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Random walks on weakly hyperbolic groups

Random walks, WPD actions, and the Cremona group
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Today’s results

Theorem (Maher-T. ’18)

Let G be a countable group of isometries of a -hyperbolic metric
space X, such that the semigroup generated by the support of . is
non-elementary. Then:

1. (Positive drift) 3L > 0 s.t.

d(wnx, X)

liminf =1L>0.
n—oo

If 1 has finite 15t moment then

IWnX. X) ) 0 exists as.

lim

n—oo

2. (Growth of translation length) For any e > 0 we have
P(r(wn) > n(L —¢€)) — 1 as n — oo.

Corollary.
P(w, is loxodromic ) — 1
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Hyperbolic isometries

Definition
Given an isometry g of X and x € X, we define its translation
length as
. d(9"x, x)
7(g) = Jim == —

Lemma (Classification of isometries of hyperbolic spaces)
Let g be an isometry of a §-hyperbolic metric space X (not
necessarily proper). Then either:

1. g has bounded orbits. Then g is called elliptic.

2. g has unbounded orbits and 7(g) = 0. Then g is called
parabolic.

3. 7(g) > 0. Then g is called hyperbolic or loxodromic, and
has precisely two fixed points on 0X, one attracting and
one repelling.
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Let us define
Sh(x,r):={S(gx,R) : g€ G, d(x,gx)—R>r}

the set of shadows based at x, with centers on Gx and distance
parameter > r.

Proposition

Let G be a countable group of isometries of a separable Gromov
hyperbolic space X. Let 1. be a non-elementary probability
distribution on G, and let v be the hitting measure on 9X. Then

lim sup »(S)=0.

=00 5eSh(x,r)

Proof.

A shadow centered at gx of distance parameter r is contained in a
ball of radius ~ e~ in the metric d. on 9X. As v is non-atomic, the
measure of a ball of radius e~<" tends to zero uniformly as r — 0. [
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For U a subset of X, let
Hf(U):=P(En>0 : wyx e l)

the probability of ever hitting the shadow.
Proposition

Let G be a countable group which acts by isometries on a
separable Gromov hyperbolic space X, and 11 a
non-elementary probability distribution on G. Then

sup  Hy (S) < (r)
SeSh(x,r)

for some p(r) — 0 asr — oc.
Note: the decay is uniform in r! (But we do not know the rate)
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Let x; := wyx. Given R, we say a subsegment [x;, x;,1] of the sample
path is persistent if:

d(X,‘,X,'+1) > 2R + C() (1)
Xn € Sy, (X, R) foralln < 2
Xn € Sx.(Xit1,R) foralln>i+1 (3)

Xi

/X o

SXm (va R) SX;(Xi+1 ’ R)
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Persistent segments exist

Lemma
Given e > 0, there are R and k such that for any i each of (1), (2), (3)
holds with probability at least 1 — .

The probability of (2) equals the prob. that wi,x never hits the
complement of Sy, (x;, R) for any n < i. As the complement of this
shadow is contained in a shadow

Si = Sx(Xip1, Ai)
where R; = d(x;, Xi+1) — R+ O(9), the prob. that (2) holds is at least
1-PEn<ki : wpx € 5))
which equals by the Markov property
1—H (w,'S). (5)

The distance parameter of Wk_,-1 Si, is R+ O(0); hence, by decay of
shadows, we may choose R sufficiently large such that (5) is at least
1—e



Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n-—1: [x;,X1] is persistent}



Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n-—1: [x;,X1] is persistent}

75 Xist

W X




Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n—1: [x;,X1] is persistent}




Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n-—1: [x;,X1] is persistent}

Proof.
Let v be a geodesic from x to x, = wynX.



Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n-—1: [x;,X1] is persistent}
Proof.
Let v be a geodesic from x to x, = wynX.

> If [xj, Xi1] is persistent,



Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n-—1: [x;,X1] is persistent}
Proof.

Let v be a geodesic from x to x, = wynX.

> If [x;, x;11] is persistent, v has a subsegment +; of length > C
which fellow travels [x;, Xi1],



Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n-—1: [x;,X1] is persistent}

Proof.
Let v be a geodesic from x to x, = wynX.

> If [x;, x;11] is persistent, v has a subsegment +; of length > C
which fellow travels [x;, xi1], and is disjoint from both
Sx...(Xi, R+ C) and Sy (xi+1, R+ C).



Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n-—1: [x;,X1] is persistent}

Proof.
Let v be a geodesic from x to x, = wynX.

> If [x;, x;11] is persistent, v has a subsegment +; of length > C
which fellow travels [x;, xi1], and is disjoint from both
Sx...(Xi, R+ C) and Sy (xi+1, R+ C).

» If [x;, x; 1] is also persistent, then ~; and 4; are disjoint



Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n-—1: [x;,X1] is persistent}

Proof.
Let v be a geodesic from x to x, = wynX.

> If [x;, x;11] is persistent, v has a subsegment +; of length > C
which fellow travels [x;, xi1], and is disjoint from both
Sx...(Xi, R+ C) and Sy (xi+1, R+ C).

