPlanckInstitut für Mathematik)This workshop will survey notable developments and applications of higher category theory; it will be a venue for endusers to share their vision of how to apply the theory, as well as developers to share technical advancements. It will consist of 6 series of 3 lectures, each given by instrumental endusers & developers of higher category theory, together with a few questionanswer sessions. Each lecture series will be tailored to a diverse audience, accessible to graduate students and nonexpert researchers with some background in homological also algebra. The content of these lecture series will concern the following topics.
 Ktheory: categorification, noncommutative motives, trace methods;
 TQFT: functorial field theories, factorization homology.
 Parametrized higher category theory: stratifications, equivariant homotopy theory, operads, deformation theory and Koszul duality.
 Synthetic higher category theory: modelindependent characterizations, cosmoi.
Updated on Jun 25, 2018 11:39 AM PDT 
Tensor categories and topological quantum field theories
Organizers: Scott Morrison (Australian National University), Eric Rowell (Texas A & M University), LEAD Claudia Scheimbauer (University of Oxford), Christopher SchommerPries (MaxPlanckInstitut für Mathematik)The workshop will concern the latest developments in the mathematical study of quantum field theories. The focus will be on the interplay among topics such as higher category theory, as illustrated by the cobordism hypothesis, conformal field theory, tensor categories describing the quantum symmetries, and the relation to topological phases of matter.
Updated on Jul 03, 2018 04:02 PM PDT 
(∞, n)categories,factorization homology, and algebraic Ktheory
Organizers: LEAD Clark Barwick (Massachusetts Institute of Technology), David Gepner (Purdue University), David Nadler (University of California, Berkeley), Marcy Robertson (University of Melbourne)This workshop will focus on recent developments in factorization homology, parametrized homotopy theory, and algebraic Ktheory. These seemingly disparate topics are unified by a common methodology, which leverages universal properties and unforeseen descent by way of higher category theory. Furthermore, they enjoy powerful and complementary roles in application to the cyclotomic trace. This workshop will be a venue for experts in these areas to present new results, make substantive connections across fields, and suggest and contextualize outstanding questions and problems. It will consist of 9 speakers, each delivering a 1hour morning talk and a 1hour afternoon talk, in addition to a session reserved for drawing attention to an assortment of outstanding problems.
Updated on Jun 25, 2018 10:56 AM PDT 
Connections for Women: Random and Arithmetic Structures in Topology
Organizers: LEAD Ursula Hamenstädt (Rheinische FriedrichWilhelmsUniversität Bonn), LEAD Fanny Kassel (Institut des Hautes Études Scientifiques (IHES))This twoday workshop will consist of various talks given by prominent female mathematicians in the field. These will be appropriate for graduate students, postdocs, and researchers in areas related to the program. The workshop will also include a professional development session.
This workshop is open to all mathematicians.
Updated on Jun 12, 2018 09:17 AM PDT
Past all workshops

Summer Graduate School From Symplectic Geometry to Chaos
Organizers: Marcel Guardia (Universitat Politecnica de Catalunya), Vadim Kaloshin (University of Maryland), Leonid Polterovich (Tel Aviv University)The purpose of the summer school is to introduce graduate students to stateoftheart methods and results in Hamiltonian systems and symplectic geometry. We focus on recent developments on the study of chaotic motion in Hamiltonian systems and its applications to models in Celestial Mechanics.
Updated on Jul 31, 2018 12:12 PM PDT 
Summer Graduate School Representations of High Dimensional Data
Organizers: Blake Hunter (Microsoft), Deanna Needell (University of California, Los Angeles)In today's world, data is exploding at a faster rate than computer architectures can handle. This summer school will introduce students to modern and innovative mathematical techniques that address this phenomenon. Handson topics will include data mining, compression, classification, topic modeling, largescale stochastic optimization, and more.Updated on Jul 19, 2018 11:45 AM PDT 
Summer Graduate School IAS/PCMI 2018: Harmonic Analysis
Organizers: Carlos Kenig (University of Chicago), Fanghua Lin (New York University, Courant Institute), Svitlana Mayboroda (University of Minnesota, Twin Cities), Tatiana Toro (University of Washington)Harmonic analysis is a central field of mathematics with a number of applications to geometry, partial differential equations, probability, and number theory, as well as physics, biology, and engineering. The Graduate Summer School will feature minicourses in geometric measure theory, homogenization, localization, free boundary problems, and partial differential equations as they apply to questions in or draw techniques from harmonic analysis. The goal of the program is to bring together students and researchers at all levels interested in these areas to share exciting recent developments in these subjects, stimulate further interactions, and inspire the new generation to pursue research in harmonic analysis and its applications.
