Arithmetic Field Theories and Arithmetic Invariants

Minhyong Kim
ICMS/Maxwell Institute
Edinburgh

Berkeley, November, 2021
1. Classification of arithmetic principal bundles
Classification of arithmetic principal bundles

Over a point?

The point is

$$\text{Spec}(F),$$

where F is an algebraic number field, which has a complicated étale topology.

The data of the principal bundle is a topological group R and a space P with simply-transitive continuous right action of R. However, these are sheaves on $\text{Spec}(F)$.

There is the inclusion $F \subset \overline{\mathbb{Q}} \subset \mathbb{C}$, where $\overline{\mathbb{Q}}$ is the field of all algebraic numbers and a natural topological group associated to it:

$$\pi_1(\text{Spec}(F)) := \text{Gal}(\overline{\mathbb{Q}}/F).$$

The sheaf structure is encoded in the fact that both R and P are equipped with compatible left actions of $\pi_1(\text{Spec}(F))$.
Classification of arithmetic principal bundles

We denote by

\[\mathcal{M}(F, R) = H^1(F, R) = H^1(\pi_1(\text{Spec}(F)), R), \]

the set of isomorphism classes of principal \(R \)-bundles on \(\text{Spec}(F) \), which can also be described as a set of \(R \)-valued cocycles on \(\pi_1(\text{Spec}(F)) \) modulo an equivalence relation.

The group \(R \) is often a \(p \)-adic Lie group, e.g., \(GL_n(\mathbb{Z}_p) \), or a finite group, the two cases being related by

\[GL_n(\mathbb{Z}_p) = \lim_{\leftarrow} GL_n(\mathbb{Z}/p^n). \]

But it might be a finite group like \(A[p] \) for an abelian variety \(A \) or

\[T_p A = \lim_{\leftarrow} A[p^n] \cong \mathbb{Z}^{2g}, \]

which has a highly non-trivial action of \(\pi_1(\text{Spec}(F)) \).
The classification problem, i.e., understanding the structure of $H^1(F, R)$, is difficult mostly because of the complexities of $\pi_1(\text{Spec}(F))$.

For example, when R has trivial action, then

$$H^1(F, R) = \text{Hom}(\pi_1(\text{Spec}(F)), R)/R,$$

a space of representations.

So a complete description would comprise the Langlands reciprocity conjecture.
Let \mathcal{O}_F be the ring of algebraic integers in F and let

$$X := \text{Spec}(\mathcal{O}_F),$$

which is the set of prime ideals in \mathcal{O}_F, endowed with a complicated topology (étale). It has many properties of a compact closed three-manifold.

If ν is a maximal ideal in \mathcal{O}_F, then $k_\nu = \mathcal{O}_F/\nu$ is a finite field and the inclusion

$$\text{Spec}(k_\nu) \hookrightarrow X$$

is analogous to the inclusion of a knot.

The completion $\text{Spec}(\mathcal{O}_{F,\nu})$ (e.g., \mathbb{Z}_p) is like the tubular neighbourhood of the knot.
Classification over arithmetic 3-folds

The completion F_v (e.g. \mathbb{Q}_p) of F is the fraction field of $\mathcal{O}_{F,v}$, so that

$$\text{Spec}(F_v) = \text{Spec}(\mathcal{O}_{F,v}) \setminus v$$

is like the tubular neighbourhood with the knot deleted, which should be homotopic to a torus.

If B is a finite set of primes and $\mathcal{O}_{F,B}$ is the set of B-integers, then

$$X_B := \text{Spec}(\mathcal{O}_{F,B}) = \text{Spec}(\mathcal{O}_F) \setminus B$$

is like a three-manifold with boundary, the boundary having one torus component $\text{Spec}(F_v)$ for each prime in B.

$$\partial X = \bigsqcup_{v \in B} \text{Spec}(F_v) \rightarrow X_B \hookrightarrow X.$$
Classification over arithmetic 3-folds: Fundamental groups

Rather easy to describe:

$$\pi_1(\text{Spec}(k_v)) = \text{Gal}({\bar{k}_v}/k_v) = {\hat{\mathbb{Z}}}$$

Somewhat harder, but still explicit and natural:

$$\pi_v = \pi_1(\text{Spec}(F_v)) = \text{Gal}({\bar{F}_v}/F_v).$$

This leads to fairly accessible descriptions of

$$H^1(F_v, R) = H^1(\pi_v, R),$$

in many cases.

