Datamodels: Predicting Predictions with Training Data

Aleksander Mądry

(with Logan Engstrom, Andrew Ilyas, Guillaume Leclerc, Sam Park)

@aleks_madry madry-lab.ml
How Do We Look at the ML Pipeline?
Indeed: Data Matters (a Lot)

→ Data poisoning

→ "Opportunistic" learning

"dog"

"Why here?"

Attributed pixels

Pen marks by the doctor!

Zoom in, adjust contrast

"dog"
Model-Driven Understanding of Data

Can we analyze data as it's viewed/used by the models?
Basic Primitive: Scrutinizing Predictions

Training set S + Learning algorithm \rightarrow Test input x

"Dog" 85%

Which training inputs impact this prediction the most?
"Classic" Approach: Influence Functions

Specifically: Approximate leave-one-out influences

\[\widehat{\text{Infl}} [x_i \to x_j] = \]
\[
\Pr[\text{model trained on } S \text{ is correct on } x_j] - \\
\Pr[\text{model trained on } S \setminus \{x_i\} \text{ is correct on } x_j]
\]

→ [Koh Liang 2017]: Approx. using Hessian (of penultimate layer) of a specific model, but:
→ Affected by model-training variability
→ Penultimate layer does not seem to capture all the info

→ [Feldman Zhang 2020]: More direct estimation
But: Can we get a more direct read?

Goal: Understand how the training data yields model outputs through the lens of training algorithm.

In particular:

→ Go beyond the focus on a single-input impact.
→ Be able to grasp more nuanced aspects of predictions than "just" them being correct/incorrect.
→ Get a way to explicitly analyze how well we are doing.
Our Proposed Approach: Datamodels
Datamodels: Data-to-Output Modeling

Stage 1: Train a model

Stage 2: Output predictions

Idea: Completely abstract away everything "in the middle"

("Smoothing out" the randomness/idiosyncrasies of model training)
Datamodels: Data-to-Output Modeling

What we are trying to compute:

"Smoothened" output of interest
(think: margin of correct class)

\[f(x, S) \approx g(x, S) \]

Want it to be simple/easy to analyze

Specific input \(x \)

Subset \(S \) of the training set
How To Find Such A Datamodel?

Simple: Just treat it as a regression problem

\[
\{(S_1, \vec{f}_1), (S_2, \vec{f}_2), \ldots, (S_m, \vec{f}_m)\}
\]
How To Find Such A Datamodel?

Simple: Just treat it as a regression problem

\[
\{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \\
\{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \\
\{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \\
\{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \\
\{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \\
\{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \\
\{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \\
\{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \\
\{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \\
\{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\} \quad \{(x, y)\}
\]
How To Find Such A Datamodel?

Simple: Just treat it as a regression problem

\[
\{(S_1, \vec{f}_1), (S_2, \vec{f}_2), \ldots, (S_m, \vec{f}_m)\}
\]

Then: Fit a model to this data
Two Emerging Questions

How to generate the data?

→ Just sample random α-fraction subsets of S, for $\alpha \in (0,1)$

What class of models to fit?

→ Turns out: A simple choice works already very well
Model Choice: Linear(-ish)

\[g(x, S) = \theta_x^T m(S) \]

- Vector of weights assigned to training points
- Binary (one-hot) representation of \(S \)

→ We fit vectors \(\theta_x \) for all inputs \(x \) of interest

→ To fit this datamodel: Train \(~500K\) (!) different classifiers

(How to do that? See: ffcv.io)
So: How can this be useful?
Understanding Data with Datamodels

Datamodels turn out to be a versatile framework for analyzing ML predictions

In particular, they provide:

→ A causal characterization of model decisions
→ A perceptually meaningful similarity measure (for images)
→ A (good) embedding of datapoints into Euclidean space
→ A graph representation of the training data structure
Datamodes: Causal Perspective

Goal: Estimate $f(x, S')$ without explicitly training on S'
Datamodels: Causal Perspective

Observed effect: $f(x, S) - f(x, S')$

Predicted effect: $g(x, S) - g(x, S')$

Results: Datamodels provide accurate counterfactuals (even for a different α regime)
Datamodels: Similarity Measure

Inputs x of interest

- airplane
- bird
- horse
Datamodels: Similarity Measure

Inputs x of interest

Training points with the highest positive θ_x-weight

feature similarity

train-test duplication

train-test leakage
Data models: Similarity Measure

Inputs x of interest
Training points with the highest negative θ_x-weight
Datamodels: Embedding

Note: Weights θ_x can provide a (sparse) embedding of each x

Result: A "smoothened" representation space

Now: What if we perform PCA on this embedding?
Datamodels: Embedding

Result: PCA recovers "features"

Interestingly: This PCA has far more non-trivial directions than a classifier representation space.
Datamodels: Graph Perspective

Idea: Stack datamodel weights θ_x for each training point x to get an adjacency matrix

→ Enables us to use graph-theoretic algorithms to understand datasets
Takeaways
Datamodels:
A new framework for model-centric data understanding

→ Learn data-to-output mapping using regression
→ Simple *linear* instantiation works really well
→ Gives rise to a variety of primitives:
 → Predicting counterfactuals/analyzing model brittleness
 → Provides rich embedding/graph structure
→ What else?

See paper/blogpost for (much) more!

@aleks_madry
gradientscience.org