Updated on Jun 20, 2018 12:17 PM PDT 
Summer Graduate School Derived Categories
Organizers: Nicolas Addington (University of Oregon), LEAD Alexander Polishchuk (University of Oregon)The goal of the school is to give an introduction to basic techniques for working with derived categories, with an emphasis on the derived categories of coherent sheaves on algebraic varieties. A particular goal will be to understand Orlov’s equivalence relating the derived category of a projective hypersurface with matrix factorizations of the corresponding polynomial.Updated on Jul 05, 2018 09:05 AM PDT 
Summer Graduate School Hprinciple
Organizers: Emmy Murphy (Northwestern University), Takashi Tsuboi (University of Tokyo)This two week summer school will introduce graduate students to the theory of hprinciples. After building up the theory from basic smooth topology, we will focus on more recent developments of the theory, particularly applications to symplectic and contact geometry, and foliation theory.
Updated on Jun 20, 2018 12:17 PM PDT 
Summer Graduate School Mathematical Analysis of Behavior
Organizers: Ann Hermundstad (Janelia Research Campus, HHMI), Vivek Jayaraman (Janelia Research Campus, HHMI), Eva Kanso (University of Southern California), L. Mahadevan (Harvard University)Explore Outstanding Phenomena in Animal Behavior
Jointly hosted by Janelia and the Mathematical Sciences Research Institute (MSRI), this program will bring together 1520 advanced PhD students with complementary expertise who are interested in working at the interface of mathematics and biology. Emphasis will be placed on linking behavior to neural dynamics and exploring the coupling between these processes and the natural sensory environment of the organism. The aim is to educate a new type of global scientist that will work collaboratively in tackling complex problems in cellular, circuit and behavioral biology by combining experimental and computational techniques with rigorous mathematics and physics.
Updated on Jun 20, 2018 12:16 PM PDT 
MSRIUP MSRIUP 2018: The Mathematics of Data Science
Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), LEAD Maria Franco (Queensborough Community College (CUNY); MSRI  Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), David Uminsky (University of San Francisco), Suzanne Weekes (Worcester Polytechnic Institute)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2018, MSRIUP will focus on the core role of (linear) algebra in current research and application areas of Data Science ranging from unsupervised learning, clustering and networks, to algebraic signal processing and feature extraction, to the central role linear algebra plays in deep machine learning. The research program will be led by Dr. David Uminsky, Associate Professor of Mathematics and Statistics at the University of San Francisco.
Updated on Aug 02, 2018 09:47 AM PDT 
Summer Graduate School The ∂Problem in the TwentyFirst Century
Organizers: Debraj Chakrabarti (Central Michigan University), Jeffery McNeal (Ohio State University)This Summer Graduate School will introduce students to the modern theory of the inhomogeneous CauchyRiemann equation, the fundamental partial differential equation of Complex Analysis. This theory uses powerful tools of partial differential equations, differential geometry and functional analysis to obtain a refined understanding of holomorphic functions on complex manifolds. Besides students planning to work in complex analysis, this course will be valuable to those planning to study partial differential equations, complex differential and algebraic geometry, and operator theory. The exposition will be selfcontained and the prerequisites will be kept at a minimum
Updated on Jun 21, 2018 01:13 PM PDT 
Summer Graduate School Séminaire de Mathématiques Supérieures 2018: Derived Geometry and Higher Categorical Structures in Geometry and Physics
Organizers: Anton Alekseev (Université de Genève), Ruxandra Moraru (University of Waterloo), Chenchang Zhu (Universität Göttingen)Higher categorical structures and homotopy methods have made significant influence on geometry in recent years. This summer school is aimed at transferring these ideas and fundamental technical tools to the next generation of mathematicians.