The global fundamental groups are much harder.
Classification over arithmetic 3-folds: Fundamental groups

A finite field extension K/F is unramified over $\mathcal{P} \in \text{Spec}(\mathcal{O}_F)$ if the decomposition

$$\mathcal{P} \mathcal{O}_K = \prod Q_i$$

into prime ideals in \mathcal{O}_K has no multiplicity.

F^{un}/F is the compositum of all finite field extensions that are unramified over all primes of F.

F^{un}_B/F is the compositum of all finite field extensions that are unramified over all primes not in B.

We have the following arithmetic fundamental groups:

$$\pi_1(X) = \text{Gal}(F^{un}/F);$$
$$\pi_1(X_B) = \text{Gal}(F^{un}_B/F).$$
Classification over arithmetic 3-folds: Fundamental groups

Very difficult to describe in general, even though $\pi_1(X)^{ab}$ is finite and isomorphic to $\text{Pic}(\mathcal{O}_F)$, the ideal class group of F.

Some triviality:

$$\pi_1(\text{Spec}(\mathbb{Z})) = 0$$

More triviality

$$\pi_1(\text{Spec}(\mathcal{O}_F)) = 0$$

when F is an imaginary quadratic field of class number 1.

Some difficult examples:

$$\pi_1(\text{Spec}(\mathcal{O}_{\mathbb{Q} \sqrt{653}})) = A_5.$$

(Kwang-Seob Kim, subject to RH)

$$\pi_1(\text{Spec}(\mathcal{O}_{\mathbb{Q} \sqrt{-1567}})) = PSL_2(\mathbb{F}_8) \times C_{15}.$$

(Kwangseob Kim and Jochen König, subject to RH).
Classification over arithmetic 3-folds

The group

\[\pi_1(X_B) \longrightarrow \pi_1(X) \]

is essentially inaccessible at present.

Nonetheless, we would like to understand

\[M(X_B, R) = H^1(X_B, R) = H^1(\pi_1(X_B), R), \]

the isomorphism classes of principal \(R \) bundles over \(X_B \).

Also

\[M(X_B, R) = H^1(X_B, R) \xrightarrow{\text{loc}_B} \prod_{v \in B} H^1(F_v, R) = \prod_{v \in B} M(F_v, R) \]

whose image can sometimes be given a Lagrangian structure inside a non-Archimedean symplectic manifold.

When \(R \) has trivial action of \(\pi_1(X_B) \), then this is a space of representations:

\[H^1(\pi_1(X_B), R) = \text{Hom}(\pi_1(X_B), R)//R. \]
Classification over arithmetic 3-folds

Note that elements of $H^1(X, R)$ are like flat connections, while $H^1(X_B, R)$ are like flat connections with singularities? What are the 'off-shell fields'? Some possible answers:

– Families

\[\{ P_v \}_v \]

where P_v is a principal R bundle over $\text{Spec}(F_v)$.

– For $R = GL_n(\mathbb{Z}_p)$, families $(M_v)_v$, where M_v is a \mathbb{C}-vector space with an action of the Weil-Deligne group of F_v.

– These are already off-shell, while the on-shell fields are the principal bundles of geometric origin.
II. Arithmetic actions
Arithmetic Actions

For technical reasons, we will assume throughout that F is complex, i.e., $F = \mathbb{Q}[x]/(f(x))$ where $f(x)$ has no real roots. Would like to define

$$S : \mathcal{M}(X_B, R) = H^1(\pi_1(X_B), R) \to K$$

as well as path integrals

$$\int_{\rho \in \mathcal{M}(X_B, R)} \exp(cS(\rho)) d\rho$$

possibly also on off-shell fields and/or related moduli spaces. Motivating example: when $R = GL(V)$ with trivial action of $\pi_1(X_B)$, so that $\mathcal{M}(X_B, R)$ is a space of homomorphisms

$$\rho : \pi_1(X_B) \to R.$$
Arithmetic actions: \(L \)-function

In that case, one has:

\[
L : \mathcal{M}(X_B, GL(V)) \rightarrow \mathbb{C} \text{ (or } \mathbb{C}_p).
\]