» If [x;, x; 1] is also persistent, then ~; and ; are disjoint by
(weak)-convexity of shadows.



Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n—1: [x;,X1] is persistent}




Persistent segments are disjoint

Lemma
For some C > 0,

d(x, winx) > C#{0 <i<n-—1: [x;,X1] is persistent}

Proof.
Let v be a geodesic from x to x, = wypX.

» If [x;, X;11] is persistent, v has a subsegment ~; of length > C
which fellow travels [x;, x;1], and is disjoint from both
SXM (X,‘7 R+ C) and Sxi(Xi+1 ,R+ C)

» If [x;, x;.1] is also persistent, then ~; and ; are disjoint by
(weak)-convexity of shadows.

» Therefore d(x, winx) is at least C times the number of persistent
subsegments between x and wj,x.

O
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Convergence of subadditive processes

We will now apply Kingman’s subadditive ergodic theorem.

Theorem
Let (Q,P) be a probability space and U : Q — Q a measure
preserving transformation. If:

» W, : Q — R29 js a subadditive sequence of random variables,
ie.
Wn+m < W, + Wpo u"

forallm,ne N
» and W, has finite first moment,
then there is a U-invariant random variable W., such that
lim %Wn = W,
n—oo

P-almost surely, and in L' (Q, P).
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Positive drift - proof
Let us define for each n

n—1
Z, = Z Yi=#{0<i<n-—1: [x,X1] is persistent}
i=0

the number of persistent subsegments along [x, X, = Wk X].
The random variables (Z,),cn are non-negative and have finite
expectation, and subadditive by the Markov property. Moreover,

E(Z,) = ZE ) >y
with n > 0.
We now apply the Theorem to get
1Z — A
n n

in L'; finally, since E(Z..) = lim, E(%Zn) >n>0,we have A > 0.
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Positive drift - end of proof

Since Z, is a lower bound for d(x, wknx), we get almost surely

A0 WinX) -, C i 1 an& >0
n—oo kn n—oo k

which proves the first part of the Theorem.

(Note: we made no assumptions on the moments of y.)

For the second part, if 4 has finite first moment with respect to d, we
apply Kingman’s Theorem to d(x, winX),



Positive drift - end of proof

Since Z, is a lower bound for d(x, wknx), we get almost surely

d(x, wknx) C AC
mint S > Limint 2, = 52 > 0
which proves the first part of the Theorem.

(Note: we made no assumptions on the moments of y.)

For the second part, if © has finite first moment with respect to d, we
apply Kingman’s Theorem to d(x, wknX), to get existence of the limit.
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Growth of translation length

Strategy of proof:
T(Wp) = d(x, wnx) — 2(w; ' x - wpx)x + O(6).
1. Displacement term
d(x,wpx) > Ln

is large (by positive drift)
2. Need to show:

(W, ' x - wnx)x = o(n)

is small
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Key point: Note that for each m, the G-valued processes
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and
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are independent.
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Fellow traveling is contagious

Lemma

For any four points a, b, ¢ and d in a Gromov hyperbolic space X, if
(a-b)x > A (c-d)x>Aand(a-c)x <A— O() then

(a . C)X = (b . d)x + 0(6)




Fellow traveling is contagious

Lemma

For any four points a, b, ¢ and d in a Gromov hyperbolic space X, if
(a-b)x > A (c-d)x>Aand(a-c)x < A— O() then

(a-c)x = (b-d)x+ O(d).

W2nX

X WnX

W, X B
up ' X
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Lemma (Lemma A)
Iff : N — N js any function such that f(n) — oo as n — oo, then

P ((uy 'x - wox)x < f(n)) — 1

as n — oo.

Proof.
By definition of shadows,

P ((u, 'x - wox)x < f(n)) =P(u, ' x € Sx(Wax, R))

where R = d(x, wyx) — f(n).
As w, and u; ' are independent and the distribution of uj,

P ((up 'x - wioX)x < f(n)) =1 — Z lin(Sx(9x, R))1n(g)
9€G

! |S ﬂn;

As the distance parameter of the shadows on the RHS is f(n),
decay of shadows gives

P ((up ' - wox)x < f(n)) > 1 — o(f(n)) — 1
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Lemma (Lemma B)
Forany ¢ < L/2 we have

P ((Wpx - WopX)x > £n) — 1, as n — oo,
The same argument applied to W2_n1 X shows
P ((u,fx- Wy X)x > ﬁn) — 1

as n — oo.
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Proof: growth of translation lengths
» By Lemma A,

(Up ' X - whx)x = o(n)
» By Lemma B,

(WnX - WapX)y > n, (U 'x - Wy X)x > n

» Fellow traveling is contagious =

(W, X - Wapx)x = o(n)
» By translation length formula,
T(Wap) = d(X, WanX) —2(Wy, ' X - WapX)x+O(8) > (L—€)(2n)

which completes the proof.