The summer school will focus on the following four topics: higher categorical structures in geometry, derived geometry, factorization algebras, and their application in physics. There will be eight to ten mini courses on these topics, including mini courses led by Chirs Brav, Kevin Costello, Jacob Lurie, and Ezra Getzler. The prerequisites will be kept at a minimum, however, a introductory courses in differential geometry, algebraic topology and abstract algebra are recommended.Updated on Jun 20, 2018 12:16 PM PDT 
Workshop The 2018 Infinite Possibilities Conference
Organizers: Alejandra Alvarado (U.S. Navy), Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), Katharine Gurski (Howard University), LEAD Lily Khadjavi (Loyola Marymount University), Candice Price (University of San Diego), Kimberly Sellers (Georgetown University), Talitha Washington (Howard University), Kimberly Weems (North Carolina Central University), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))The Infinite Possibilities Conference (IPC) is a national conference that is designed to promote, educate, encourage and support women of color interested in mathematics and statistics, as a step towards addressing the underrepresentation of AfricanAmericans, Latinas, Native Americans, and Pacific Islanders in these fields.
IPC aims to:
 fulfill a need for role models and communitybuilding
 provide greater access to information and resources for success in graduate school and beyond
 raise awareness of factors that can support or impede underrepresented women in the mathematical sciences
A unique gathering, the conference brings together participants from across the country, at all stages of education and career, for mentoring and mathematics.
Updated on May 18, 2018 12:18 PM PDT 
Workshop Representations of Finite and Algebraic Groups
Organizers: Robert Guralnick (University of Southern California), Alexander Kleshchev (University of Oregon), Gunter Malle (Universität Kaiserslautern), Gabriel Navarro (University of Valencia), LEAD Pham Tiep (Rutgers University)The workshop will bring together key researchers working in various areas of Group Representation Theory to strengthen the interaction and collaboration between them and to make further progress on a number of basic problems and conjectures in the field. Topics of the workshop include
 Globallocal conjectures in the representation theory of finite groups
 Representations and cohomology of simple, algebraic and finite groups
 Connections to Lie theory and categorification, and
 Applications to group theory, number theory, algebraic geometry, and combinatorics.Updated on May 25, 2018 11:23 AM PDT 
Workshop Structures in Enumerative Geometry
Organizers: Mina Aganagic (University of California, Berkeley), Jim Bryan (University of British Columbia), LEAD Davesh Maulik (Massachusetts Institute of Technology), Balazs Szendroi (University of Oxford), Richard Thomas (Imperial College, London)The purpose of the workshop is to bring together specialists to work on understanding the manyfaceted mathematical structures underlying problems in enumerative geometry. Topics represented at the workshop will include: geometric representation theory, supersymmetric gauge theory, string theory, knot theory, and derived geometry, all of which have had a profound effect on the development of modern enumerative geometry.
Updated on Jun 29, 2018 10:50 AM PDT 
Workshop Hot Topics: The Homological Conjectures
Organizers: Bhargav Bhatt (University of Michigan), Srikanth Iyengar (University of Utah), Wieslawa Niziol (CNRS, Ecole Normale Superieure de Lyon), LEAD Anurag Singh (University of Utah)The homological conjectures in commutative algebra are a network of conjectures that have generated a tremendous amount of activity in the last 50 years. They had largely been resolved for commutative rings that contain a field, but, with the exception of some low dimensional cases, several remained open in mixed characteristic  until recently, when Yves André announced a proof of Hochster's Direct Summand Conjecture. The progress comes from systematically applying Scholze's theory of perfectoid spaces, which had already shown its value by solving formidable problems in number theory and representation theory. One of the goals of the workshop is to cover the ingredients going into the proofs of the Direct Summand Conjecture.
Updated on Mar 23, 2018 11:01 AM PDT 
Workshop Latinx in the Mathematical Sciences Conference 2018
Organizers: Federico Ardila (San Francisco State University), Ricardo Cortez (Tulane University), Tatiana Toro (University of Washington), Mariel Vazquez (University of California, Davis)On March 810, 2018, IPAM will host a conference showcasing the achievements of Latinx in the mathematical sciences. The goal of the conference is to encourage Latinx to pursue careers in the mathematical sciences, to promote the advancement of Latinx currently in the discipline, to showcase research being conducted by Latinx at the forefront of their fields, and, finally, to build a community around shared academic interests. The conference will be held on the UCLA campus in Los Angeles, CA. It will begin at noon on Thursday, March 8.