To a representation \(\rho : \pi_1(X_B) \rightarrow GL(V) \), assign the value

\[
L(\rho) = \prod_{\text{v primes of } \mathcal{O}_F} \frac{1}{\det([I - Fr_v]|V^l_v)}
\]

\[
= \left(\prod_{\text{v} \notin B} \frac{1}{\det([I - Fr_v]|V)} \right) \left(\prod_{\text{v} \in B} \frac{1}{\det([I - Fr_v]|V^l_v)} \right).
\]

This is often infinite, so instead define

\[
L(\rho(s)) = \prod_{\text{v}} \frac{1}{\det([I - |k_v|^{-s}Fr_v]|V^l_v)}
\]

for \(\text{Re}(s) \gg 0 \) and try to compute \(L(\rho) \) by analytic continuation.
Arithmetic actions: L-function

Even when the continuation can be carried out, we can have $L(\rho) = 0$.

In this case we focus on $L^{(r)}(0)/r!$, where $r = \operatorname{ord}_{s=0} L(\rho(s))$. Both the order and value have arithmetic interpretations. For example, if $\rho = \text{Triv}$, then

$$r = \operatorname{rank}(\mathcal{O}_F^\times)$$

and we have

$$\frac{L^{(r)}(\text{Triv}, 0)}{r!} = -|\text{Pic}(\mathcal{O}_F)||\det(\mathcal{O}_F^\times)|.$$

When ρ is T_pE, for E/\mathbb{Q} an elliptic curve, then (BSD-conjecturally)

$$r = \operatorname{rank}E(\mathbb{Q}),$$

and

$$\frac{L^{(r)}(T_pE, 0)}{r!} = \left(\prod_v c_v\right)|\Sha_E||\det(E(\mathbb{Q}))|^2$$
Preliminary on arithmetic orientations

Orientation: Let μ_n be the n-th roots of 1. Then

$$H^3(X, \mu_n) = H^3(\text{Spec}(\mathcal{O}_F), \mu_n) \cong \frac{1}{n}\mathbb{Z}/\mathbb{Z}.$$

This follows from

$$1 \rightarrow \mu_n \rightarrow \mathbb{G}_m \xrightarrow{(\cdot)^n} \mathbb{G}_m \rightarrow 1,$$

leading to

$$H^3(X, \mu_n) \cong H^3(X, \mathbb{G}_m)[n].$$

Meanwhile

$$H^3(X, \mathbb{G}_m) \cong \mathbb{Q}/\mathbb{Z}.$$
Arithmetic orientations

Local class field theory:

\[H^2(F_v, \mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z} \]

Global class field theory:

\[
\begin{align*}
0 & \longrightarrow H^2(F, \mathbb{G}_m) \xrightarrow{\text{loc}} \bigoplus_v H^2(F_v, \mathbb{G}_m) \xrightarrow{\sum} \mathbb{Q}/\mathbb{Z} \longrightarrow 0.
\end{align*}
\]

\[
\begin{align*}
0 & \longrightarrow H^2(X_B, \mathbb{G}_m) \xrightarrow{\text{loc}_B} \bigoplus_{v \in B} H^2(F_v, \mathbb{G}_m) \xrightarrow{\sum} \mathbb{Q}/\mathbb{Z} \longrightarrow 0.
\end{align*}
\]

But

\[
\bigoplus_{v \in B} H^2(F_v, \mathbb{G}_m) = H^2(\partial X_B, \mathbb{G}_m),
\]

so that

\[coker(\text{loc}_B) \simeq H^3_c(X_B, \mathbb{G}_m) \simeq H^3(X, \mathbb{G}_m). \]
Assume $\mu_n \subset F$. Then

$$H^3(X, \mathbb{Z}/n) \simeq H^3(X, \mu_n) \simeq \frac{1}{n}\mathbb{Z}/\mathbb{Z},$$

so we get a map

$$\text{inv} : H^3(\pi_1(X), \mathbb{Z}/n) \longrightarrow H^3(X, \mu_n) \simeq \frac{1}{n}\mathbb{Z}/\mathbb{Z}.$$

