Melvin Hochster
Tight closure. 2.

How do you know \(x \in I^* \)?
This is an hard problem because you need to check infinitely many equations \(cx^pe \in I^{(p^e)} \) for infinitely many \(e \).

Example:

\[
\frac{k[x,y,z]}{(x^3+y^3+z^3)} \quad \text{char } k \neq 3
\]

we want to show \(z^2 \in (x,y)^* \) but \(z \notin (x,y)(z^2 \neq 0 \text{ m} \nabla \)

\[
\frac{k[x,y,z]}{(x, y, x^3+y^3+z^3)} \cong \frac{k[z]}{z^3}
\]

For the \(z^2 \in (x,y)^* \) I need to check the following:

CLAIM

\[
x(z^2)^q \in (x,y) \quad \text{[eq]} \quad (x^q, y^q)
\]

\(q \equiv a \text{ mod } 3 \), \(q=1 \text{ or } q=2 \)

\(2q = 6h + 2a \) since we can write \(q=3h+a \)

\[
xz^2q = xz^{6h+2a} = z^a (x^3+y^3)^h z^b \text{ write } q= \frac{3}{h} + b
\]

\[
= \pm z \left(\sum h \cdot x^{3i} y^{3j} \right) z^b
\]

either \(3i+1 \geq q \)

or \(3j \geq q \)

if \(3i+1 \leq q-1 \)

and \(3j \leq q-1 \)

\(\Rightarrow 3h+1 < 2q-2 \Rightarrow 2q > 3h+3 \times \)

\(\Rightarrow x(z^2)^q \in (x^q, y^q) \text{ for } q \gg 0 \)
Testing whether \(u \in \mathbb{I}^* \) in
\[
\frac{k[x,y,z]}{(x^2+y^3+z^3)}
\]
is a very hard problem:

if \(R \) is a finitely generated \(\mathbb{Q} \)-algebra and \(I \subseteq R \) how do you test tight closure?

Find a finitely generated \(\mathbb{Z} \)-algebra \(A \subseteq R \) s.t. \(x \in A \), \(J = I \cap A \) generates \(I \), such that \(\mathbb{Q} \otimes_{\mathbb{Z}} A = R \)

(example \(\mathbb{Q} \otimes \mathbb{Z}[x,y,z] = \mathbb{Q}[x,y,z] \)).

Def. Define \(x \in \mathbb{I}^* \) if for almost all primes \(p \) the image of \(x \) is \(m (J_{/pA}^*) \) (in the Cherlin p sense)

(Use locally excellent rings that contains \(\mathbb{Q} \)).

Example:
\[
\begin{align*}
\mathbb{Q} \otimes \mathbb{Z}[x,y,z] \quad &\longrightarrow\quad \mathbb{Z}_p \otimes \mathbb{Z}[x,y,z] \\
\frac{k[x,y,z]}{(x^3+y^3+z^3)} \quad &\longrightarrow\quad \frac{k[x,y,z]}{(x^3+y^3+z^3)}
\end{align*}
\]

we just checked in the previous example that

\(3, z^2 \in (x,y)^* \), in the example almost all \(q \)

where \(\mathbb{Q}_p \).

the definition is independent by the choice of \(A \).

going back to charp:

if \(x \in \mathbb{I}^* \), \(I \subseteq R \) ideal
\(R \rightarrow S \) any ring homomorphism
\(f(x) \in (IS)^* \) over \(S \).

This is called Persistence, the proof is not easy.
Def of tight closure for locally excellent noetherian rings containing \mathbb{Q}.

$x \in R, I \subseteq R$

$x \in I^*$ if for all maps $R \to B$, B is a complete local domain.

If a finitely generated \mathbb{Q}-algebra T and a map $T \to B$ and $x_0 \in T$, $I_0 \subseteq T$

s.t. $x_0 \in I_0^*$ in T and $x_0 \mapsto f(x)$ in B, and $I_0B = IB$.

there are a lot of open questions about the char 0 def.

THM (Ein-Lazarsfeld-Smith comparison thm)

R a field. P is an height h prime of R, R is regular.

Then: $p(hm) \subseteq p^m \forall m$.

where $p^{(m)} = p^m R_p \cap R$

Thus it is also true if R_p has finite projective dim.

(hint: $pa R_p \to \infty \Rightarrow p^{(m)}$ is unmixed.)

THM (Hochster - Roberts)

If R is a noetherian k-algebra, regular. G is a linearly reductive algebraic group over k,

acting over $R \Rightarrow R^G$ is Cohen Macaulay

\[\text{rang of m\-variants} \]

There is an R^G-linear map from R to R^G, i.e. $R^G \to R$ splits as a map of R^G-modules.
THM: (Hochster-Huneke)

If \(S \) is regular, \(R \rightarrow S \) splits as a map of \(R \)-modules

\(\Rightarrow \) \(R \) is Cohen-Macaulay

(the proof reduces to the case where \(R \) is local and complete).

* Cohen capturing:

THM If \(R \) is a local domain "nice" (for example excellent)

and let \(x_1, \ldots, x_{k+1} \) part of a system of parameters:

\((x_1, \ldots, x_k) : x_{k+1} \subseteq (x_1, \ldots, x_k)^* \)

pf: let \(R \) be a complete local domain. Let

\(k \) be a coefficient field of \(R \) then:

\(k[x_1, \ldots, x_k, \ldots, x_m] \otimes \mathbb{A} \)

\(A \subseteq R \)

module finite

\(u \cdot \mathbb{A}x_{k+1} \in (x_1, \ldots, x_k) \) claim: \(u \in (x_1, \ldots, x_k)^* \)

choose \(A^h \subseteq R \) free and pick \(c \in A^h \) s.t.

\(c \cdot R \subseteq A^h \)

\((u^q x_{k+1}) \in (x_1^q, \ldots, x_k^q) R \)

\(cu^q x_{k+1} \in (x_1^q, \ldots, x_k^q) A^h \)

\(\Rightarrow cu^q \in (x_1^q, \ldots, x_k^q) A^h \) but \(A^h \subseteq R \)

\(\Rightarrow cu^q \in (x_1^q, \ldots, x_k^q) R \) all \(q \). \(\Box \)
THM
R is a direct summand of S, S regular. \Rightarrow
R is Cohen Macaulay

pf:
R complete local, $S = R \otimes W$ as R-modules.
If $u \in I^* m R$, $u \in (IS)^* = IS$. $u \in R \cap IS$
$R \otimes 0 \cap (I \otimes IW) = I$
m$_{R} I = I^*$ for all I

$$(x_1, \ldots, x_k), x_{k+1} \subseteq (x_1, \ldots, x_k)^* = (x_1, \ldots, x_k)$$