This conference is sponsored by the Mathematical Sciences Institutes Diversity Initiative, with funding from the National Science Foundation Division of Mathematical Sciences.
Updated on Oct 23, 2017 04:53 PM PDT 
Workshop Critical Issues in Mathematics Education 2018: Access to mathematics by opening doors for students currently excluded from mathematics
Organizers: Aditya Adiredja (University of Arizona), LEAD Julia Aguirre (University of Washington  Tacoma), Kate Belin (Fannie Lou Hamer Freedom High School), LEAD Ricardo Cortez (Tulane University), Michael Driskill (Math for America ), Nicole Joseph (Vanderbilt University), Katherine Stevenson (California State University, Northridge), Francis Su (Harvey Mudd College), Maria del Rosario Zavala (San Francisco State University)Our mathematics education system is inequitable. It operates in ways that leave a significant proportion of students with negative mathematics experiences and inadequate mathematical preparation. The problem is historical and systemic, and the students most disaffected by the current system are overwhelmingly Black and Latino, Indigenous, poor, women, immigrant or first generation college students. If our mathematics community is to sustainably grow and thrive, mathematics education at all levels must be transformed.
This workshop focuses on students for whom we do not yet successfully ensure access to and advancement in mathematics. Sessions will share relevant programmatic efforts and innovative research that have been shown to maintain or increase students’ engagement and interests in mathematics across k12, undergraduate and graduate education. The sessions will focus particularly on reproducible efforts that affirm those students’ identities and their diverse intellectual resources and lived experiences. These efforts at various levels of mathematics education will highlight ways in which meaningful experiences in mathematics can disrupt ongoing systemic oppression. Participants will leave with conceptual and practical ways to open up and elevate mathematics education where all students thrive.
Updated on Jul 03, 2018 09:03 AM PDT 
Workshop Introductory Workshop: Group Representation Theory and Applications
Organizers: Robert Guralnick (University of Southern California), Gunter Malle (Universität Kaiserslautern)The workshop will survey various important and active areas of the representation theory of finite and algebraic groups, and introduce the audience to several basic open problems in the area. It will consist of 6 series of 3 lectures each given by top experts in the field. The lectures are designed for a diverse audience and will be accessible to nonspecialists and graduate students with some background in representation theory. Topics covered include Representation theory of algebraic groups, Decomposition numbers of finite groups of Lie type, DeligneLusztig theory, Block theory, Categorification, and Localglobalconjectures.
Updated on Feb 16, 2018 09:33 AM PST 
Workshop Connections for Women: Group Representation Theory and Applications
Organizers: Karin Erdmann (University of Oxford), Julia Pevtsova (University of Washington)This intensive two day workshop will introduce graduate students and recent PhD’s to some current topics of research in Representation Theory. It will consists of a mixture of survey talks on the hot topics in the area given by leading experts and research talks by junior mathematicians covering subjects such as new developments in character theory, group cohomology, representations of Lie algebras and algebraic groups, geometric representation theory, and categorification.
This workshop is open to all mathematicians.
Updated on Apr 10, 2018 10:49 AM PDT 
Workshop Introductory Workshop: Enumerative Geometry Beyond Numbers
Organizers: Denis Auroux (University of California, Berkeley), LEAD ChiuChu Melissa Liu (Columbia University), Andrei Okounkov (Columbia University)This workshop will consist of expository minicourses and lectures introducing various aspects of modern enumerative geometry, among which: enumeration via intersection theory on moduli spaces of curves or sheaves, including GromovWitten and DonaldsonThomas invariants; motivic and Ktheoretic refinement of these invariants; and categorical invariants (derived categories of coherent sheaves, Fukaya categories).