Let R have trivial $\pi_1(X)$-action. On the moduli space

$$\mathcal{M}(X, R) = \text{Hom}(\pi_1(X), R)//R,$$

of continuous representations of $\pi_1(X)$, a Chern-Simons functional is defined as follows.
The functional will depend on the choice of a cohomology class (a level)

\[c \in H^3(R, \mathbb{Z}/n). \]

Then

\[\text{CS} : \mathcal{M}(X, R) \rightarrow \frac{1}{n} \mathbb{Z}/\mathbb{Z} \]

is defined by

\[\rho \mapsto \rho^*(c) \in H^3(\pi_1(X), \mathbb{Z}/n) \mapsto \text{inv}(\rho^*(c)). \]
Example:

Let $R = \mathbb{Z}/n$. Then

$$\mathcal{M}_X = \text{Hom}(\text{Pic}(X), \mathbb{Z}/n),$$

where $\text{Pic}(X)$ is the group of invertible line bundles on $X = \text{Spec}(\mathcal{O}_F)$ (the ideal class group of F).

Take $c \in H^3(R, \mathbb{Z}/n)$ to be given as

$$a \cup \delta a,$$

where $a \in H^1(R, \mathbb{Z}/n) = \text{Hom}(\mathbb{Z}/n, \mathbb{Z}/n)$ is the class coming from the identity map, while

$$\delta : H^1(R, \mathbb{Z}/n) \longrightarrow H^2(R, \mathbb{Z}/n)$$

is the Bockstein map coming from the extension

$$0 \longrightarrow \mathbb{Z}/n \longrightarrow \mathbb{Z}/n^2 \longrightarrow \mathbb{Z}/n \longrightarrow 0.$$

Then

$$\mathbb{C}S_{a \cup \delta a}(\rho) = \text{inv}(\rho^*(a) \cup \rho^*(\delta a)).$$
Arithmetic Chern-Simons invariants

[Joint work with H. Chung, D. Kim, G. Pappas, J. Park, H. Yoo]

Let $n = p$, a prime and assume the Bockstein map

$$d : H^1(X, \mathbb{Z}/n) \to H^2(X, \mathbb{Z}/n)$$

is an isomorphism. Let $a = \dim_{\mathbb{F}_p}(Pic(X)/p)$.

Then

$$\sum_{\rho \in (Pic(X)/p)^\vee} \exp[2\pi i \mathbb{CS}(\rho)] = p^{a/2} \left(\frac{\det(d)}{p} \right) i^{\frac{a(p-1)^2}{4}}.$$
Arithmetic differentials

The Bockstein map

\[d : H^1(X, \mathbb{Z}/n) \longrightarrow H^2(X, \mathbb{Z}/n) \]

is very much like a differential. In crystalline cohomology of varieties over perfect fields of positive characteristic, Bockstein maps on crystalline cohomology sheaves are used to construct the De Rham-Witt complex.

In general, whenever you have an extension

\[0 \longrightarrow V \longrightarrow E \longrightarrow V \longrightarrow 0, \]

there is a differential

\[H^1(X, V) \longrightarrow H^2(X, V) \]

that can be used to construct arithmetic functionals.
Arithmetic BF-theory: [Joint work with Magnus Carlson]

There is also a bilinear map

$$BF : H^1(X, \mathbb{Z}/n) \times H^1(X, \mu_n) \longrightarrow \frac{1}{n}\mathbb{Z}/\mathbb{Z},$$

$$(a, b) \mapsto \text{inv}(da \cup b).$$

Note that $da \cup b \in H^3(X, \mu_n)$ and μ_n doesn’t need to be trivialised.

