Mathematical Sciences Research Institute

Home » Degeneracy of algebraic points


Degeneracy of algebraic points April 17, 2023 - April 21, 2023
Registration Deadline: April 21, 2023 11 months from now
To apply for Funding you must register by: January 17, 2023 8 months from now
Parent Program:
Location: MSRI: Simons Auditorium
Organizers Jennifer Balakrishnan (Boston University), LEAD Mirela Ciperiani (University of Texas, Austin), Philipp Habegger (University of Basel), Wei Ho (University of Michigan), Hector Pasten (Pontificia Universidad Católica de Chile), Yunqing Tang (Princeton University), Shou-Wu Zhang (Princeton University)
A genus 2 curve over the reals and various p-adics. Image created by Prof. Jennifer Balakrishnan .
A central topic in Diophantine Geometry is to understand how the geometry of a variety influences the arithmetic of its algebraic points, and conversely. Conjectures of Bombieri, Lang, and Vojta suggest that rational points of algebraic varieties satisfying suitable approximation conditions, are algebraically degenerate. On the other hand, conjectures on unlikely intersections suggest that algebraic points of special type —e.g. torsion points in semi-abelian varieties, special points in Shimura varieties— avoid subvarieties, unless the subvariety itself is also special (in a technical sense). In recent years, a number of techniques have led to outstanding progress on Lang-Vojta conjectures, such as the Subspace Theorem, p-adic approaches to finiteness, and modular methods. Similarly, spectacular progress has been achieved on unlikely intersection conjectures thanks to new methods and tools, such as height formulas for special points, connections to model theory, refined counting results, and new theorems of Ax-Shanuel type (bi-algebraic geometry). The goal of this workshop is to create the opportunity for these two groups to interact, to share their techniques, to update on the most recent progress, and to attack the outstanding open questions in the field. The two directions described above are rather technical and specialized, and it seems necessary to bring together these groups of researchers to explain to each other not only the latest developments in their fields, but also the methods that made possible these breakthroughs. Thus, in this workshop we expect to have lectures explaining the main methods, as well as talks presenting the most recent progress in the subject by the world leading experts.
Keywords and Mathematics Subject Classification (MSC)
  • Arithmetic geometry

  • Arakelov theory

  • unlikely intersections

  • rational points

  • integral points

  • CM points

  • Colmez’s conjecture

  • CM abelian varieties

  • Vojta’s conjecture

  • Grothendieck-Katz p-curvature conjecture

  • Faltings height

  • Chabauty’s method

  • non-abelian Chabauty

  • period mappings

  • Bombieri-Lang conjecture

  • Lang’s conjecture

  • Effectivity

  • Diophantine equations

Primary Mathematics Subject Classification
Secondary Mathematics Subject Classification