Updated on Apr 06, 2018 01:03 PM PDT 
Workshop Connections for Women: Enumerative Geometry Beyond Numbers
Organizers: Barbara Fantechi (International School for Advanced Studies (SISSA/ISAS)), LEAD ChiuChu Melissa Liu (Columbia University)This twoday workshop will provide an overview of significant developments and open problems in modern enumerative geometry, from the perspectives of both algebraic geometry and symplectic topology.
This workshop is open to all mathematicians.
Updated on Jan 26, 2018 09:37 AM PST 
Workshop Women in Topology
Organizers: Maria Basterra (University of New Hampshire), Kristine Bauer (University of Calgary), LEAD Kathryn Hess (École Polytechnique Fédérale de Lausanne (EPFL)), Brenda Johnson (Union CollegeUnion University)The Women in Topology (WIT) network is an international group of female mathematicians interested in homotopy theory whose main goal is to increase the retention of women in the field by providing both unique collaborative research opportunities and mentorship between colleagues. The MSRI WIT meeting will be organized as an afternoon of short talks from participants, followed by two days of open problem seminars and working groups designed to stimulate new collaborations, as well as to strengthen those already ongoing among the participants.
Updated on Dec 11, 2017 10:39 AM PST 
Workshop Geometric functional analysis and applications
Organizers: Franck Barthe (Université de Toulouse III (Paul Sabatier)), Rafal Latala (University of Warsaw), Emanuel Milman (TechnionIsrael Institute of Technology), Assaf Naor (Princeton University), LEAD Gideon Schechtman (Weizmann Institute of Science)This is the main workshop of the program "Geometric functional analysis and applications". It will focus on the main topics of the program. These include: Convex geometry, Asymptotic geometric analysis, Interaction with computer science, Signal processing, Random matrix theory and other aspects of Probability.Updated on Apr 30, 2018 01:55 PM PDT 
Workshop Bay Area Differential Geometry Seminar (BADGS) Fall 2017
Organizers: David Bao (San Francisco State University), Joel Hass (University of California, Davis), David Hoffman (Stanford University), Rafe Mazzeo (Stanford University), Richard Montgomery (University of California, Santa Cruz)Description
The Bay Area Differential Geometry Seminar meets 3 times each year and is a 1day seminar on recent developments in differential geometry and geometric analysis, broadly interpreted. Typically, it runs from midmorning until late afternoon, with 34 speakers. Lunch will be available and the final talk will be followed by dinner. Here is the seminar schedule with abstracts and other information: BADG October 2017Berkeley, CA
Updated on Oct 18, 2017 01:33 PM PDT 
Workshop Modern Math Workshop 2017
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Leslie McClure (SAMSI  Statistical and Applied Mathematical Sciences Institute), Christian Ratsch (University of California, Los Angeles; Institute of Pure and Applied Mathematics (IPAM)), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))As part of the Mathematical Sciences Collaborative Diversity Initiatives, nine mathematics institutes are pleased to offer their annual SACNAS preconference event, the 2017 Modern Math Workshop (MMW). The Modern Math Workshop is intended to encourage minority undergraduates to pursue careers in the mathematical sciences and to assist undergraduates, graduate students and recent PhDs in building their research networks. The Modern Math Workshop is part of the SACNAS National Conference; the workshop and the conference take place in the Salt Palace Convention Center in Salt Lake City, Utah. The MMW starts at 1:00 pm on Wednesday, October 18 with registration beginning at noon.
Updated on Oct 12, 2017 02:36 PM PDT 
Workshop Geometric and topological combinatorics: Modern techniques and methods
Organizers: Patricia Hersh (North Carolina State University), LEAD Victor Reiner (University of Minnesota Twin Cities), Bernd Sturmfels (University of California, Berkeley), Frank Vallentin (Universität zu Köln), Günter Ziegler (Freie Universität Berlin)This workshop will focus on the interaction between Combinatorics, Geometry and Topology, including recent developments and techniques in areas such as
 polytopes and cell complexes,
 simplicial complexes and higher order graph theory,
 methods from equivariant topology and configuration spaces,
 geometric combinatorics in optimization and social choice theory,
 algebraic and algebrogeometric methods.Updated on May 25, 2018 01:29 PM PDT 
Workshop Introductory Workshop: Geometric and Topological Combinatorics
Organizers: Imre Barany (Alfréd Rényi Institute of Mathematics), Anders Björner (Royal Institute of Technology (KTH)), LEAD Benjamin Braun (University of Kentucky), Isabella Novik (University of Washington), Francis Su (Harvey Mudd College), Rekha Thomas (University of Washington)The introductory workshop will present the main topics that will be the subject of much of the Geometric and Topological Combinatorics Program at MSRI. Key areas of interest are point configurations and matroids, hyperplane and subspace arrangements, polytopes and polyhedra, lattices, convex bodies, and sphere packings. This workshop will consist of introductory talks on a variety of topics, intended for a broad audience.