Proposition

For $n \gg 0$,

$$\sum_{(a,b) \in H^1(X, \mathbb{Z}/n) \times H^1(X, \mu_n)} \exp(2\pi i BF(a, b)) \equiv |Pix(X)[n]| \left| \mathcal{O}_X^\times / (\mathcal{O}_X^\times)^n \right|.$$

Compare with

$$\frac{L^{(r)}(Triv, 0)}{r!} = - |Pic(X)| \left| \det(\mathcal{O}_F^\times) \right|.$$
Arithmetic BF-theory

Similarly, if E is an elliptic curve with Neron model \mathcal{E}, then we have

$$
0 \longrightarrow \mathcal{E}[n] \longrightarrow \mathcal{E}[n^2] \longrightarrow \mathcal{E}[n] \longrightarrow 0
$$

for $n \gg 0$. This gives us a map

$$
H^1(X, \mathcal{E}[n]) \times H^1(X, \mathcal{E}[n]) \longrightarrow \frac{1}{n} \mathbb{Z}/\mathbb{Z},
$$

as

$$(a, b) \longrightarrow \text{inv}(da \cup b).$$

Proposition

For $n \gg 0$,

$$
\sum_{(a, b) \in H^1(X, \mathcal{E}[n]) \times H^1(X, \mathcal{E}[n])} \exp(2\pi i BF(a, b)) = |\text{III}(A)[n]| \cdot |E(F)/n|^2.
$$
Arithmetic BF-theory

Compare

$$\frac{L^{(r)}(T_p E, 0)}{r!} = \prod_v c_v \lVert \mathfrak{W}_E \rVert \lVert \det(E(F)) \rVert^2$$
III. Some Remarks on Function Fields
Fibered 3-manifolds

A curve X/\mathbb{F}_q is viewed as analogous to a fibered three-manifold

$$M \xrightarrow{\pi} S^1.$$

Then

$$\tilde{X} = X \otimes \overline{\mathbb{F}}_q$$

is the analogue of

$$\Sigma := \pi^{-1}(1),$$

and the Frobenius becomes analogous to the isotopy class of the monodromy transformation

$$f : \Sigma \simeq \Sigma.$$
Fibered 3-manifolds

A 3d TQFT will assign a vector space

\[H(\Sigma) \]

to the surface \(\Sigma \).

In that case,

\[Z(M) = \text{Tr}(f|H(\Sigma)). \]

Can we assign

\[\tilde{X} \mapsto H(\tilde{X}) \]

with Frobenius action?
Choose \(N \) such that \(q \equiv 1 \mod N \). Let

\[
H(\bar{X}) := \Gamma(J, \mathcal{L}^N),
\]

where \(J \) is the Jacobian of a lift of \(\bar{X} \) to characteristic zero.

Then \(J[N] \) acts projectively on \(H(\bar{X}) \) and so does the symplectic group of \(J[N] \) via the Weil representation.

The action of \(Fr_q \) on \(J[N] \) puts it into the symplectic group.
Fibered 3-manifolds

Assume $J[N] = W \times W'$, where W, W' are Lagrangian, stabilised by Frobenius. Then

Theorem

$$Tr(\text{Fr}_q|H) = \sqrt{|\text{Cl}(X)[N]|}.$$

This is kind of a μ_N-CS-invariant of X.

Interesting to compare with the number field case, where

$$\text{CS}(X, \mu_p) = \sqrt{|C_F[p]|} \left(\frac{\det(d)}{p} \right) i^{\frac{\dim(C_F[p])(p-1)^2}{4}}.$$
Fibered 3-manifolds

Gaitsgory, Rosenblyum, Raskin,study a 4d theory over finite fields.

Thus,

\[H(\bar{X}) \]

is a dualisable category.

They then take a categorical trace

\[Tr(Fr_q|H(\bar{X})) \]

which is a vector space over \(\bar{Q}_\ell \). This is identified with a space of automorphic forms.

We are trying a 3d version of this.
IV. Chern-Simons with Boundaries
$X_B = \text{Spec}(\mathcal{O}_F[1/B])$ for a finite set B of primes;

$\partial X_B = \coprod_{v \in B} \text{Spec}(F_v)$.

$\pi_1(X_B) := \text{Gal}(F_B^{un}/F)$, $\pi_v := \text{Gal}(\bar{F}_v/F_v)$,

and fix a tuple of homomorphisms

$i_S = (i_v : \pi_v \longrightarrow \pi_1(X_B))_{v \in B}$

corresponding to embeddings $\bar{F} \hookrightarrow \bar{F}_v$.

Assume B contains all places dividing n.

Now $c \in Z^3(R, \mathbb{Z}/n)$ will denote a 3-cocycle.
In addition to the global moduli space

\[\mathcal{M}(X_B, R) = \text{Hom}(\pi_1(X_B), R)/R \]

we have the local moduli space

\[\mathcal{M}(\partial X_B, R) := \{ \phi_B = (\phi_v)_{v \in B} \mid \phi_v : \pi_v \to R \}/R \]

Thus, we get a localisation map

\[\text{loc}_B = i_B^* : \mathcal{M}(X_B, R) \to \mathcal{M}(\partial X_B, R) \]
Key cohomological facts:

\[H^2(\pi_v, \mathbb{Z}/n) \simeq \frac{1}{n} \mathbb{Z}/\mathbb{Z}. \]

\[H^i(\pi_v, \mathbb{Z}/n) = 0 \text{ for } i > 2. \]

There is a symplectic non-degenerate pairing

\[H^1(\pi_v, \mathbb{Z}/n) \times H^1(\pi_v, \mathbb{Z}/n) \rightarrow H^2(\pi_v, \mathbb{Z}/n) \simeq \frac{1}{n} \mathbb{Z}/\mathbb{Z}. \]

There is an exact sequence

\[0 \rightarrow H^1(X_B, \mathbb{Z}/n) \rightarrow \prod_{v \in B} H^1(\pi_v, \mathbb{Z}/n) \rightarrow \sum_{v \in B} \frac{1}{n} \mathbb{Z}/\mathbb{Z} \rightarrow 0. \]
For any $\phi_B = (\phi_v)$, each $\phi_v^*(c) \in \mathbb{Z}^3(\pi_v, \mathbb{Z}/n)$ is trivial. Thus,

$$\mathcal{T}_v := d^{-1}(\phi_v^*(c)) \in C^2(\pi_v, \mathbb{Z}/n)/B^2(\pi_v, \mathbb{Z}/n)$$

is a torsor for $H^2(\pi_v, \mathbb{Z}/n) \simeq \frac{1}{n}\mathbb{Z}/\mathbb{Z}$.

Hence,

$$\prod_{v \in B} \mathcal{T}_v$$

is a torsor for

$$\prod_{v \in B} H^2(\pi_v, \mathbb{Z}/n) \simeq \prod_{v \in B} \frac{1}{n}\mathbb{Z}/\mathbb{Z}.$$
We push this out using the sum map

$$\Sigma : \prod_{v \in B} \frac{1}{n} \mathbb{Z}/\mathbb{Z} \longrightarrow \frac{1}{n} \mathbb{Z}/\mathbb{Z}$$

to get a $\frac{1}{n} \mathbb{Z}/\mathbb{Z}$-torsor

$$\mathcal{T}(\phi_B) := \Sigma_*(\prod_{v} d^{-1}(\phi_v)).$$

As ϕ_B varies, we get a $\frac{1}{n} \mathbb{Z}/\mathbb{Z}$-torsor

$$\mathcal{T} \longrightarrow \mathcal{M}(\partial X_B, R)$$

over the local moduli space.
Finite Arithmetic Chern-Simons Functionals with Boundaries

If $\rho \in \mathcal{M}(X_B, R)$, because $H^3(\pi_1(X_B), \mathbb{Z}/n) = 0$, we can solve

$$d\beta = \rho^*(c) \in Z^3(\pi_1(X_B), \mathbb{Z}/n),$$

and put

$$\mathcal{CS}(\rho) = \Sigma^*(\text{loc}_B(\beta)) \in \mathcal{T}(\text{loc}_B(\rho)).$$

Lemma

$\mathcal{CS}(\rho)$ is independent of the choice of β.