Updated on May 01, 2018 10:00 AM PDT 
Workshop Connections for Women Workshop: Geometric and Topological Combinatorics
Organizers: Federico Ardila (San Francisco State University), Margaret Bayer (University of Kansas), Francisco Santos Leal (University of Cantabria), LEAD Cynthia Vinzant (North Carolina State University)This workshop will feature lectures on a variety of topics in geometric and topological combinatorics, given by prominent women and men in the field. It precedes the introductory workshop and will preview the major research themes of the semester program. There will be a panel discussion focusing on issues particularly relevant to junior researchers, women, and minorities, as well as other social events. This workshop is open to all mathematicians.
Updated on Sep 06, 2017 08:32 AM PDT 
Workshop Introductory Workshop: phenomena in high dimensions
Organizers: LEAD Alexander Koldobsky (University of Missouri), Michel Ledoux (Institut de Mathématiques de Toulouse), Monika Ludwig (Technische Universität Wien), Alain Pajor (Université de Paris Est MarnelaVallée), Stanislaw Szarek (Case Western Reserve University), Roman Vershynin (University of Michigan)This workshop will consist of several short courses related to high dimensional convex geometry, high dimensional probability, and applications in data science. The lectures will be accessible for graduate students.
Updated on Sep 05, 2017 11:18 AM PDT 
Workshop Connections for Women: geometry and probability in high dimensions
Organizers: LEAD Shiri Artstein (Tel Aviv University), Marianna Csornyei (University of Chicago), Eva Kopecka (LeopoldFranzens Universität Innsbruck), Elisabeth Werner (Case Western Reserve University)This workshop will be on topics connected with Asymptotic Geometric Analysis  a relatively new field, the young finite dimensional cousin of Banach Space theory, functional analysis and classical convexity. We study high, but finite, dimensional objects, where the disorder of many parameters and many dimensions is regularized by convexity assumptions. This workshop is open to all mathematicians.
Updated on Aug 29, 2017 10:40 AM PDT 
Summer Graduate School Automorphic Forms and the Langlands Program
Organizers: LEAD Kevin Buzzard (Imperial College, London)The summer school will be an introduction to the more algebraic aspects of the theory of automorphic forms and representations. One of the goals will be to understand the statements of the main conjectures in the Langlands programme. Another will be to gain a good working understanding of the fundamental definitions in the theory, such as principal series representations, the Satake isomorphism, and of course automorphic forms and representations for groups such as GL_n and its inner forms.
Updated on Aug 04, 2017 11:02 AM PDT 
Summer Graduate School Nonlinear dispersive PDE, quantum many particle systems and the world between
Organizers: Natasa Pavlovic (University of Texas, Austin), Gigliola Staffilani (Massachusetts Institute of Technology), Nikolaos Tzirakis (University of Illinois at UrbanaChampaign)The purpose of the summer school is to introduce graduate students to the recent developments in the area of dispersive partial differential equations (PDE), which have received a great deal of attention from mathematicians, in part due to ubiquitous applications to nonlinear optics, water wave theory and plasma physics.
Recently remarkable progress has been made in understanding existence and uniqueness of solutions to nonlinear Schrodinger (NLS) and KdV equations, and properties of those solutions. We will outline the basic tools that were developed to address these questions. Also we will present some of recent results on derivation of NLS equations from quantum many particle systems and will discuss how methods developed to study the NLS can be relevant in the context of the derivation of this nonlinear equation.
Updated on Sep 12, 2017 02:02 PM PDT