This follows immediately from the reciprocity sequence

$$0 \rightarrow H^2(\pi_1(X_B), \mathbb{Z}/n) \rightarrow \prod_{v \in B} H^2(\pi_v, \mathbb{Z}/n) \xrightarrow{\sum} \frac{1}{n} \mathbb{Z}/\mathbb{Z} \rightarrow 0,$$

Thus, as ρ varies, we get a canonical section

$$\mathcal{CS} \in \Gamma(\mathcal{M}(X_B, R), (\text{loc}_B)^*(\mathcal{T})).$$
Can use the map

$$\exp 2\pi i : \frac{1}{n} \mathbb{Z}/\mathbb{Z} \longrightarrow S^1.$$

to push \mathcal{T} out to a unitary line bundle \mathcal{U} over $\mathcal{M}(\partial X_B, R)$. Can also do this to the individual \mathcal{T}_v to get a line bundle \mathcal{U}_v over $\mathcal{M}(F_v, R)$.

Then

$$\mathcal{U} \simeq \bigotimes_{v \in B} \mathcal{U}_v$$

and

$$\mathcal{H}_B = \Gamma(\mathcal{M}(\partial X_B), R, \mathcal{U}) \simeq \bigotimes_{v \in B} \Gamma(\mathcal{M}(F_v, R), \mathcal{U}_v)$$

$$= \bigotimes_{v \in B} \mathcal{H}_v$$
Thus, one has
\[
\exp(2\pi i \mathcal{C}_S(\rho)) \in \mathcal{U}_{\text{loc}_B}(\rho)
\]
and
\[
\int_{\{\rho \mid \text{loc}_B(\rho) = \rho_B\}} \exp(2\pi i \mathcal{C}_S(\rho)) \in \mathcal{U}_{\rho_B}.
\]
As ρ_B varies get an element of \mathcal{H}.

From the view of topological quantum field theory, this is the state
\[
\psi(X_B) \in \Gamma(\text{loc}(\mathcal{M}(\partial X_B, R)), \mathcal{U})
\]
on ∂X_B that the theory assigns to X_B.
V. Entanglement of primes
Entanglement entropy of primes

If we put

$$\mathcal{H}_v = \Gamma(\mathcal{M}(F_v, R), \mathcal{U}),$$

Then

$$\Gamma(\mathcal{M}(\partial X_B, R), \mathcal{U}) \simeq \bigotimes_{v \in B} \mathcal{H}_v.$$

Let $B := v_1, v_2$ be two primes in O_F. For

$$\Psi(X_B) \in \mathcal{H}_{v_1} \otimes \mathcal{H}_{v_2},$$

let

$$\rho_{v_1} := \text{Tr}_{v_2}(\Psi(X_B))$$

Define the entanglement entropy of v_1 and v_2 by

$$\text{Ent}(v_1, v_2) := -\text{Tr}(\rho_{v_1} \log \rho_{v_1}),$$

Entanglement entropy of primes

[Joint work with Hee-Joong Chung, Dohyeong Kim, Jeehoon Park, and Hwajong Yoo]

Take \(n = p \) and \(R = \mathbb{F}_p \). Let

\[\text{loc}_v : \mathcal{M}(X_B, \mathbb{F}_p) \rightarrow \mathcal{M}(\pi_v, \mathbb{F}_p) \]

be the localisation map to the moduli space over \(F_v \).

Then

Theorem

Assume \(\text{Pic}(X_B)[p] = 0 \). Then

\[\text{Ent}(v_1, v_2) = [\dim \mathcal{M}(X_B, \mathbb{F}_p) - \dim \text{Ker}(\text{loc}_{v_1}) - \dim \text{Ker}(\text{loc}_{v_2}) + |A_{F,p}^S|] \log p. \]

Here, \(A_{F,p}^S \) is the Galois group of the maximal unramified \(p \)-torsion extension of \(F \) that is split over the primes in \(S \).
Entanglement entropy of primes

Explicit example:

\[F = \mathbb{Q}(\zeta_{25}), \; R = \mathbb{F}_5, \; B = \{ v = (1 - \zeta_{25}), \; w = (3) \}. \]

Then

\[\text{Ent}(v, w) = 2 \log 5 \]